

Processing

Reas_00_i-xxvi.indd Sec1:iReas_00_i-xxvi.indd Sec1:i 5/23/07 1:11:18 PM5/23/07 1:11:18 PM

Reas_00_i-xxvi.indd Sec1:iiReas_00_i-xxvi.indd Sec1:ii 5/23/07 1:11:18 PM5/23/07 1:11:18 PM

Processing:
a programming
handbook for
visual designers
and artists

Casey Reas
Ben Fry

The MIT Press
Cambridge, Massachusetts
London, England

Reas_00_i-xxvi.indd Sec1:iiiReas_00_i-xxvi.indd Sec1:iii 5/23/07 1:11:18 PM5/23/07 1:11:18 PM

© 2007 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from
the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For
information, please email special_sales@mitpress.mit.edu or write to Special Sales Department, The MIT Press,
55 Hayward Street, Cambridge, MA 02142.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Reas, Casey.
 Processing : a programming handbook for visual designers and artists / Casey Reas & Ben Fry ;
 foreword by John Maeda.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-262-18262-1 (hardcover : alk. paper)
 1. Computer programming. 2. Computer graphics—Computer programs. 3. Digital art—Computer programs.
 4. Art—Data processing. 5. Art and technology. I. Fry, Ben. II. Title.

QA76.6.R4138 2007

005.1—dc22

 2006034768

10 9 8 7 6 5 4 3 2 1

Reas_00_i-xxvi.indd Sec1:ivReas_00_i-xxvi.indd Sec1:iv 5/23/07 1:11:19 PM5/23/07 1:11:19 PM

For the ACG

Reas_00_i-xxvi.indd Sec1:vReas_00_i-xxvi.indd Sec1:v 5/23/07 1:11:19 PM5/23/07 1:11:19 PM

29 34 45 57 67 72

91 99 113 121 131 141

192 204 208 221 225 233

247 289 297 307 320 324

336 344 352 354 359 409

447 451 472 493 530 551

84

189

244

331

415

535

Reas_00_i-xxvi.indd Sec1:viReas_00_i-xxvi.indd Sec1:vi 5/23/07 1:11:19 PM5/23/07 1:11:19 PM

vii

 Foreword
 Preface

 Processing . . .
 Using Processing

 Structure 1: Code Elements
 Shape 1: Coordinates, Primitives
 Data 1: Variables
 Math 1: Arithmetic, Functions
 Control 1: Decisions
 Control 2: Repetition
 Shape 2: Vertices
 Math 2: Curves
 Color 1: Color by Numbers
 Image 1: Display, Tint
 Data 2: Text
 Data 3: Conversion, Objects
 Typography 1: Display
 Math 3: Trigonometry
 Math 4: Random
 Transform 1: Translate, Matrices
 Transform 2: Rotate, Scale
 Development 1: Sketching, Techniques
 Synthesis 1: Form and Code
 Interviews 1: Print

 Structure 2: Continuous
 Structure 3: Functions
 Shape 3: Parameters, Recursion
 Input 1: Mouse I
 Drawing 1: Static Forms
 Input 2: Keyboard
 Input 3: Events
 Input 4: Mouse II
 Input 5: Time, Date
 Development 2: Iteration, Debugging
 Synthesis 2: Input and Response
 Interviews 2: Software, Web

 Motion 1: Lines, Curves
 Motion 2: Machine, Organism
 Data 4: Arrays
 Image 2: Animation
 Image 3: Pixels
 Typography 2: Motion
 Typography 3: Response
 Color 2: Components
 Image 4: Filter, Blend, Copy, Mask
 Image 5: Image Processing
 Output 1: Images
 Synthesis 3: Motion and Arrays
 Interviews 3: Animation, Video

 Structure 4: Objects I
 Drawing 2: Kinetic Forms
 Output 2: File Export
 Input 6: File Import
 Input 7: Interface
 Structure 5: Objects II
 Simulate 1: Biology
 Simulate 2: Physics
 Synthesis 4: Structure, Interface
 Interviews 4: Performance, Installation

 Extension 1: Continuing . . .
 Extension 2: 3D
 Extension 3: Vision
 Extension 4: Network
 Extension 5: Sound
 Extension 6: Print
 Extension 7: Mobile
 Extension 8: Electronics

 Appendixes
 Related Media
 Glossary
 Code Index
 Index

Contents

xix
xxi

1

9

17

23

37

43

51

61

69

79

85

95

101

105

111

117

127

133

137

145

149

155

173

181

197

205

217

223

229

237

245

251

255

261

279

291

301

315

321

327

333

337

347

355

367

371

377

395

413

421

427

435

453

461

477

495

501

519

525

547

563

579

603

617

633

661

693

699

703

705

Reas_00_i-xxvi.indd Sec1:viiReas_00_i-xxvi.indd Sec1:vii 5/23/07 1:11:21 PM5/23/07 1:11:21 PM

viii

88 342 55 65 305 220

98 319 323 351 353 359

225 232 240 247 444 44

124 129 288 296 29 32

202 470 488 184 190 407

141 113 329 335 530 535

415

207

83

75

455

551

Reas_00_i-xxvi.indd Sec1:viiiReas_00_i-xxvi.indd Sec1:viii 5/23/07 1:11:21 PM5/23/07 1:11:21 PM

ix

 Foreword
 Preface

 Processing . . .
 Using Processing

 Color 1: Color by Numbers
 Color 2: Components
 Control 1: Decisions
 Control 2: Repetition
 Data 1: Variables
 Data 2: Text
 Data 3: Conversion, Objects
 Data 4: Arrays
 Development 1: Sketching, Techniques
 Development 2: Iteration, Debugging
 Drawing 1: Static Forms
 Drawing 2: Kinetic Forms
 Image 1: Display, Tint
 Image 2: Animation
 Image 3: Pixels
 Image 4: Filter, Blend, Copy, Mask
 Image 5: Image Processing
 Input 1: Mouse I
 Input 2: Keyboard
 Input 3: Events
 Input 4: Mouse II
 Input 5: Time, Date
 Input 6: File Import
 Input 7: Interface
 Math 1: Arithmetic, Functions
 Math 2: Curves
 Math 3: Trigonometry
 Math 4: Random
 Motion 1: Lines, Curves
 Motion 2: Machine, Organism
 Output 1: Images
 Output 2: File Export

 Shape 1: Coordinates, Primitives
 Shape 2: Vertices
 Shape 3: Parameters, Recursion
 Simulate 1: Biology
 Simulate 2: Physics
 Structure 1: Code Elements
 Structure 2: Continuous
 Structure 3: Functions
 Structure 4: Objects I
 Structure 5: Objects II
 Synthesis 1: Form and Code
 Synthesis 2: Input and Response
 Synthesis 3: Motion and Arrays
 Synthesis 4: Structure, Interface
 Transform 1: Translate, Matrices
 Transform 2: Rotate, Scale
 Typography 1: Display
 Typography 2: Motion
 Typography 3: Response

 Interviews 1: Print
 Interviews 2: Software, Web
 Interviews 3: Animation, Video
 Interviews 4: Performance, Installation

 Extension 1: Continuing . . .
 Extension 2: 3D
 Extension 3: Vision
 Extension 4: Network
 Extension 5: Sound
 Extension 6: Print
 Extension 7: Mobile
 Extension 8: Electronics

 Appendixes
 Related Media
 Glossary
 Code Index
 Index

Contents by category

xix
xxi

1

9

85

337

51

61

37

101

105

301

145

251

217

413

95

315

321

347

355

205

223

229

237

245

427

435

43

79

117

127

279

291

367

421

23

69

197

461

477

17

173

181

395

453

149

255

371

495

133

137

111

327

333

155

261

377

501

519

525

547

563

579

603

617

633

661

693

699

703

705

Reas_00_i-xxvi.indd Sec1:ixReas_00_i-xxvi.indd Sec1:ix 5/23/07 1:11:22 PM5/23/07 1:11:22 PM

x

29 30 44 55 63 70

88 97 113 124 128 137

186 200 206 219 225 231

246 281 293 306 316 322

334 340 349 353 406

441 458 464 484 530 535

83

174

239

329

414

551

356

Reas_00_i-xxvi.indd Sec1:xReas_00_i-xxvi.indd Sec1:x 5/23/07 1:11:22 PM5/23/07 1:11:22 PM

xi

 Foreword by John Maeda

 Preface
 Contents
 How to read this book
 Casey’s introduction
 Ben’s introduction
 Acknowledgments

 Processing . . .
 Software
 Literacy
 Open
 Education
 Network
 Context

 Using Processing
 Download, Install
 Environment
 Export
 Example walk-through
 Reference

 Structure 1: Code Elements
 Comments
 //, /* */

 Functions
 Expressions, Statements
 “;”, “,”

 Case sensitivity
 Whitespace
 Console
 print(), println()

Extended contents

 Shape 1: Coordinates, Primitives
 Coordinates
 size()

 Primitive shapes
 point(), line(),

 triangle(), quad(), rect(),

 ellipse(), bezier()

 Drawing order
 Gray values
 background(),

 fill(),stroke(),

 noFill(), noStroke()

 Drawing attributes
 smooth(), noSmooth(),

 strokeWeight(), strokeCap(),

 strokeJoin()

 Drawing modes
 ellipseMode(), rectMode()

 Data 1: Variables
 Data types
 int, float, boolean,

 true, false

 Variables
 =

 Processing variables
 width, height

 Math 1: Arithmetic, Functions
 Arithmetic
 +, -, *, /, %

 Operator precedence, Grouping
 ()

 Shortcuts
 ++, --, +=, -=, *=, /=, -

 Constraining numbers
 ceil(), floor(), round(),

 min(), max()

xix

xxi
xxi

xxii
xxiii
xxiv
xxv

1

1

3

4

4

6

7

9

9

9

10

11

16

17

17

18

18

20

20

20

23

23

25

31

31

33

34

37

37

38

40

43

43

47

48

49

Reas_00_i-xxvi.indd Sec1:xiReas_00_i-xxvi.indd Sec1:xi 5/23/07 1:11:24 PM5/23/07 1:11:24 PM

xii

 Control 1: Decisions
 Relational expressions
 >, <, >=, <=, ==, !=

 Conditionals
 if, else, {}

 Logical operators
 ||, &&, !

 Control 2: Repetition
 Iteration
 for

 Nested iteration
 Formatting code blocks

 Shape 2: Vertices
 Vertex
 beginShape(), endShape(),

 vertex()

 Points, Lines
 Shapes
 Curves
 curveVertex(), bezierVertex()

 Math 2: Curves
 Exponents, Roots
 sq(), sqrt(), pow()

 Normalizing, Mapping
 norm(), lerp(), map()

 Simple curves

 Color 1: Color by Numbers
 Setting colors
 Color data
 color, color()

 RGB, HSB
 colorMode()

 Hexadecimal

 Image 1: Display, Tint
 Display
 PImage, loadImage(), image()

 Image color, Transparency
 tint(), noTint()

 Data 2: Text
 Characters
 char

 Words, Sentences
 String

 Data 3: Conversion, Objects
 Data conversion
 boolean(), byte(), char(),

 int(), float(), str()

 Objects
 “.”,

 PImage.width, PImage.height,

 String.length,

 String.startsWith(),

 String.endsWith();

 String.charAt(),

 String.toCharArray(),

 String.subString(),

 String.toLowerCase(),

 String.toUpperCase(),

 String.equals()

 Typography 1: Display
 Loading fonts, Drawing text
 PFont, loadFont(),

 textFont(), text()

 Text attributes
 textSize(), textLeading(),

 textAlign(), textWidth()

 Math 3: Trigonometry
 Angles, Waves
 PI, QUARTER_PI, HALF_PI,

 TWO_PI, sin(), cos(),

 radians(), degrees()

 Circles, Arcs, Spirals
 arc()

 Math 4: Random
 Unexpected numbers
 random(), randomSeed()

 Noise
 noise(), noiseSeed()

51

51

53

57

61

61

65

67

69

69

71

72

74

79

79

80

83

85

86

89

89

93

95

96

97

101

102

103

105

105

107

111

112

114

117

117

123

127

127

130

Reas_00_i-xxvi.indd Sec1:xiiReas_00_i-xxvi.indd Sec1:xii 5/23/07 1:11:24 PM5/23/07 1:11:24 PM

xiii

 Transform 1: Translate, Matrices
 Translation
 translate()

 Controlling transformations
 pushMatrix(), popMatrix()

 Transform 2: Rotate, Scale
 Rotation, Scaling
 rotate(), scale()

 Combining transformations
 New coordinates

 Development 1: Sketching, Techniques
 Sketching software
 Programming techniques

 Synthesis 1: Form and Code
 Collage Engine
 Riley Waves
 Wilson Grids
 Mandelbrot Set

 Interviews 1: Print
 Jared Tarbell.
 Fractal.Invaders, Substrate
 Martin Wattenberg.
 Shape of Song
 James Paterson.
 The Objectivity Engine
 LettError.
 RandomFont Beowolf

 Structure 2: Continuous
 Continuous evaluation
 draw(), frameRate(),

 frameCount

 Controlling the fl ow
 setup(), noLoop(),

 Variable scope

 Structure 3: Functions
 Abstraction
 Creating functions
 void

 Function overloading
 Calculating and returning values
 return

 Shape 3: Parameters, Recursion
 Parameterized form
 Recursion

 Input 1: Mouse I
 Mouse data
 mouseX, mouseY,

 pmouseX, pmouseY

 Mouse buttons
 mousePressed, mouseButton

 Cursor icon
 cursor(), noCursor()

 Drawing 1: Static Forms
 Simple tools
 Drawing with images

 Input 2: Keyboard
 Keyboard data
 keyPressed, key

 Coded keys
 keyCode

 Input 3: Events
 Mouse events
 mousePressed(),

 mouseReleased(),

 mouseMoved(), mouseDragged()

 Key events
 keyPressed(), keyReleased()

 Controlling the fl ow
 loop(), redraw()

133

133

134

137

137

139

142

145

145

146

149

150

151

152

153

155

157

161

165

169

173

173

177

178

181

182

183

193

194

197

197

201

205

205

212

213

217

218

221

223

224

227

229

229

232

235

Reas_00_i-xxvi.indd Sec1:xiiiReas_00_i-xxvi.indd Sec1:xiii 5/23/07 1:11:24 PM5/23/07 1:11:24 PM

xiv

 Input 4: Mouse II
 Constrain
 constrain()

 Distance
 dist()

 Easing
 abs()

 Speed
 Orientation
 atan2()

 Input 5: Time, Date
 Seconds, Minutes, Hours
 second(), minute(), hour(),

 millis()

 Date
 day(), month(), year()

 Development 2: Iteration, Debugging
 Iteration
 Debugging

 Synthesis 2: Input and Response
 Tennis
 Cursor. Peter Cho
 Typing
 Banded Clock. Golan Levin

 Interviews 2: Software, Web
 Ed Burton. Sodaconstructor
 Josh On. They Rule
 Jürg Lehni. Hektor and Scriptographer
 Auriea Harvey and Michaël Samyn.
 The Endless Forest

 Motion 1: Lines, Curves
 Controlling motion
 Moving along curves
 Motion through transformation

 Motion 2: Machine, Organism
 Mechanical motion
 Organic motion

 Data 4: Arrays
 Using arrays
 Array, [], new, Array.length

 Storing mouse data
 Array functions
 append(), shorten(),

 expand(), arraycopy()

 Two-dimensional arrays

 Image 2: Animation
 Sequential images
 Images in motion

 Image 3: Pixels
 Reading pixels
 get()

 Writing pixels
 set()

 Typography 2: Motion
 Words in motion
 Letters in motion

 Typography 3: Response
 Responsive words
 Responsive letters

 Color 2: Components
 Extracting color
 red(), blue(), green(),

 alpha(), hue(), saturation(),

 brightness(),

 Dynamic color palettes

 Image 4: Filter, Blend, Copy, Mask
 Filtering, Blending
 filter(), blend(),

 blendColor()

 Copying pixels
 copy()

 Masking
 mask()

237

237

238

239

242

243

245

245

249

251

251

252

255

256

257

258

259

261

263

267

271

275

279

279

284

287

291

291

295

301

303

306

309

312

315

316

319

321

321

324

327

327

331

333

333

335

337

337

341

347

347

353

354

Reas_00_i-xxvi.indd Sec1:xivReas_00_i-xxvi.indd Sec1:xiv 5/23/07 1:11:25 PM5/23/07 1:11:25 PM

xv

 Image 5: Image Processing
 Pixels
 pixels[], loadPixels(),

 updatePixels(), createImage()

 Pixel components
 Convolution
 Image as data

 Output 1: Images
 Saving images
 save()

 Saving sequential images
 saveFrame()

 Synthesis 3: Motion and Arrays
 Centipede. Ariel Malka
 Chronodraw. Andreas Gysin
 AmoebaAbstract_03. Marius Watz
 Mr. Roboto. Leon Hong

 Interviews 3: Animation, Video
 Motion Theory. R.E.M. “Animal”
 Bob Sabiston. Waking Life
 Jennifer Steinkamp. Eye Catching
 Semiconductor. The Mini-Epoch Series

 Structure 4: Objects I
 Object-oriented programming
 Using classes and objects
 class, Object

 Arrays of objects
 Multiple fi les

 Drawing 2: Kinetic Forms
 Active tools
 Active drawings

 Output 2: File Export
 Formatting data
 nf()

 Exporting fi les
 saveStrings(), PrintWriter,

 createWriter(),

 PrintWriter.flush(),

 PrintWriter.close(), exit()

 Input 6: File Import
 Loading numbers
 loadStrings(),

 split(), splitTokens()

 Loading characters
 WHITESPACE

 Input 7: Interface
 Rollover, Button, Dragging
 Check boxes, Radio buttons
 Scrollbar

 Structure 5: Objects II
 Multiple constructors
 Composite objects
 Inheritance
 extends, super

 Simulate 1: Biology
 Cellular automata
 Autonomous agents

 Simulate 2: Physics
 Motion simulation
 Particle systems
 Springs

 Synthesis 4: Structure, Interface
 WithoutTitle. Lia
 Pond. William Ngan
 Swingtree. ART+COM,
 Andreas Schlegel
 SodaProcessing. Ed Burton

355

356

359

360

364

367

368

369

371

372

373

374

375

377

379

383

387

391

395

395

398

406

409

413

414

416

421

421

422

427

428

431

435

436

442

448

453

453

454

456

461

461

469

477

477

481

487

495

496

497

498

499

Reas_00_i-xxvi.indd Sec1:xvReas_00_i-xxvi.indd Sec1:xv 5/23/07 1:11:25 PM5/23/07 1:11:25 PM

xvi

 Interviews 4: Performance, Installation
 SUE.C. Mini Movies
 Chris Csikszentmihályi.
 DJ I, Robot Sound System
 Golan Levin, Zachary Lieberman.
 Messa di Voce
 Marc Hansen. Listening Post

 Extension 1: Continuing . . .
 Extending Processing
 Processing and Java
 Other programming languages

 Extension 2: 3D. Simon Greenwold
 A short history of 3D software
 3D form
 Camera
 Material and lights
 Tools for 3D
 Conclusion
 Code
 Resources

 Extension 3: Vision. Golan Levin
 Computer vision in interactive art
 Elementary computer vision
 techniques
 Computer vision in the physical world
 Tools for computer vision
 Conclusion
 Code
 Resources

 Extension 4: Network.
 Alexander R. Galloway
 The Internet and the arts
 Internet protocols and concepts
 Network tools
 Conclusion
 Code
 Resources

 Extension 5: Sound. R. Luke DuBois
 Music and sound programming
 in the arts
 Sound and musical informatics
 Digital representation of sound
 and music
 Music as information
 Tools for sound programming
 Conclusion
 Code
 Resources

 Extension 6: Print. Casey Reas
 Print and computers
 High-resolution fi le export
 Production
 Conclusion
 Code
 Resources

 Extension 7: Mobile. Francis Li
 Mobile software applications
 The mobile platform
 Programming for mobile phones
 Mobile programming platforms
 Conclusion
 Code
 Resources

 Extension 8: Electronics.
 Hernando Barragán and Casey Reas
 Electronics in the arts
 Electricity
 Components
 Circuits
 Microcontrollers and I/O boards
 Sensors and communication
 Controlling physical media
 Conclusion
 Code
 Resources

501

503

507

511

515

519

519

521

522

525

525

526

531

532

536

538

539

545

547

547

549

552

554

555

556

561

563

563

565

569

571

572

576

579

579

582

584

588

591

592

593

599

603

603

606

608

612

613

615

617

617

619

622

624

625

626

631

633

633

635

637

638

639

642

646

648

649

658

Reas_00_i-xxvi.indd Sec1:xviReas_00_i-xxvi.indd Sec1:xvi 5/23/07 1:11:26 PM5/23/07 1:11:26 PM

xvii

 Appendix A: Order of Operations
 Appendix B: Reserved Words
 Appendix C: ASCII, Unicode
 Appendix D: Bit, Binary, Hex
 Appendix E: Optimization
 Appendix F: Programming Languages
 Appendix G: Code Comparison

 Related Media
 Glossary
 Code Index
 Index

661

663

664

669

673

679

686

693

699

703

705

Reas_00_i-xxvi.indd Sec1:xviiReas_00_i-xxvi.indd Sec1:xvii 5/23/07 1:11:26 PM5/23/07 1:11:26 PM

Reas_00_i-xxvi.indd Sec1:xviiiReas_00_i-xxvi.indd Sec1:xviii 5/23/07 1:11:27 PM5/23/07 1:11:27 PM

xix

Foreword

At MIT, the full-time graduate studio that I administer attracts a uniquely gifted lot:
people who have a fundamental balance issue in the way they approach the computer as
an expressive medium. On the one hand, they don’t want the programming code to get
in the way of their designs or artistic desires; on the other hand, without hesitation they
write sophisticated computer codes to discover new visual pathways. The two sides of their
minds are in continual confl ict. The conclusion is simple for them. Do both.
 Hybrids that can fl uidly cross the chasm between technology and the arts are
mutations in the academic system. Traditionally, universities create technology students
or art students—but never mix the two sides of the equation in the same person. During
the 1990s the mutants that managed to defy this norm would either seek me out, or else
I would reach out to fi nd them myself. Bringing these unique people together was my
primary passion, and that’s how I came into contact with Casey Reas and Ben Fry.
 It is said that the greatest compliment to a teacher is when the student surpasses the
teacher. This corner was turned quickly after I began to work with them, and the fi nishing
blow came when Ben and Casey created Processing. They prominently elevated the call
for visual experimentation with their timely mastery of the Internet to engage at fi rst
tens, hundreds, and then tens of thousands of hybrids all over the world. Wherever I might
travel, young technology artists are always talking about Processing and ask me to pass on
their thanks to Casey and Ben.
 So it is here that I express my thanks to you, Ben and Casey. On behalf of all of the
people who follow where Processing might take the fi eld of computational art and design,
I wish you more sleepless nights in the relentless pursuit of perfecting the bridge that
connects the art-mind with the computer-mind. All of us look to you to lead the way for
when art on the computer becomes simply, art—without the icky technology connotations.
We’re all counting on you to take us there. Please?

John Maeda
Allen Professor of Media Arts and Sciences
MIT Media Laboratory

Reas_00_i-xxvi.indd Sec1:xixReas_00_i-xxvi.indd Sec1:xix 5/23/07 1:11:27 PM5/23/07 1:11:27 PM

Reas_00_i-xxvi.indd Sec1:xxReas_00_i-xxvi.indd Sec1:xx 5/23/07 1:11:27 PM5/23/07 1:11:27 PM

xxi

Preface

This book was written as an introduction to the ideas of computer programming within
the context of the visual arts. It targets an audience of computer-savvy individuals who
are interested in creating interactive and visual work through writing software but have
little or no prior experience. We’re tremendously excited about the potential of software
as a medium for communication and expression, and we hope this book will open the
potential to a wide audience.
 The Processing book is the result of six years of software development and teaching
experience. The ideas presented have been continually tested in the classrooms,
computer labs, and basements of universities, art and design schools, and arts
institutions. The authors have taught related courses at the University of California–
Los Angeles, the Interaction Design Institute Ivrea, Harvard University, and Carnegie
Mellon University and have given numerous workshops and lectures on this topic at
conferences and institutions around the globe. The contents of this book have been
continually improved through the generous feedback of students and fellow educators.
The refi ned curriculum is presented here in book form with the intention of distributing
the results of this endeavor to a larger and more diverse community.

Contents

Four types of content are featured in these pages. The majority of the book is divided
into tutorial units discussing specifi c elements of software and how they relate to
the arts. These units introduce the syntax and concepts of software such as variables,
functions, and object-oriented programming. They cover topics such as photography and
drawing in relation to software. These units feature many short, prototypical example
programs with related images and explanation. More advanced professional projects
from diverse domains including animation, performance, and typography are discussed
in interviews with their creators (pp. 155, 261, 377, 501). The extension sections (p. 519)
present concise introductions to further domains of exploration including computer
vision, sound, and electronics. The appendixes (p. 661) provide reference tables and more
involved explanations of technical topics. The related media section (p. 693) is a list of
references to additional material on related topics. The technical terms used in the book
are defi ned in the glossary (p. 699).
 This book is full of example programs written using the Processing programming
language developed by the authors. Processing is a free, open source programming
language and environment used by students, artists, designers, architects, researchers,
and hobbyists for learning, prototyping, and production. Processing is developed
by artists and designers as an alternative to proprietary software tools in the same
domain. The project integrates a programming language, development environment,

Reas_00_i-xxvi.indd Sec1:xxiReas_00_i-xxvi.indd Sec1:xxi 5/23/07 1:11:28 PM5/23/07 1:11:28 PM

xxii

and teaching methodology into a unifi ed structure for learning and exploration.
The software allows people to make a smooth transition from beginner to advanced
programmer, and the Processing language is a good basis for future learning. The
technical aspects of the language and the deeper programming concepts introduced
in this text translate well to other programming languages, particularly those used
frequently within the arts.
 Most of the examples presented in this book have a minimal visual style. This
represents not a limitation of the Processing software, but rather a conscious decision
by the authors to make the code for each example as brief and clear as possible. We hope
the stark quality of the examples gives additional incentive to the reader to extend the
programs to her or his own visual language.

How to read this book

This book can be read front to back or in a self-directed order. There are two tables of
contents (p. vii, ix) that order the book in different ways. In addition to reading the
book from front to back, following each category (e.g., Input, Shape, Structure) from
beginning to end is a logical way to move through the text. Previous knowledge and
areas of interest can defi ne the order of exploration. For example, it’s possible to read all
of the units about images and skip those about math, or vice versa. You will fi nd that
many later units require knowledge of concepts discussed in earlier units. If you fi nd
unfamiliar code and ideas, it may be necessary to read earlier units before proceeding.
 Understanding this book requires more than reading the words. It is also essential
to run, modify, and interact with the programs found within. Just as it’s not possible
to learn to cook without cooking, it’s not possible to learn how to program without
programming. Many of the examples can be fully understood only in motion or in
response to the mouse and keyboard. The Processing software and all of the code
presented in this book can be downloaded and run for future exploration. Processing
can be downloaded from www.processing.org/download and the examples from
www.processing.org/learning.
 The code, diagrams, and images convey essential content to augment the text.
Because this book was written for visually oriented people, it’s assumed that diagrams
and images will be read with as much care as the text. Typographic and visual
conventions are used to assist reading. Code elements within the text are presented
in a monospaced font for differentiation. Each code example is numbered sequentially
to make it easy to reference. The numbers appear in the right margin at the fi rst
line of each example. The number “15-02” refers to the 2nd example in the 15th unit
(p. 128). Unfortunately, sometimes a code example wraps to the next page. When the
abbreviation “cont.” appears as a part of the code number, this signifi es the code is
continued from the previous page. Many of the code examples run differently when
the variable values are changed. When numbers appear to the left of an image (p. 200),
these numbers were used to produce that image. In examples where the mouse position
is important, thin lines are used to imply the mouse position at the time the image was

Reas_00_i-xxvi.indd Sec1:xxiiReas_00_i-xxvi.indd Sec1:xxii 5/23/07 1:11:28 PM5/23/07 1:11:28 PM

xxiii

made (code 23-02, p. 206). In some examples, only the horizontal position of the mouse is
important and a single vertical line is used to show the position (code 23-03, p. 206).

Casey’s introduction

I started playing with computers as a child. I played games and wrote simple programs
in BASIC and Logo on my family’s Apple IIe machine. I spent years exploring and testing
it, but I preferred drawing, and my interest in computers dissipated. As a design student
at the University of Cincinnati in the early 1990s, I started to use Adobe’s Photoshop
and Illustrator programs during my fi rst year, but I wasn’t permitted to use them in my
design studio classes until the third year. I spent the fi rst two years of my education
training my eyes and hands to construct composition and meaning through visual form.
I focused my energy on drawing icons and letters with pencils and painting them with
Plaka, a matte black paint. This was intensely physical work. I often produced hundreds
of paper sketches while working toward a single refi ned image. I later focused my
efforts on the design of printed materials including books, magazines, and information
graphics. In this work I used software as a tool during an intermediate stage between
concept and the fi nal result on paper.
 Over time, I shifted from producing printed media to software. When the
multimedia CD-ROM industry emerged, I worked in that area to integrate my interests
in sound, video, image, and information design. With the rise of the Internet in the
mid-1990s, I focused on building large, database-integrated websites. As I shifted my
work from paper to screen, static grids and information hierarchies evolved into kinetic,
modular systems with variable resolutions and compositions. The time and energy
once spent devoted to details of materials and static composition shifted to details of
motion and response. I focused on building real-time processes to generate form, defi ne
behavior, and mediate interactions. To pursue these interests at a more advanced level,
I realized I would need to learn to program computers. After a childhood of playing with
computers and years of working with them professionally, I started down a new path.
 In 1997 I met John Maeda and was introduced to the experimental software work of
his students in the Aesthetics and Computation Group at MIT. They created a new type
of work by fusing traditional arts knowledge with ideas from computer science. My new
direction emerged as I experienced this work, and in 1998 I started learning to program
computers in earnest. I began graduate studies at MIT the following year. My time there
was personally transforming as I shifted from a consumer of software to a producer.
I expanded my views of technology in relation to culture and the history of art.
 While a graduate student at the MIT Media Lab, I was introduced to a culture of
individuals who combined skills from more than one fi eld of study. The knowledge in
common was computing technology, and people had backgrounds in other disciplines
including architecture, art, mathematics, design, and music. At that time, few software
environments afforded both a sophisticated programming language and the ability
to created refi ned graphics, so my predecessors and colleagues at MIT built their own
software to meet their unique needs. The building of these software tools and their use

Reas_00_i-xxvi.indd Sec1:xxiiiReas_00_i-xxvi.indd Sec1:xxiii 5/23/07 1:11:29 PM5/23/07 1:11:29 PM

xxiv

to develop projects led to the emergence of a unique culture that synthesized knowledge
from visual culture with knowledge from computer science. The desire to make this
information accessible to people outside of technical fi elds and institutions has been my
motivation for dedicating the last six years to developing Processing. I hope this book
will act as a catalyst to increase software literacy within the arts.

Ben’s introduction

Like lots of people who wind up in similar careers, I’ve always been interested in
taking things apart to understand how they work. This began with disassembling and
comparing the contents of household electronics, looking for similar components. Once I
ran out of telephones and radios, I moved to software. The computer provided an endless
range of questions, like having an infi nite number of telephones. With a burnt yellow
binder that described “IBM BASIC by Microsoft,” my father introduced me to the “for”
loop and I gradually taught myself programming—mostly by staring at others’ code,
sometimes modifying it to make it do something else. Over time it became easier to
write code from scratch.
 I had a separate interest in graphic design, and I was curious about typography and
layout and composition. A family friend ran a design fi rm, and I thought that seemed
like the most interesting job on earth. I later applied to design school, thinking of
studying user interface design or creating “interactive multimedia CD-ROMs,” the only
possibilities I could see for intersecting my two interests. Attending design school was
signifi cant for me, because it provided thinking and creative skills that could be applied
to other areas, including my interest in software.
 In 1997, during my fi nal year of undergraduate school, John Maeda gave a lecture
at our program. It was overwhelming for several of us, including one friend who sat
mumbling “Whoa, slow down...” as we watched from the back of the room. In the
presentation I fi nally saw the intersection between design and computation that I
couldn’t fi gure out before. It was a different perspective than building tools, which
sounded mundane, or building interfaces, which also left something to be desired.
A year later I was lucky to have the opportunity to join Professor Maeda at MIT.
 Pedagogy was a persistent theme during my six years working with John at the
Media Laboratory. Casey, other students, and I contributed to the Design By Numbers
project, which taught us a great deal about teaching computation to designers and
gave us a lot of feedback on what people wanted. Casey and I began to see a similarity
between this feature set and what we did in our own work at the “sketching” stage,
and we started to discuss how we might connect the two in what would later be called
Processing.
 We wanted Processing to include lots of code that could be viewed, modifi ed, and
tested—refl ecting the way in which I learned programming. But more important has
been the community that has formed around the project, who are eager to share code
with one another and help answer each other’s questions. In a similar manner, the code
for Processing itself is available, which for me has a lot to do with repaying the favor of

Reas_00_i-xxvi.indd Sec1:xxivReas_00_i-xxvi.indd Sec1:xxiv 5/23/07 1:11:29 PM5/23/07 1:11:29 PM

xxv

a previous generation of developers who shared their code and answered my questions.
 One of my personal goals for this project is to facilitate designers’ taking control
of their own tools. It’s been more than twenty years since desktop publishing helped
reinvent design in the mid-1980s, and we’re overdue for more innovations. As designers
have become fed up with available tools, coding and scripting have begun to fi ll the
widening gap between what’s in the designer’s mind and the capability of the software
they’ve purchased. While most users of Processing will apply it to their own work, I hope
that it will also enable others to create new design tools that come not from corporations
or computer scientists, but from designers themselves.

Acknowledgments

This book is the synthesis of more than fi fteen years of studying visual design and
software. John Maeda is the person most responsible for the genesis of Processing and
this book. His guidance as our adviser in the Aesthetics and Computation Group (ACG)
at the MIT Media Lab and the innovations of the Design By Numbers project are the
foundation for the ideas presented here. Processing has also been strongly informed
by the research and collaboration with our fellow graduate students at the ACG from
1999 through 2004. We are grateful for our collaboration with Peter Cho, Elise Co,
Megan Galbraith, Simon Greenwold, Omar Khan, Axel Kilian, Reed Kram, Golan Levin,
Justin Manor, Nikita Pashenkov, Jared Schiffman, David Small, and Tom White. We
also acknowledge the foundation built by our predecessors in the ACG and the Visual
Language Workshop.
 While Processing’s origin is at MIT, it has grown up within a set of other institutions
including UCLA, the Interaction Design Institute Ivrea, the Broad Institute, and Carnegie
Mellon. Casey’s colleagues in Los Angeles and Ivrea have provided the environment
for many of the ideas in this text to evolve. We thank UCLA faculty members Rebecca
Allen, Mark Hansen, Erkki Huhtamo, Robert Israel, Willem Henri Lucas, Rebeca Mendez,
Vasa Mihich, Christian Moeller, Jennifer Steinkamp, and Victoria Vesna. We thank
Ivrea faculty members and founders Gillian Crampton-Smith, Andrew Davidson, Dag
Svanaes,Walter Aprile, Michael Kieslinger, Stefano Mirti, Jan-Christoph Zoels, Massimo
Banzi, Nathan Shedroff, Bill Moggridge, John Thackara, and Bill Verplank. From the
Broad Institute we thank Eric Lander for funding Ben Fry’s visualization research, most
of which was built with Processing.
 The ideas and structure of this book have been refi ned over the last six years of
teaching at UCLA, Carnegie Mellon, Interaction Design Institute Ivrea, MIT, and Harvard.
We’re particularly grateful to the students in Casey’s DESMA 28, 152A, and 152B classes
for their ideas, effort, and energy. Casey’s graduate students at UCLA have provided
invaluable feedback: Tatsuya Saito, Krister Olsson, Aaron Koblin, John Houck, Zai Chang,
and Andrew Hieronomi.
 Processing was fi rst introduced to students through workshops. We’re eternally
grateful to the fi rst institutions that took a chance on our new software in 2001 and
2002: Musashino Art University (Tokyo), ENSCI – Les Ateliers (Paris), HyperWerk (Basel),

Reas_00_i-xxvi.indd Sec1:xxvReas_00_i-xxvi.indd Sec1:xxv 5/23/07 1:11:30 PM5/23/07 1:11:30 PM

xxvi

and the Royal Conservatory (Hague). Many universities have integrated Processing into
their curriculum, and we’re grateful to the pioneer faculty members and students at
these institutions. They are too numerous to mention here. The students and faculty in
New York University’s Interactive Telecommunication Program (ITP) deserve a special
thank you for their early adoption and promotion, particularly Dan O’Sullivan, Josh
Nimoy, Amit Pitaru, and Dan Shiffman.
 The Processing software is a community effort. Over the last fi ve years, the software
has evolved through a continuous conversation. The goals of this book and of the
Processing software have expanded and contracted as a result of invaluable suggestions
and lively debates. It’s impossible to make a list of everyone who has collaborated and
contributed. The people who have formally contributed to the software include Karsten
Schmidt, Ariel Malka, Martin Gomez, Mikkel Crone Koser, Koen Mostert, Timothy Mohn,
Dan Mosedale, Jacob Schwartz, Sami Arola, Dan Haskovec, and Jonathan Feinberg. The
website www.processing.org has been augmented by Lenny Burdette, Florian Jenett,
Cem Uzunoglu, Dara Kilicoglu, and Kevin Cannon. The Processing reference (found on
the website) has been translated into other languages by Willian Ngan, Tori Tan, Mei
Yu, Widianto Nugroho, Tetsu Kondo, Tai-Kyung Kim, Julien Gachadoat, Pedro Alpera,
Alessandro Capozzo, and Burak Arikan. As of 30 June 2006, code libraries have been
generously contributed by Brendan Berg, Jeffrey Traer Bernstein, Michael Chang,
Stephane Cousot, Jeff Crouse, Kristian Linn Damkjer, Daniel Dihardja, Julien Gachadoat,
Simon Greenwold, Mark Hill, Florian Jenett, JohnG, Jesse Kriss, Ariel Malka, Markavian,
Allan William Martin, Josh Nimoy, Krister Olsson, Amit Pitaru, Christian Riekoff, RSG,
Carl-Johan Rosén, Tatsuya Saito, Andreas Schlegel, Karsten Schmidt, Daniel Shiffman,
Taka, and Marius Watz. Tom Carden created www.processingblogs.org and together with
Karsten Schmidt created www.processinghacks.com.
 We also thank the open source software developers of Jikes, JEdit, ORO Matcher,
and ANTLR. The Processing software is built upon their work.
 This text has been rewritten and redesigned countless times over the last two years.
We’re indebted to Shannon Hunt, who read and edited the fi rst draft and also proofread
the fi nal manuscript. Karsten Schmidt and Larry Cuba read early chapters and provided
feedback. Tom Igoe and David Cuartielles provided essential feedback for the Electronics
extension and Drew Trujillo helped immensely with Appendix G. Rajorshi Ghosh and
Mary Huang provided invaluable production assistance. We’re very grateful to Chandler
McWilliams for executing a thorough technical review of the fi nal manuscript.
 We’ve enjoyed working with the folks at MIT Press and we thank them for their
dedication to this project. Doug Sery has guided us through every step of the publication
process and that has made this book possible. We thank Katherine Almeida and the
editorial staff for minding our Ps and Qs and we are grateful for the production wisdom
of Terry Lamoureux and Jennifer Flint. The anonymous reviewers of the proposal and
draft provided extremely valuable feedback that helped to refi ne the book’s structure.
 We thank the many contributing artists and authors. They were generous with their
time, and this book is greatly enhanced through their efforts.
 Most importantly, Casey thanks Cait, Molly, Bob, and Deanna. Ben thanks Shannon,
Chief, Rose, Mimi, Jamie, Leif, Erika, and Josh.

Reas_00_i-xxvi.indd Sec1:xxviReas_00_i-xxvi.indd Sec1:xxvi 5/23/07 1:11:30 PM5/23/07 1:11:30 PM

1

Processing…

Processing relates software concepts to principles of visual form, motion, and
interaction. It integrates a programming language, development environment,
and teaching methodology into a unifi ed system. Processing was created to teach
fundamentals of computer programming within a visual context, to serve as a software
sketchbook, and to be used as a production tool. Students, artists, design professionals,
and researchers use it for learning, prototyping, and production.
 The Processing language is a text programming language specifi cally designed to
generate and modify images. Processing strives to achieve a balance between clarity and
advanced features. Beginners can write their own programs after only a few minutes
of instruction, but more advanced users can employ and write libraries with additional
functions. The system facilitates teaching many computer graphics and interaction
techniques including vector/raster drawing, image processing, color models, mouse and
keyboard events, network communication, and object-oriented programming. Libraries
easily extend Processing’s ability to generate sound, send/receive data in diverse
formats, and to import/export 2D and 3D fi le formats.

Software

A group of beliefs about the software medium set the conceptual foundation for
Processing and inform decisions related to designing the software and environment.

Software is a unique medium with unique qualities
Concepts and emotions that are not possible to express in other media may be expressed
in this medium. Software requires its own terminology and discourse and should not
be evaluated in relation to prior media such as fi lm, photography, and painting. History
shows that technologies such as oil paint, cameras, and fi lm have changed artistic
practice and discourse, and while we do not claim that new technologies improve art,
we do feel they enable different forms of communication and expression. Software holds
a unique position among artistic media because of its ability to produce dynamic forms,
process gestures, defi ne behavior, simulate natural systems, and integrate other media
including sound, image, and text.

Every programming language is a distinct material
As with any medium, different materials are appropriate for different tasks. When
designing a chair, a designer decides to use steel, wood or other materials based on
the intended use and on personal ideas and tastes. This scenario transfers to writing
software. The abstract animator and programmer Larry Cuba describes his experience
this way: “Each of my fi lms has been made on a different system using a different

Reas_01_001-084.indd Sec2:1Reas_01_001-084.indd Sec2:1 5/23/07 1:20:21 PM5/23/07 1:20:21 PM

2 Processing...

programming language. A programming language gives you the power to express some
ideas, while limiting your abilities to express others.”1 There are many programming
languages available from which to choose, and some are more appropriate than others
depending on the project goals. The Processing language utilizes a common computer
programming syntax that makes it easy for people to extend the knowledge gained
through its use to many diverse programming languages.

Sketching is necessary for the development of ideas
It is necessary to sketch in a medium related to the fi nal medium so the sketch can
approximate the fi nished product. Painters may construct elaborate drawings and
sketches before executing the fi nal work. Architects traditionally work fi rst in cardboard
and wood to better understand their forms in space. Musicians often work with a piano
before scoring a more complex composition. To sketch electronic media, it’s important
to work with electronic materials. Just as each programming language is a distinct
material, some are better for sketching than others, and artists working in software
need environments for working through their ideas before writing fi nal code. Processing
is built to act as a software sketchbook, making it easy to explore and refi ne many
different ideas within a short period of time.

Programming is not just for engineers
Many people think programming is only for people who are good at math and other
technical disciplines. One reason programming remains within the domain of this
type of personality is that the technically minded people usually create programming
languages. It is possible to create different kinds of programming languages and
environments that engage people with visual and spatial minds. Alternative languages
such as Processing extend the programming space to people who think differently. An
early alternative language was Logo, designed in the late 1960s by Seymour Papert as
a language concept for children. Logo made it possible for children to program many
different media, including a robotic turtle and graphic images on screen. A more
contemporary example is the Max programming environment developed by Miller
Puckette in the 1980s. Max is different from typical languages; its programs are created
by connecting boxes that represent the program code, rather than lines of text. It has
generated enthusiasm from thousands of musicians and visual artists who use it as a
base for creating audio and visual software. The same way graphical user interfaces
opened up computing for millions of people, alternative programming environments
will continue to enable new generations of artists and designers to work directly with
software. We hope Processing will encourage many artists and designers to tackle
software and that it will stimulate interest in other programming environments built
for the arts.

Reas_01_001-084.indd Sec2:2Reas_01_001-084.indd Sec2:2 5/23/07 1:20:22 PM5/23/07 1:20:22 PM

3 Processing...

Literacy

Processing does not present a radical departure from the current culture of
programming. It repositions programming in a way that is accessible to people who are
interested in programming but who may be intimidated by or uninterested in the type
taught in computer science departments. The computer originated as a tool for fast
calculations and has evolved into a medium for expression.
 The idea of general software literacy has been discussed since the early 1970s.
In 1974, Ted Nelson wrote about the minicomputers of the time in Computer Lib /
Dream Machines. He explained “the more you know about computers . . . the better
your imagination can fl ow between the technicalities, can slide the parts together,
can discern the shapes of what you would have these things do.”2 In his book, Nelson
discusses potential futures for the computer as a media tool and clearly outlines ideas
for hypertexts (linked text, which set the foundation for the Web) and hypergrams
(interactive drawings). Developments at Xerox PARC led to the Dynabook, a prototype
for today’s personal computers. The Dynabook vision included more than hardware.
A programming language was written to enable, for example, children to write
storytelling and drawing programs and musicians to write composition programs.
In this vision there was no distinction between a computer user and a programmer.
 Thirty years after these optimistic ideas, we fi nd ourselves in a different place.
A technical and cultural revolution did occur through the introduction of the personal
computer and the Internet to a wider audience, but people are overwhelmingly using
the software tools created by professional programmers rather than making their own.
This situation is described clearly by John Maeda in his book Creative Code: “To use a
tool on a computer, you need do little more than point and click; to create a tool, you
must understand the arcane art of computer programming.”3 The negative aspects of
this situation are the constraints imposed by software tools. As a result of being easy to
use, these tools obscure some of the computer’s potential. To fully explore the computer
as an artistic material, it’s important to understand this “arcane art of computer
programming.”
 Processing strives to make it possible and advantageous for people within the visual
arts to learn how to build their own tools—to become software literate. Alan Kay, a
pioneer at Xerox PARC and Apple, explains what literacy means in relation to software:

The ability to “read” a medium means you can access materials and tools created by others. The ability to “write”

in a medium means you can generate materials and tools for others. You must have both to be literate. In print

writing, the tools you generate are rhetorical; they demonstrate and convince. In computer writing, the tools you

generate are processes; they simulate and decide.4

Making processes that simulate and decide requires programming.

Reas_01_001-084.indd Sec2:3Reas_01_001-084.indd Sec2:3 5/23/07 1:20:22 PM5/23/07 1:20:22 PM

4 Processing...

Open

The open source software movement is having a major impact on our culture and
economy through initiatives such as Linux, but it is having a smaller infl uence on
the culture surrounding software for the arts. There are scattered small projects,
but companies such as Adobe and Microsoft dominate software production and
therefore control the future of software tools used within the arts. As a group, artists
and designers traditionally lack the technical skills to support independent software
initiatives. Processing strives to apply the spirit of open source software innovation
to the domain of the arts. We want to provide an alternative to available proprietary
software and to improve the skills of the arts community, thereby stimulating interest in
related initiatives. We want to make Processing easy to extend and adapt and to make it
available to as many people as possible.
 Processing probably would not exist without its ties to open source software. Using
existing open source projects as guidance, and for important software components, has
allowed the project to develop in a smaller amount of time and without a large team of
programmers. Individuals are more likely to donate their time to an open source project,
and therefore the software evolves without a budget. These factors allow the software to
be distributed without cost, which enables access to people who cannot afford the high
prices of commercial software. The Processing source code allows people to learn from
its construction and by extending it with their own code.
 People are encouraged to publish the code for programs they’ve written in
Processing. The same way the “view source” function in Web browsers encouraged the
rapid proliferation of website-creation skills, access to others’ Processing code enables
members of the community to learn from each other so that the skills of the community
increase as a whole. A good example involves writing software for tracking objects in a
video image, thus allowing people to interact directly with the software through their
bodies, rather than through a mouse or keyboard. The original submitted code worked
well but was limited to tracking only the brightest object in the frame. Karsten Schmidt
(a k a toxi), a more experienced programmer, used this code as a foundation for writing
more general code that could track multiple colored objects at the same time. Using this
improved tracking code as infrastructure enabled Laura Hernandez Andrade, a graduate
student at UCLA, to build Talking Colors, an interactive installation that superimposes
emotive text about the colors people are wearing on top of their projected image.
Sharing and improving code allows people to learn from one another and to build
projects that would be too complex to accomplish without assistance.

Education

Processing makes it possible to introduce software concepts in the context of the arts
and also to open arts concepts to a more technical audience. Because the Processing
syntax is derived from widely used programming languages, it’s a good base for future
learning. Skills learned with Processing enable people to learn other programming

Reas_01_001-084.indd Sec2:4Reas_01_001-084.indd Sec2:4 5/23/07 1:20:22 PM5/23/07 1:20:22 PM

5 Processing...

languages suitable for different contexts including Web authoring, networking,
electronics, and computer graphics.
 There are many established curricula for computer science, but by comparison
there have been very few classes that strive to integrate media arts knowledge with
core concepts of computation. Using classes initiated by John Maeda as a model,
hybrid courses based on Processing are being created. Processing has proved useful
for short workshops ranging from one day to a few weeks. Because the environment
is so minimal, students are able to begin programming after only a few minutes of
instruction. The Processing syntax, similar to other common languages, is already
familiar to many people, and so students with more experience can begin writing
advanced syntax almost immediately.
 In a one-week workshop at Hongik University in Seoul during the summer of 2003,
the students were a mix of design and computer science majors, and both groups worked
toward synthesis. Some of the work produced was more visually sophisticated and some
more technically advanced, but it was all evaluated with the same criteria. Students like
Soo-jeong Lee entered the workshop without any previous programming experience;
while she found the material challenging, she was able to learn the basic principles and
apply them to her vision. During critiques, her strong visual skills set an example for the
students from more technical backgrounds. Students such as Tai-kyung Kim from the
computer science department quickly understood how to use the Processing software,
but he was encouraged by the visuals in other students’ work to increase his aesthetic
sensibility. His work with kinetic typography is a good example of a synthesis between
his technical skills and emerging design sensitivity.
 Processing is also used to teach longer introductory classes for undergraduates
and for topical graduate-level classes. It has been used at small art schools, private
colleges, and public universities. At UCLA, for example, it is used to teach a foundation
class in digital media to second-year undergraduates and has been introduced to the
graduate students as a platform for explorations into more advanced domains. In the
undergraduate Introduction to Interactivity class, students read and discuss the topic
of interaction and make many examples of interactive systems using the Processing
language. Each week new topics such as kinetic art and the role of fantasy in video
games are introduced. The students learn new programming skills, and they produce an
example of work addressing a topic. For one of their projects, the students read Sherry
Turkle’s “Video Games and Computer Holding Power”5 and were given the assignment to
write a short game or event exploring their personal desire for escape or transformation.
Leon Hong created an elegant fl ying simulation in which the player fl oats above a body
of water and moves toward a distant island. Muskan Srivastava wrote a game in which
the objective was to consume an entire table of desserts within ten seconds.
 Teaching basic programming techniques while simultaneously introducing
basic theory allows the students to explore their ideas directly and to develop a deep
understanding and intuition about interactivity and digital media. In the graduate-
level Interactive Environments course at UCLA, Processing is used as a platform for
experimentation with computer vision. Using sample code, each student has one week
to develop software that uses the body as an input via images from a video camera.

Reas_01_001-084.indd Sec2:5Reas_01_001-084.indd Sec2:5 5/23/07 1:20:23 PM5/23/07 1:20:23 PM

6 Processing...

Zai Chang developed a provocative installation called White Noise where participants’
bodies are projected as a dense series of colored particles. The shadow of each person
is displayed with a different color, and when they overlap, the particles exchange,
thus appearing to transfer matter and infect each other with their unique essence.
Reading information from a camera is an extremely simple action within the Processing
environment, and this facility fosters quick and direct exploration within courses that
might otherwise require weeks of programming tutorials to lead up to a similar project.

Network

Processing takes advantage of the strengths of Web-based communities, and this has
allowed the project to grow in unexpected ways. Thousands of students, educators,
and practitioners across fi ve continents are involved in using the software. The project
website serves as the communication hub, but contributors are found remotely in cities
around the world. Typical Web applications such as bulletin boards host discussions
between people in remote locations about features, bugs, and related events.
 Processing programs are easily exported to the Web, which supports networked
collaboration and individuals sharing their work. Many talented people have been
learning rapidly and publishing their work, thus inspiring others. Websites such
as Jared Tarbell’s Complexifi cation.net and Robert Hodgin’s Flight404.com present
explorations into form, motion, and interaction created in Processing. Tarbell creates
images from known algorithms such as Henon Phase diagrams and invents his own
algorithms for image creation, such as those from Substrate, which are reminiscent of
urban patterns (p. 157). On sharing his code from his website, Tarbell writes, “Opening
one’s code is a benefi cial practice for both the programmer and the community. I
appreciate modifi cations and extensions of these algorithms.”6 Hodgin is a self-trained
programmer who uses Processing to explore the software medium. It has allowed him
to move deeper into the topic of simulating natural forms and motion than he could
in other programming environments, while still providing the ability to upload his
software to the Internet. His highly traffi cked website documents these explorations by
displaying the running software as well as providing supplemental text, images, and
movies. Websites such as those developed by Jared and Robert are popular destinations
for younger artists and designers and other interested individuals. By publishing their
work on the Web in this manner they gain recognition within the community.
 Many classes taught using Processing publish the complete curriculum on the Web,
and students publish their software assignments and source code from which others can
learn. The websites for Daniel Shiffman’s classes at New York University, for example,
include online tutorials and links to the students’ work. The tutorials for his Procedural
Painting course cover topics including modular programming, image processing, and 3D
graphics by combining text with running software examples. Each student maintains
a web page containing all of their software and source code created for the class. These
pages provide a straightforward way to review performance and make it easy for
members of the class to access each others's work.

Reas_01_001-084.indd Sec2:6Reas_01_001-084.indd Sec2:6 5/23/07 1:20:23 PM5/23/07 1:20:23 PM

7 Processing...

 The Processing website, www.processing.org, is a place for people to discuss their
projects and share advice. The Processing Discourse section of the website, an online
bulletin board, has thousands of members, with a subset actively commenting on each
others’ work and helping with technical questions. For example, a recent post focused
on a problem with code to simulate springs. Over the course of a few days, messages
were posted discussing the details of Euler integration in comparison to the Runge-
Kutta method. While this may sound like an arcane discussion, the differences between
the two methods can be the reason a project works well or fails. This thread and many
others like it are becoming concise Internet resources for students interested in detailed
topics.

Context

The Processing approach to programming blends with established methods. The core
language and additional libraries make use of Java, which also has elements identical to
the C programming language. This heritage allows Processing to make use of decades of
programming language refi nements and makes it understandable to many people who
are already familiar with writing software.
 Processing is unique in its emphasis and in the tactical decisions it embodies with
respect to its context within design and the arts. Processing makes it easy to write
software for drawing, animation, and reacting to the environment, and programs
are easily extended to integrate with additional media types including audio, video,
and electronics. Modifi ed versions of the Processing environment have been built
by community members to enable programs to run on mobile phones (p. 617) and to
program microcontrollers (p. 633).
 The network of people and schools using the software continues to grow. In the
fi ve years since the origin on the idea for the software, it has evolved organically
through presentations, workshops, classes, and discussions around the globe. We plan to
continually improve the software and foster its growth, with the hope that the practice
of programming will reveal its potential as the foundation for a more dynamic media.

 Notes

1. Larry Cuba, “Calculated Movements,” in Prix Ars Electronica Edition ’87: Meisterwerke der Computerkunst

 (H. S. Sauer, 1987), p. 111.

2. Theodore Nelson, “Computer Lib / Dream Machines,” in The New Media Reader, edited by

 Noah Wardrip-Fruin and Nick Montfort (MIT Press, 2003), p. 306.

3. John Maeda, Creative Code (Thames & Hudson, 2004), p. 113.

4. Alan Kay, “User Interface: A Personal View,” in The Art of Human-Computer Interface Design,

 edited by Brenda Laurel (Addison-Wesley, 1989), p. 193.

5. Chapter 2 in Sherry Turkle, The Second Self: Computers and the Human Spirit (Simon & Schuster, 1984),

 pp. 64–92.

6. Jared Tarbell, Complexifi cation.net (2004), http://www.complexifi cation.net/medium.html.

Reas_01_001-084.indd Sec2:7Reas_01_001-084.indd Sec2:7 5/23/07 1:20:24 PM5/23/07 1:20:24 PM

Processing Development Environment (PDE)
Use the PDE to create programs. Write the code in the text editor and use
the buttons in the toolbar to run, save, and export the code.

File Edit Sketch Tools Help Menu

Toolbar

Tabs

Text editor

Display window

Message area

Console

Lines

ProcessingLines

void setup() {

 size(100, 100);

 noLoop();

}

void draw() {

 diagonals(40, 90);

 diagonals(60, 62);

 diagonals(20, 40);

}

void diagonals(int x, int y) {

 line(x, y, x+20, y-40);

 line(x+10, y, x+30, y-40);

 line(x+20, y, x+40, y-40);

}

Reas_01_001-084.indd Sec2:8Reas_01_001-084.indd Sec2:8 5/23/07 1:20:24 PM5/23/07 1:20:24 PM

9

Using Processing

Download, Install

The Processing software can be downloaded from the Processing website. Using a
Web browser, navigate to www.processing.org/download and click on the link for your
computer’s operating system. The Processing software is available for Linux, Macintosh,
and Windows. The most up-to-date installation instructions for your operating system
are linked from this page.

Environment

The Processing Development Environment (PDE) consists of a simple text editor for
writing code, a message area, a text console, tabs for managing fi les, a toolbar with
buttons for common actions, and a series of menus. When programs are run, they open
in a new window called the display window.
 Pieces of software written using Processing are called sketches. These sketches are
written in the text editor. It has features for cutting/pasting and for searching/replacing
text. The message area gives feedback while saving and exporting and also displays
errors. The console displays text output by Processing programs including complete error
messages and text output from programs with the print() and println() functions.
The toolbar buttons allow you to run and stop programs, create a new sketch, open, save,
and export.

 Run Compiles the code, opens a display window, and runs the program inside.

 Stop Terminates a running program, but does not close the display window.

 New Creates a new sketch.

 Open Provides a menu with options to open fi les from the sketchbook, open an example,

 or open a sketch from anywhere on your computer or network.

 Save Saves the current sketch to its current location. If you want to give the sketch a different

 name, select “Save As” from the File menu.

 Export Exports the current sketch as a Java applet embedded in an HTML fi le. The folder

 containing the fi les is opened. Click on the index.html fi le to load the software in the

 computer’s default Web browser.

The menus provide the same functionality as the toolbar in addition to actions for fi le
management and opening reference materials.

 File Commands to manage and export fi les

 Edit Controls for the text editor (Undo, Redo, Cut, Copy, Paste, Find, Replace, etc.)

Reas_01_001-084.indd Sec2:9Reas_01_001-084.indd Sec2:9 5/23/07 1:20:25 PM5/23/07 1:20:25 PM

10 Using Processing

 Sketch Commands to run and stop programs and to add media fi les and code libraries.

 Tools Tools to assist in using Processing (automated code formatting, creating fonts, etc.)

 Help Reference fi les for the environment and language

All Processing projects are called sketches. Each sketch has its own folder. The main
program fi le for each sketch has the same name as the folder and is found inside.
For example, if the sketch is named Sketch_123, the folder for the sketch will be called
Sketch_123 and the main fi le will be called Sketch_123.pde. The PDE fi le extension stands
for the Processing Development Environment.
 A sketch folder sometimes contains other folders for media fi les and code libraries.
When a font or image is added to a sketch by selecting “Add File” from the Sketch menu,
a data folder is created. You can also add fi les to your Processing sketch by dragging
them into the text editor. Image and sound fi les dragged into the application window
will automatically be added to the current sketch’s data folder. All images, fonts, sounds,
and other data fi les loaded in the sketch must be in this folder. Sketches are stored in
the Processing folder, which will be in different places on your computer or network
depending on whether you use PC, Mac, or Linux and on how the preferences are set.
To locate this folder, select the “Preferences” option from the File menu (or from the
Processing menu on the Mac) and look for the “Sketchbook location.”
 It is possible to have multiple fi les in a single sketch. These can be Processing text
fi les (with the extension .pde) or Java fi les (with the extension .java). To create a new fi le,
click on the arrow button to the right of the fi le tabs. This button enables you to create,
delete, and rename the fi les that comprise the current sketch. You can write functions
and classes in new PDE fi les and you can write any Java code in fi les with the JAVA
extension. Working with multiple fi les makes it easier to reuse code and to separate
programs into small subprograms. This is discussed in more detail in Structure 4 (p. 395).

Export

The export feature packages a sketch to run within a Web browser. When code is
exported from Processing it is converted into Java code and then compiled as a Java
applet. When a project is exported, a series of fi les are written to a folder named applet
that is created within the sketch folder. All fi les from the sketch folder are exported
into a single Java Archive (JAR) fi le with the same name as the sketch. For example, if
the sketch is named Sketch_123, the exported fi le will be called Sketch_123.jar. The applet
folder contains the following:

 index.html HTML fi le with the applet embedded and a link to the source code and the Processing

 homepage. Double-click this fi le to open it in the default Web browser.

 Sketch_123.jar Java Archive containing all necessary fi les for the sketch to run. Includes the Processing

 core classes, those written for the sketch, and all included media fi les from the data

 folder such as images, fonts, and sounds.

Reas_01_001-084.indd Sec2:10Reas_01_001-084.indd Sec2:10 5/23/07 1:20:25 PM5/23/07 1:20:25 PM

11 Using Processing

 Sketch_123.java The JAVA fi le generated by the preprocessor from the PDE fi le. This is the actual fi le that

 is compiled into the applet by the Java compiler used in Processing.

 Sketch_123.pde The original program fi le. It is linked from the index.html fi le.

 loading.gif An image fi le displayed while the program is loading in a Web browser.

Every time a sketch is exported, the contents of the applet folder are deleted and the fi les
are written from scratch. Any changes previously made to the index.html fi le are lost.
Media fi les not needed for the applet should be deleted from the data folder before it is
exported to keep the fi le size small. For example, if there are unused images in the data
folder, they will be added to the JAR fi le, thus needlessly increasing its size.
 In addition to exporting Java applets for the Web, Processing can also export
Java applications for the Linux, Macintosh, and Windows platforms. When “Export
Application” is selected from the File menu, folders will be created for each of the
operating systems specifi ed in the Preferences. Each folder contains the application, the
source code for the sketch, and all required libraries for a specifi c platform.
 Additional and updated information about the Processing environment is available
at www.processing.org/reference/environment or by selecting the “Environment” item
from the Help menu of the Processing application.

Example walk-through

A Processing program can be be as short as one line of code and as long as thousands of
lines. This scalability is one of the most important aspects of the language. The following
example walk-through presents the modest goal of animating a sequence of diagonal
lines as a means to explore some of the basic components of the Processing language. If
you are new to programming, some of the terminology and symbols in this section will
be unfamiliar. This walk-through is a condensed overview of the entire book, utilizing
ideas and techniques that are covered in detail later. Try running these programs inside
the Processing application to better understand what the code is doing.
 Processing was designed to make it easy to draw graphic elements such as lines,
ellipses, and curves in the display window. These shapes are positioned with numbers
that defi ne their coordinates. The position of a line is defi ned by four numbers, two for
each endpoint. The parameters used inside the line() function determine the position
where the line appears. The origin of the coordinate system is in the upper-left corner,
and numbers increase right and down. Coordinates and drawing different shapes are
discussed on pages 23–30.

 line(10, 80, 30, 40); // Left line

 line(20, 80, 40, 40);

 line(30, 80, 50, 40); // Middle line

 line(40, 80, 60, 40);

 line(50, 80, 70, 40); // Right line

0-01

Reas_01_001-084.indd Sec2:11Reas_01_001-084.indd Sec2:11 5/23/07 1:20:26 PM5/23/07 1:20:26 PM

12 Using Processing

The visual attributes of shapes are controlled with other code elements that set color and
gray values, the width of lines, and the quality of the rendering. Drawing attributes are
discussed on pages 31–35.

 background(0); // Set the black background

 stroke(255); // Set line value to white

 strokeWeight(5); // Set line width to 5 pixels

 smooth(); // Smooth line edges

 line(10, 80, 30, 40); // Left line

 line(20, 80, 40, 40);

 line(30, 80, 50, 40); // Middle line

 line(40, 80, 60, 40);

 line(50, 80, 70, 40); // Right line

A variable, such as x, represents a value; this value replaces the symbol x when the
code is run. One variable can then control many features of the program. Variables are
introduced on page 37-41.

 int x = 5; // Set the horizontal position

 int y = 60; // Set the vertical position

 line(x, y, x+20, y-40); // Line from [5,60] to [25,20]

 line(x+10, y, x+30, y-40); // Line from [15,60] to [35,20]

 line(x+20, y, x+40, y-40); // Line from [25,60] to [45,20]

 line(x+30, y, x+50, y-40); // Line from [35,60] to [55,20]

 line(x+40, y, x+60, y-40); // Line from [45,60] to [65,20]

Adding more structure to a program opens further possibilities. The setup() and
draw() functions make it possible for the program to run continuously—this is required
to create animation and interactive programs. The code inside setup() runs once when
the program fi rst starts, and the code inside draw() runs continuously. One image
frame is drawn to the display window at the end of each loop through draw().
 In the following example, the variable x is declared as a global variable, meaning
it can be assigned and accessed anywhere in the program. The value of x increases by 1
each frame, and because the position of the lines is controlled by x, they are drawn to a
different location each time the value changes. This moves the lines to the right.
 Line 14 in the code is an if structure. It contains a relational expression comparing
the variable x to the value 100. When the expression is true, the code inside the
block (the code between the { and } associated with the if structure) runs. When the
relational expression is false, the code inside the block does not run. When the value
of x becomes greater than 100, the line of code inside the block sets the variable x to
-40, causing the lines to jump to the left edge of the window. The details of draw() are
discussed on pages 173–175, programming animation is discussed on pages 315–320, and
the if structure is discussed on pages 53–56.

0-02

0-03

Reas_01_001-084.indd Sec2:12Reas_01_001-084.indd Sec2:12 5/23/07 1:20:26 PM5/23/07 1:20:26 PM

13 Using Processing

 int x = 0; // Set the horizontal position

 int y = 55; // Set the vertical position

 void setup() {

 size(100, 100); // Set the window to 100 x 100 pixels

 }

 void draw() {

 background(204);

 line(x, y, x+20, y-40); // Left line

 line(x+10, y, x+30, y-40); // Middle line

 line(x+20, y, x+40, y-40); // Right line

 x = x + 1; // Add 1 to x

 if (x > 100) { // If x is greater than 100,

 x = -40; // assign -40 to x

 }

 }

When a program is running continuously, Processing stores data from input devices such
as the mouse and keyboard. This data can be used to affect what is happening in the
display window. Programs that respond to the mouse are discussed on pages 205–244.

 void setup() {

 size(100, 100);

 }

 void draw() {

 background(204);

 // Assign the horizontal value of the cursor to x

 float x = mouseX;

 // Assign the vertical value of the cursor to y

 float y = mouseY;

 line(x, y, x+20, y-40);

 line(x+10, y, x+30, y-40);

 line(x+20, y, x+40, y-40);

 }

A function is a set of code within a program that performs a specifi c task. Functions
are powerful programming tools that make programs easier to read and change. The
diagonals() function in the following example was written to draw a sequence of
three diagonal lines each time it is run inside draw(). Two parameters, the numbers in
the parentheses after the function name, set the position of the lines. These numbers are
passed into the function defi nition on line 12 and are used as the values for the variables
x and y in lines 13–15. Functions are discussed in more depth on pages 181–196.

0-04

0-05

Reas_01_001-084.indd Sec2:13Reas_01_001-084.indd Sec2:13 5/23/07 1:20:27 PM5/23/07 1:20:27 PM

14 Using Processing

 void setup() {

 size(100, 100);

 noLoop();

 }

 void draw() {

 diagonals(40, 90);

 diagonals(60, 62);

 diagonals(20, 40);

 }

 void diagonals(int x, int y) {

 line(x, y, x+20, y-40);

 line(x+10, y, x+30, y-40);

 line(x+20, y, x+40, y-40);

 }

The variables used in the previous programs each store one data element. If we want
to have 20 groups of lines on screen, it will require 40 variables: 20 for the horizontal
positions and 20 for the vertical positions. This can make programming tedious and can
make programs diffi cult to read. Instead of using multiple variable names, we can use
arrays. An array can store a list of data elements as a single name. A for structure can
be used to cycle through each array element in sequence. Arrays are discussed on pages
301–313, and the for structure is discussed on pages 61–68.

 int num = 20;

 int[] dx = new int[num]; // Declare and create an array

 int[] dy = new int[num]; // Declare and create an array

 void setup() {

 size(100, 100);

 for (int i = 0; i < num; i++) {

 dx[i] = i * 5;

 dy[i] = 12 + (i * 6);

 }

 }

 void draw() {

 background(204);

 for (int i = 0; i < num; i++) {

 dx[i] = dx[i] + 1;

 if (dx[i] > 100) {

 dx[i] = -100;

 }

0-06

0-07

Reas_01_001-084.indd Sec2:14Reas_01_001-084.indd Sec2:14 5/23/07 1:20:27 PM5/23/07 1:20:27 PM

15 Using Processing

 diagonals(dx[i], dy[i]);

 }

 }

 void diagonals(int x, int y) {

 line(x, y, x+20, y-40);

 line(x+10, y, x+30, y-40);

 line(x+20, y, x+40, y-40);

 }

Object-oriented programming is a way of structuring code into objects, units of code that
contain both data and functions. This style of programming makes a strong connection
between groups of data and the functions that act on this data. The diagonals()
function can be expanded by making it part of a class defi nition. Objects are created using
the class as a template. The variables for positioning the lines and setting their drawing
attributes then move inside the class defi nition to be more closely associated with
drawing the lines. Object-oriented programming is discussed further on pages 395–411.

 Diagonals da, db;

 void setup() {

 size(100, 100);

 smooth();

 // Inputs: x, y, speed, thick, gray

 da = new Diagonals(0, 80, 1, 2, 0);

 db = new Diagonals(0, 55, 2, 6, 255);

 }

 void draw() {

 background(204);

 da.update();

 db.update();

 }

 class Diagonals {

 int x, y, speed, thick, gray;

 Diagonals(int xpos, int ypos, int s, int t, int g) {

 x = xpos;

 y = ypos;

 speed = s;

 thick = t;

 gray = g;

 }

0-07
cont.

0-08

Reas_01_001-084.indd Sec2:15Reas_01_001-084.indd Sec2:15 5/23/07 1:20:28 PM5/23/07 1:20:28 PM

16 Using Processing

 void update() {

 strokeWeight(thick);

 stroke(gray);

 line(x, y, x+20, y-40);

 line(x+10, y, x+30, y-40);

 line(x+20, y, x+40, y-40);

 x = x + speed;

 if (x > 100) {

 x = -100;

 }

 }

 }

This short walk-through serves to introduce, but not fully explain, some of the
core concepts explored in this text. Many key ideas of working with software were
mentioned only briefl y and others were omitted. Each topic is covered in depth later
in the book.

Reference

The reference for the Processing language complements the text in this book. We advise
keeping the reference open and consulting it while programming. The reference can
be accessed by selecting the “Reference” option from the Help menu within Processing.
It’s also available online at www.processing.org/reference. The reference can also be
accessed within the text window. Highlight a word, right-click (or Ctrl-click in Mac OS
X), and select “Find in Reference” from the menu that appears. You can also select “Find
in Reference” from the Help menu. There are two versions of the Processing reference.
The Abridged Reference lists the elements of the Processing language introduced in this
book, and the Complete Reference documents additional features.

0-08
cont.

Reas_01_001-084.indd Sec2:16Reas_01_001-084.indd Sec2:16 5/23/07 1:20:28 PM5/23/07 1:20:28 PM

17

Structure 1: Code Elements
This unit introduces the most basic elements and vocabulary for writing software.

Syntax introduced:
// (comment), /* */ (multiline comment)

“;” (statement terminator), “,” (comma)

print(), println()

Creating software is an act of writing. Before starting to write code, it’s important to
acknowledge the difference between writing a computer program and writing an Email
or an essay. Writing in a human language allows the author to utilize the ambiguity
of words and to have great fl exibility in constructing phrases. These techniques allow
multiple interpretations of a single text and give each author a unique voice. Each
computer program also reveals the style of its author, but there is far less room for
ambiguity. While people can interpret vague meanings and can usually disregard poor
grammar, computers cannot. Some of the linguistic details of writing code are discussed
here to prevent early frustration. If you keep these details in mind as you begin to
program, they will gradually become habitual. This unit presents variations of a simple
program that sets the size and background color of the display window, demonstrating
some of the most basic elements of writing code with Processing.

Comments

Comments are ignored by the computer but are important for people. They let you write
notes to yourself and to others who read your programs. Because programs use symbols
and arcane notation to describe complex procedures, it is often diffi cult to remember
how individual parts of a program work. Good comments serve as reminders when you
revisit a program and explain your thoughts to others reading the code. Commented
sections appear in a different color than the rest of the code. This program explains how
comments work:

// Two forward slashes are used to denote a comment.

// All text on the same line is a part of the comment.

// There must be no spaces between the slashes. For example,

// the code "/ /" is not a comment and will cause an error

// If you want to have a comment that is many

// lines long, you may prefer to use the syntax for a

// multiline comment

1-01

Reas_01_001-084.indd Sec2:17Reas_01_001-084.indd Sec2:17 5/23/07 1:20:29 PM5/23/07 1:20:29 PM

18 Structure 1: Code Elements

/*

 A forward slash followed by an asterisk allows the

 comment to continue until the opposite

*/

// All letters and symbols that are not comments are translated

// by the compiler. Because the following lines are not comments,

// they are run and draw a display window of 200 x 200 pixels

size(200, 200);

background(102);

Functions

Functions allow you to draw shapes, set colors, calculate numbers, and to execute
many other types of actions. A function’s name is usually a lowercase word followed
by parentheses. The comma-separated elements between the parentheses are called
parameters, and they affect the way the function works. Some functions have no
parameters and others have many. This program demonstrates the size() and
background() functions.

// The size function has two parameters. The first sets the width

// of the display window and the second sets the height

size(200, 200);

// This version of the background function has one parameter.

// It sets the gray value for the background of the display window

// in the range of 0 (black) to 255 (white)

background(102);

Expressions, Statements

Using an analogy to human languages, a software expression is like a phrase. Software
expressions are often combinations of operators such as +, *, and / that operate on the
values to their left and right. A software expression can be as basic as a single number or
can be a long combination of elements. An expression always has a value, determined by
evaluating its contents.

 Expression Value

 5 5

 122.3+3.1 125.4

 ((3+2)*-10) + 1 -49

1-01
cont.

1-02

Reas_01_001-084.indd Sec2:18Reas_01_001-084.indd Sec2:18 5/23/07 1:20:29 PM5/23/07 1:20:29 PM

19 Structure 1: Code Elements

Expressions can also compare two values with operators such as > (greater than) and
< (less than). These comparisons are evaluated as true or false.

 Expression Value

 6 > 3 true

 54 < 50 false

A set of expressions together create a statement, the programming equivalent
of a sentence. It’s a complete unit that ends with the statement terminator, the
programming equivalent of a period. In the Processing language, the statement
terminator is a semicolon.
 Just as there are different types of sentences, there are different types of statements.
A statement can defi ne a variable, assign a variable, run a function, or construct an
object. Each will be explained in more detail later, but examples are shown here:

size(200, 200); // Runs the size() function

int x; // Declares a new variable x

x = 102; // Assigns the value 102 to the variable x

background(x); // Runs the background() function

Omitting the semicolon at the end of a statement, a very common mistake, will result
in an error message, and the program will not run.

Anatomy of a program
Every program is composed of different language elements. These elements work together to describe
the intentions of the programmer so they can be interpreted by a computer. The anatomy of a more
complicated program is shown on page 176.

Comment

Parameter

Statement

Statement terminatorFunction

// Create a 300 x 400 window
size(300, 400);
background(0);

1-03

Reas_01_001-084.indd Sec2:19Reas_01_001-084.indd Sec2:19 5/23/07 1:20:29 PM5/23/07 1:20:29 PM

20 Structure 1: Code Elements

Case sensitivity

In written English, some words are capitalized and others are not. Proper nouns like Ohio
and John and the fi rst letter of every sentence are capitalized, while most other words
are lowercase. In many programming languages, some parts of the language must be
capitalized and others must be lowercase. Processing differentiates between uppercase
and lowercase characters; therefore, writing “Size” when you mean to write “size” creates
an error. You must be exacting in adhering to the capitalization rules.

size(200, 200);

Background(102); // ERROR! The B in "background" is capitalized

Whitespace

In many programming languages, including Processing, there can be an arbitrary
amount of space between the elements of a program. Unlike the rigorous syntax of
statement terminators, spacing does not matter. The following two lines of code are
a standard way of writing a program:

size(200, 200);

background(102);

However, the whitespace between the code elements can be set to any amount and the
program will run exactly the same way:

size

(200,

 200) ;

background (102)

 ;

Console

When software runs, the computer performs operations at a rate too fast to perceive
with human eyes. Because it is important to understand what is happening inside the
machine, the functions print() and println() can be used to display data while a
program is running. These functions don’t send pages to a printer, but instead write text
to the console (pp. 8, 9). The console can be used to display a variable, confi rm an event,
or check incoming data from an external device. Such uses might not seem clear now,
but they will reveal themselves over the course of this book. Like comments, print()
and println() can clarify the intentions and execution of computer programs.

1-04

1-05

1-06

Reas_01_001-084.indd Sec2:20Reas_01_001-084.indd Sec2:20 5/23/07 1:20:30 PM5/23/07 1:20:30 PM

21 Structure 1: Code Elements

// To print text to the screen, place the desired output in quotes

println("Processing..."); // Prints "Processing..." to the console

// To print the value of a variable, rather than its name,

// don’t put the name of the variable in quotes

int x = 20;

println(x); // Prints "20" to the console

// While println() moves to the next line after the text

// is output, print() does not

print("10");

println("20"); // Prints "1020" to the console

println("30"); // Prints "30" to the console

// The "+" operator can be used for combining multiple text

// elements into one line

int x2 = 20;

int y2 = 80;

println(x2 + " : " + y2); // Prints "20 : 80" to the message window

 Exercises
1. Write comments in the text area explaining a piece of software you
 would like to write.
2. Write a program to make a 640 * 480 pixel display window with a black
 background.
3. Use print() and println() to write some text to the console.

1-07

Reas_01_001-084.indd Sec2:21Reas_01_001-084.indd Sec2:21 5/23/07 1:20:30 PM5/23/07 1:20:30 PM

Reas_01_001-084.indd Sec2:22Reas_01_001-084.indd Sec2:22 5/23/07 1:20:30 PM5/23/07 1:20:30 PM

23

Shape 1: Coordinates, Primitives
This unit introduces the coordinate system of the display window and a variety
of geometric shapes.

Syntax introduced:
size(), point(), line(), triangle(), quad(), rect(), ellipse(), bezier()

background(), fill(), stroke(), noFill(), noStroke()

strokeWeight(), strokeCap(), strokeJoin()

smooth(), noSmooth(), ellipseMode(), rectMode()

Drawing a shape with code can be diffi cult because every aspect of its location must be
specifi ed with a number. When you’re accustomed to drawing with a pencil or moving
shapes around on a screen with a mouse, it can take time to start thinking in relation
to the screen’s strict coordinate grid. The mental gap between seeing a composition on
paper or in your mind and translating it into code notation is wide, but easily bridged.

Coordinates

Before making a drawing, it’s important to think about the dimensions and qualities of
the surface to which you’ll be drawing. If you’re making a drawing on paper, you can
choose from myriad utensils and papers. For quick sketching, newsprint and charcoal
are appropriate. For a refi ned drawing, a smooth handmade paper and range of pencils
may be preferred. In contrast, when you are drawing to a computer’s screen, the primary
options available are the size of the window and the background color.
 A computer screen is a grid of small light elements called pixels. Screens come in
many sizes and resolutions. We have three different types of computer screens in our
studios, and they all have a different number of pixels. The laptops have 1,764,000 pixels
(1680 wide * 1050 high), the fl at panels have 1,310,720 pixels (1280 wide * 1024 high),
and the older monitors have 786,432 pixels (1024 wide * 768 high). Millions of pixels
may sound like a vast quantity, but they produce a poor visual resolution compared
to physical media such as paper. Contemporary screens have a resolution around 100
dots per inch, while many modern printers provide more than 1000 dots per inch. On
the other hand, paper images are fi xed, but screens have the advantage of being able to
change their image many times per second.
 Processing programs can control all or a subset of the screen’s pixels. When you
click the Run button, a display window opens and allows access to reading and writing
the pixels within. It’s possible to create images larger than the screen, but in most cases
you’ll make a window the size of the screen or smaller.

Reas_01_001-084.indd Sec2:23Reas_01_001-084.indd Sec2:23 5/23/07 1:20:31 PM5/23/07 1:20:31 PM

24 Shape 1: Coordinates, Primitives

The size of the display window is controlled with the size() function:

 size(width, height)

The size() function has two parameters: the fi rst sets the width of the window and the
second sets its height.

 // Draw the display window 120 pixels

 // wide and 200 pixels high

 size(120, 200);

 // Draw the display window 320 pixels

 // wide and 240 pixels high

 size(320, 240);

 // Draw the display window 200 pixels

 // wide and 200 pixels high

 size(200, 200);

2-01

2-02

2-03

Reas_01_001-084.indd Sec2:24Reas_01_001-084.indd Sec2:24 5/23/07 1:20:32 PM5/23/07 1:20:32 PM

25 Shape 1: Coordinates, Primitives

A position on the screen is comprised of an x-coordinate and a y-coordinate. The
x-coordinate is the horizontal distance from the origin and the y-coordinate is the
vertical distance. In Processing, the origin is the upper-left corner of the display window
and coordinate values increase down and to the right. The image on the left shows the
coordinate system, and the image on the right shows a few coordinates placed on
the grid:

A position is written as the x-coordinate value followed by the y-coordinate, separated
with a comma. The notation for the origin is (0,0), the coordinate (50,50) has an
x-coordinate of 50 and a y-coordinate of 50, and the coordinate (20,60) is an x-coordinate
of 20 and a y-coordinate of 60. If the size of the display window is 100 pixels wide and
100 pixels high, (0,0) is the pixel in the upper-left corner, (99,0) is the pixel in the upper-
right corner, (0,99) is the pixel in the lower-left corner, and (99,99) is the pixel in the
lower-right corner. This becomes clearer when we look at examples using point().

Primitive shapes

A point is the simplest visual element and is drawn with the point() function:

 point(x, y)

This function has two parameters: the fi rst is the x-coordinate and the second is the
y-coordinate. Unless specifi ed otherwise, a point is the size of a single pixel.

 // Points with the same X and Y parameters

 // form a diagonal line from the

 // upper-left corner to the lower-right corner

 point(20, 20);

 point(30, 30);

 point(40, 40);

 point(50, 50);

 point(60, 60);

0
0

20

20

40

40

60

60

80

80

100 (0,0) (99,0)

(99,99)
100

X

Y

(0,99)

(50,50)

(60,80)

(20,60)

2-04

Reas_01_001-084.indd Sec2:25Reas_01_001-084.indd Sec2:25 5/23/07 1:20:32 PM5/23/07 1:20:32 PM

26 Shape 1: Coordinates, Primitives

 // Points with the same Y parameter have the

 // same distance from the top and bottom

 // edges of the frame

 point(50, 30);

 point(55, 30);

 point(60, 30);

 point(65, 30);

 point(70, 30);

 // Points with the same X parameter have the

 // same distance from the left and right

 // edges of the frame

 point(70, 50);

 point(70, 55);

 point(70, 60);

 point(70, 65);

 point(70, 70);

 // Placing a group of points next to one

 // another creates a line

 point(50, 50);

 point(50, 51);

 point(50, 52);

 point(50, 53);

 point(50, 54);

 point(50, 55);

 point(50, 56);

 point(50, 57);

 point(50, 58);

 point(50, 59);

 // Setting points outside the display

 // area will not cause an error,

 // but the points won't be visible

 point(-500, 100);

 point(400, -600);

 point(140, 2500);

 point(2500, 100);

2-05

2-06

2-07

2-08

Reas_01_001-084.indd Sec2:26Reas_01_001-084.indd Sec2:26 5/23/07 1:20:33 PM5/23/07 1:20:33 PM

27 Shape 1: Coordinates, Primitives

While it’s possible to draw any line as a series of points, lines are more simply drawn
with the line() function. This function has four parameters, two for each endpoint:

 line(x1, y1, x2, y2)

The fi rst two parameters set the position where the line starts and the last two set the
position where the line stops.

 // When the y-coordinates for a line are the

 // same, the line is horizontal

 line(10, 30, 90, 30);

 line(10, 40, 90, 40);

 line(10, 50, 90, 50);

 // When the x-coordinates for a line are the

 // same, the line is vertical

 line(40, 10, 40, 90);

 line(50, 10, 50, 90);

 line(60, 10, 60, 90);

 // When all four parameters are different,

 // the lines are diagonal

 line(25, 90, 80, 60);

 line(50, 12, 42, 90);

 line(45, 30, 18, 36);

 // When two lines share the same point they connect

 line(15, 20, 5, 80);

 line(90, 65, 5, 80);

The triangle() function draws triangles. It has six parameters, two for each point:

 triangle(x1, y1, x2, y2, x3, y3)

The fi rst pair defi nes the fi rst point, the middle pair the second point, and the last
pair the third point. Any triangle can be drawn by connecting three lines, but the
triangle() function makes it possible to draw a fi lled shape. Triangles of all shapes
and sizes can be created by changing the parameter values.

 triangle(60, 10, 25, 60, 75, 65); // Filled triangle

 line(60, 30, 25, 80); // Outlined triangle edge

 line(25, 80, 75, 85); // Outlined triangle edge

 line(75, 85, 60, 30); // Outlined triangle edge

2-09

2-10

2-11

2-12

2-13

Reas_01_001-084.indd Sec2:27Reas_01_001-084.indd Sec2:27 5/23/07 1:20:33 PM5/23/07 1:20:33 PM

Geometry primitives
Processing has seven functions to assist in making simple shapes. These images show the format for each. Replace
the parameters with numbers to use them within a program. These functions are demonstrated in codes 2-04 to 2-22.

point(x, y)

line(x1, y1, x2, y2)

triangle(x1, y1, x2, y2, x3, y3)

quad(x1, y1, x2, y2, x3, y3, x4, y4)

(x,y)

rect(x, y, width, height)

ellipse(x, y, width, height)

bezier(x1, y1, cx1, cy1, cx2, cy2, x2, y2)

(x1,y1)

(x2,y2)

(x1,y1)

(x1,y1) (cx1,cy1)

(x2,y2) (cx2,cy2)

(x3,y3)(x2,y2)

(x1,y1) (x4,y4)

(x3,y3)(x2,y2)

(x,y)

height

width

height

width

(x,y)

Reas_01_001-084.indd Sec2:28Reas_01_001-084.indd Sec2:28 5/23/07 1:20:34 PM5/23/07 1:20:34 PM

29 Shape 1: Coordinates, Primitives

 triangle(55, 9, 110, 100, 85, 100);

 triangle(55, 9, 85, 100, 75, 100);

 triangle(-1, 46, 16, 34, -7, 100);

 triangle(16, 34, -7, 100, 40, 100);

The quad() function draws a quadrilateral, a four-sided polygon. The function has eight
parameters, two for each point.

 quad(x1, y1, x2, y2, x3, y3, x4, y4)

Changing the parameter values can yield rectangles, squares, parallelograms, and
irregular quadrilaterals.

 quad(38, 31, 86, 20, 69, 63, 30, 76);

 quad(20, 20, 20, 70, 60, 90, 60, 40);

 quad(20, 20, 70, -20, 110, 0, 60, 40);

Drawing rectangles and ellipses works differently than the shapes previously
introduced. Instead of defi ning each point, the four parameters set the position and the
dimensions of the shape. The rect() function draws a rectangle:

 rect(x, y, width, height)

The fi rst two parameters set the location of the upper-left corner, the third sets the
width, and the fourth sets the height. Use the same value for the width and height
parameters to draw a square.

 rect(15, 15, 40, 40); // Large square

 rect(55, 55, 25, 25); // Small square

 rect(0, 0, 90, 50);

 rect(5, 50, 75, 4);

 rect(24, 54, 6, 6);

 rect(64, 54, 6, 6);

 rect(20, 60, 75, 10);

 rect(10, 70, 80, 2);

2-14

2-15

2-16

2-17

2-18

Reas_01_001-084.indd Sec2:29Reas_01_001-084.indd Sec2:29 5/23/07 1:20:34 PM5/23/07 1:20:34 PM

30 Shape 1: Coordinates, Primitives

The ellipse() function draws an ellipse in the display window:

 ellipse(x, y, width, height)

The fi rst two parameters set the location of the center of the ellipse, the third sets the
width, and the fourth sets the height. Use the same value for the width and height
parameters to draw a circle.

 ellipse(40, 40, 60, 60); // Large circle

 ellipse(75, 75, 32, 32); // Small circle

 ellipse(35, 0, 120, 120);

 ellipse(38, 62, 6, 6);

 ellipse(40, 100, 70, 70);

The bezier() function can draw lines that are not straight. A Bézier curve is defi ned by
a series of control points and anchor points. A curve is drawn between the anchor points,
and the control points defi ne its shape:

 bezier(x1, y1, cx1, cy1, cx2, cy2, x2, y2)

The function requires eight parameters to set four points. The curve is drawn between
the fi rst and fourth points, and the control points are defi ned by the second and third
points. In software that uses Bézier curves, such as Adobe Illustrator, the control points
are represented by the tiny handles that protrude from the edge of a curve.

 bezier(32, 20, 80, 5, 80, 75, 30, 75);

 // Draw the control points

 line(32, 20, 80, 5);

 ellipse(80, 5, 4, 4);

 line(80, 75, 30, 75);

 ellipse(80, 75, 4, 4);

 bezier(85, 20, 40, 10, 60, 90, 15, 80);

 // Draw the control points

 line(85, 20, 40, 10);

 ellipse(40, 10, 4, 4);

 line(60, 90, 15, 80);

 ellipse(60, 90, 4, 4);

2-19

2-20

2-21

2-22

Reas_01_001-084.indd Sec2:30Reas_01_001-084.indd Sec2:30 5/23/07 1:20:35 PM5/23/07 1:20:35 PM

31 Shape 1: Coordinates, Primitives

Drawing order

The order in which shapes are drawn in the code defi nes which shapes appear on top of
others in the display window. If a rectangle is drawn in the fi rst line of a program, it is
drawn behind an ellipse drawn in the second line of the program. Reversing the order
places the rectangle on top.

 rect(15, 15, 50, 50); // Bottom

 ellipse(60, 60, 55, 55); // Top

 ellipse(60, 60, 55, 55); // Bottom

 rect(15, 15, 50, 50); // Top

Gray values

The examples so far have used the default light-gray background, black lines, and white
shapes. To change these default values, it’s necessary to introduce additional syntax. The
background() function sets the color of the display window with a number between 0
and 255. This range may be awkward if you’re not familiar with drawing software on the
computer. The value 255 is white and the value 0 is black, with a range of gray values in
between. If no background value is defi ned, the default value 204 (light gray) is used.

 background(0);

 background(124);

 background(230);

2-23

2-24

2-25

2-26

2-27

Reas_01_001-084.indd Sec2:31Reas_01_001-084.indd Sec2:31 5/23/07 1:20:35 PM5/23/07 1:20:35 PM

32 Shape 1: Coordinates, Primitives

The fill() function sets the fi ll value of shapes, and the stroke() function sets the
outline value of the drawn shapes. If no fi ll value is defi ned, the default value of 255
(white) is used. If no stroke value is defi ned, the default value of 0 (black) is used.

 rect(10, 10, 50, 50);

 fill(204); // Light gray

 rect(20, 20, 50, 50);

 fill(153); // Middle gray

 rect(30, 30, 50, 50);

 fill(102); // Dark gray

 rect(40, 40, 50, 50);

 background(0);

 rect(10, 10, 50, 50);

 stroke(102); // Dark gray

 rect(20, 20, 50, 50);

 stroke(153); // Middle gray

 rect(30, 30, 50, 50);

 stroke(204); // Light gray

 rect(40, 40, 50, 50);

Once a fi ll or stroke value is defi ned, it applies to all shapes drawn afterward. To change
the fi ll or stroke value, use the fill() or stroke() function again.

 fill(255); // White

 rect(10, 10, 50, 50);

 rect(20, 20, 50, 50);

 rect(30, 30, 50, 50);

 fill(0); // Black

 rect(40, 40, 50, 50);

An optional second parameter to fill() and stroke() controls transparency. Setting
the parameter to 255 makes the shape entirely opaque, and 0 is totally transparent:

 background(0);

 fill(255, 220);

 rect(15, 15, 50, 50);

 rect(35, 35, 50, 50);

 fill(0);

 rect(0, 40, 100, 20);

 fill(255, 51); // Low opacity

 rect(0, 20, 33, 60);

 fill(255, 127); // Medium opacity

2-28

2-29

2-30

2-31

2-32

Reas_01_001-084.indd Sec2:32Reas_01_001-084.indd Sec2:32 5/23/07 1:20:35 PM5/23/07 1:20:35 PM

33 Shape 1: Coordinates, Primitives

 rect(33, 20, 33, 60);

 fill(255, 204); // High opacity

 rect(66, 20, 33, 60);

The stroke and fi ll of a shape can be disabled. The noFill() function stops Processing
from fi lling shapes, and the noStroke() function stops lines from being drawn and
shapes from having outlines. If noFill() and noStroke() are both used, nothing will
be drawn to the screen.

 rect(10, 10, 50, 50);

 noFill(); // Disable the fill

 rect(20, 20, 50, 50);

 rect(30, 30, 50, 50);

 rect(20, 15, 20, 70);

 noStroke(); // Disable the stroke

 rect(50, 15, 20, 70);

 rect(80, 15, 20, 70);

Setting color fi ll and stroke values is introduced in Color 1 (p. 85).

Drawing attributes

In addition to changing the fi ll and stroke values of shapes, it’s also possible to change
attributes of the geometry. The smooth() and noSmooth() functions enable and
disable smoothing (also called antialiasing). Once these functions are used, all shapes
drawn afterward are affected. If smooth() is used fi rst, using noSmooth() cancels the
setting, and vice versa.

 ellipse(30, 48, 36, 36);

 smooth();

 ellipse(70, 48, 36, 36);

 smooth();

 ellipse(30, 48, 36, 36);

 noSmooth();

 ellipse(70, 48, 36, 36);

Line attributes are controlled by the strokeWeight(), strokeCap(), and
strokeJoin() functions. The strokeWeight() function has one numeric parameter
that sets the thickness of all lines drawn after the function is used. The strokeCap()
function requires one parameter that can be either ROUND, SQUARE, or PROJECT.

2-32
cont.

2-33

2-34

2-35

2-36

Reas_01_001-084.indd Sec2:33Reas_01_001-084.indd Sec2:33 5/23/07 1:20:36 PM5/23/07 1:20:36 PM

34 Shape 1: Coordinates, Primitives

ROUND makes round endpoints, and SQUARE squares them. PROJECT is a mix of the two
that extends a SQUARE endpoint by the radius of the line. The strokeJoin() function
has one parameter that can be either BEVEL, MITER, or ROUND. These parameters
determine the way line segments or the stroke around a shape connects. BEVEL causes
lines to join with squared corners, MITER is the default and joins lines with pointed
corners, and ROUND creates a curve.

 smooth();

 line(20, 20, 80, 20); // Default line weight of 1

 strokeWeight(6);

 line(20, 40, 80, 40); // Thicker line

 strokeWeight(18);

 line(20, 70, 80, 70); // Beastly line

 smooth();

 strokeWeight(12);

 strokeCap(ROUND);

 line(20, 30, 80, 30); // Top line

 strokeCap(SQUARE);

 line(20, 50, 80, 50); // Middle line

 strokeCap(PROJECT);

 line(20, 70, 80, 70); // Bottom line

 smooth();

 strokeWeight(12);

 strokeJoin(BEVEL);

 rect(12, 33, 15, 33); // Left shape

 strokeJoin(MITER);

 rect(42, 33, 15, 33); // Middle shape

 strokeJoin(ROUND);

 rect(72, 33, 15, 33); // Right shape

Shape 2 (p. 69) and Shape 3 (p. 197) show how to draw shapes with more fl exibility.

Drawing modes

By default, the parameters for ellipse() set the x-coordinate of the center, the
y-coordinate of the center, the width, and the height. The ellipseMode() function
changes the way these parameters are used to draw ellipses. The ellipseMode()
function requires one parameter that can be either CENTER, RADIUS, CORNER, or
CORNERS. The default mode is CENTER. The RADIUS mode also uses the fi rst and second
parameters of ellipse() to set the center, but causes the third parameter to set half of

2-37

2-38

2-39

Reas_01_001-084.indd Sec2:34Reas_01_001-084.indd Sec2:34 5/23/07 1:20:36 PM5/23/07 1:20:36 PM

35 Shape 1: Coordinates, Primitives

the width and the fourth parameter to set half of the height. The CORNER mode makes
ellipse() work similarly to rect(). It causes the fi rst and second parameters to
position the upper-left corner of the rectangle that circumscribes the ellipse and uses
the third and fourth parameters to set the width and height. The CORNERS mode has a
similar affect to CORNER, but is causes the third and fourth parameters to ellipse()
to set the lower-right corner of the rectangle.

 smooth();

 noStroke();

 ellipseMode(RADIUS);

 fill(126);

 ellipse(33, 33, 60, 60); // Gray ellipse

 fill(255);

 ellipseMode(CORNER);

 ellipse(33, 33, 60, 60); // White ellipse

 fill(0);

 ellipseMode(CORNERS);

 ellipse(33, 33, 60, 60); // Black ellipse

In a similar fashion, the rectMode() function affects how rectangles are drawn. It
requires one parameter that can be either CORNER, CORNERS, or CENTER. The default
mode is CORNER, and CORNERS causes the third and fourth parameters of rect()
to draw the corner opposite the fi rst. The CENTER mode causes the fi rst and second
parameters of rect() to set the center of the rectangle and uses the third and fourth
parameters as the width and height.

 noStroke();

 rectMode(CORNER);

 fill(126);

 rect(40, 40, 60, 60); // Gray ellipse

 rectMode(CENTER);

 fill(255);

 rect(40, 40, 60, 60); // White ellipse

 rectMode(CORNERS);

 fill(0);

 rect(40, 40, 60, 60); // Black ellipse

 Exercises
1. Create a composition by carefully positioning one line and one ellipse.
2. Modify the code for exercise 1 to change the fi ll, stroke, and background values.
3. Create a visual knot using only Bézier curves.

2-41

2-40

Reas_01_001-084.indd Sec2:35Reas_01_001-084.indd Sec2:35 5/23/07 1:20:37 PM5/23/07 1:20:37 PM

Reas_01_001-084.indd Sec2:36Reas_01_001-084.indd Sec2:36 5/23/07 1:20:37 PM5/23/07 1:20:37 PM

37

Data 1: Variables
This unit introduces different types of data and explains how to create variables and
assign them values.

Syntax introduced:
int, float, boolean, true, false, = (assign), width, height

What is data? Data often consists of measurements of physical characteristics. For
example, Casey’s California driver’s license states his sex is M, his hair is BRN, and his
eyes are HZL. The values M, BRN, and HZL are items of data associated with Casey. Data
can be the population of a country, the average annual rainfall in Los Angeles, or your
current heart rate. In software, data is stored as numbers and characters. Examples
of digital data include a photograph of a friend stored on your hard drive, a song
downloaded from the Internet, and a news article loaded through a web browser. Less
obvious is the data continually created and exchanged between computers and other
devices. For example, computers are continually receiving data from the mouse and
keyboard. When writing a program, you might create a data element to save the location
of a shape, to store a color for later use, or to continuously measure changes in cursor
position.

Data types

Processing can store and modify many different kinds of data, including numbers,
letters, words, colors, images, fonts, and boolean values (true, false). The computer
stores each in a different way, so it has to know which type of data is being used to know
how to manage it. For example, storing a word takes more room than storing one letter;
therefore, storing the word Cincinnati requires more space than storing the letter C. If
space has been allocated for only one letter, trying to store a word in the same space will
cause an error. Every data element is represented as sequences of bits (0s and 1s) in the
computer’s memory (more information about bits is found in Appendix D, p. 669). For
example, 01000001 can be interpreted as the letter A, and it can also be interpreted as
the number 65. It’s necessary to specify the type of data so the computer knows how to
correctly interpret the bits.
 Numeric data is the fi rst type of data encountered in the following sections of this
book. There are two types of numeric data used in Processing: integer and fl oating-
point. Integers are whole numbers such as 12, -120, 8, and 934. Processing represents
integer data with the int data type. Floating-point numbers have a decimal point for
creating fractions of whole numbers such as 12.8, -120.75, 8.125, and 934.82736. Processing
represents fl oating-point data with the float data type. Floating-point numbers are
often used to approximate analog or continuous values because they have decimal

Reas_01_001-084.indd Sec2:37Reas_01_001-084.indd Sec2:37 5/23/07 1:20:38 PM5/23/07 1:20:38 PM

38 Data 1: Variables

resolution. For example, using integer values, there is only one number between 3 and 5,
but fl oating-point numbers allow us to express myriad numbers between such as 4.0, 4.5,
4.75, 4.825, etc. Both int and fl oat values may be positive, negative, or zero.
 The simplest data element in Processing is a boolean variable. Variables of this
type can have only one of two values—true or false. The name boolean refers to the
mathematician George Boole (b. 1815), the inventor of Boolean algebra—the foundation
for how digital computers work. A boolean variable is often used to make decisions
about which lines of code are run and which are ignored.
 The following table compares the capacities of the data types mentioned above
with other common data types:

 Name Size Value range

 boolean 1 bit true or false

 byte 8 bits -128 to 127

 char 16 bits 0 to 65535

 int 32 bits -2,147,483,648 to 2,147,483,647

 float 32 bits 3.40282347E+38 to -3.40282347E+38

 color 32 bits 16,777,216 colors

Additional types of data are introduced and explained in Data 2 (p. 101), Data 3 (p. 105),
Image 1 (p. 95), Typography 1 (p. 111), and Structure 4 (p. 395).

Variables

A variable is a container for storing data. Variables allow a data element to be reused
many times within a program. Every variable has two parts, a name and a value. If the
number 21 is stored in the variable called age, every time the word age appears in the
program, it will be replaced with the value 21 when the code is run. In addition to its name
and value, every variable has a data type that defi nes the category of data it can hold.
 A variable must be declared before it is used. A variable declaration states the data
type and variable name. The following lines declare variables and then assign values to
the variables:

int x; // Declare the variable x of type int

float y; // Declare the variable y of type float

boolean b; // Declare the variable b of type boolean

x = 50; // Assign the value 50 to x

y = 12.6; // Assign the value 12.6 to y

b = true; // Assign the value true to b

3-01

Reas_01_001-084.indd Sec2:38Reas_01_001-084.indd Sec2:38 5/23/07 1:20:38 PM5/23/07 1:20:38 PM

39 Data 1: Variables

As a shortcut, a variable can be declared and assigned on the same line:

int x = 50;

float y = 12.6;

boolean b = true;

More than one variable can be declared in one line, and the variables can then be
assigned separately:

float x, y, z;

x = -3.9;

y = 10.1;

z = 124.23;

When a variable is declared, it is necessary to state the data type before its name;
but after it’s declared, the data type cannot be changed or restated. If the data type is
included again for the same variable, the computer will interpret this as an attempt to
make a new variable with the same name, and this will cause an error (an exception to
this rule is made when each variable has a different scope, p. 178):

int x = 69; // Assign 69 to x

x = 70; // Assign 70 to x

int x = 71; // ERROR! The data type for x is duplicated

The = symbol is called the assignment operator. It assigns the value from the right side
of the = to the variable on its left. Values can be assigned only to variables. Trying to
assign a constant to another constant produces an error:

// Error! The left side of an assignment must be a variable

5 = 12;

When working with variables of different types in the same program, be careful not to
mix types in a way that causes an error. For example, it’s not possible to fi t a fl oating-
point number into an integer variable:

// Error! It’s not possible to fit a floating-point number into an int

int x = 24.8;

float f = 12.5;

// Error! It’s not possible to fit a floating-point number into an int

int y = f;

3-02

3-03

3-04

3-05

3-06

3-07

Reas_01_001-084.indd Sec2:39Reas_01_001-084.indd Sec2:39 5/23/07 1:20:39 PM5/23/07 1:20:39 PM

40 Data 1: Variables

Variables should have names that describe their content. This makes programs easier
to read and can reduce the need for verbose commenting. It’s up to the programmer
to decide how she will name variables. For example, a variable storing the room
temperature could logically have the following names:

 t

 temp

 temperature

 roomTemp

 roomTemperature

Variables like t should be used minimally or not at all because they are cryptic—there’s
no hint as to what they contain. However, long names such as roomTemperature
can also make code tedious to read. If we were writing a program with this variable,
our preference might be to use the name roomTemp because it is both concise and
descriptive. The name temp could also work, but because it’s used commonly as an
abbreviation for “temporary,” it wouldn’t be the best choice.
 There are a few conventions that make it easier for other people to read your
programs. Variables’ names should start with a lowercase letter, and if there are multiple
words in the name, the fi rst letter of each additional word should be capitalized. There
are a few absolute rules in naming variables. Variable names cannot start with numbers,
and they must not be a reserved word. Examples of reserved words include int, if,
true, and null. A complete list is found in Appendix B (p. 663). To avoid confusion,
variables should not have the same names as elements of the Processing language
such as line and ellipse. The complete Processing language is listed in the reference
included with the software.
 Another important consideration related to variables is the scope (p. 178). The scope
of a variable defi nes where it can be used relative to where it’s created.

Processing variables

The Processing language has built-in variables for storing commonly used data. The
width and height of the display window are stored in variables called width and
height. If a program doesn’t include size(), the width and height variables are both
set to 100. Test by running the following programs

println(width + ", " + height); // Prints "100, 100" to the console

size(300, 400);

println(width + ", " + height); // Prints "300, 400" to the console

size(1280, 1024);

println(width + ", " + height); // Prints "1280, 1024" to the console

3-08

3-09

3-10

Reas_01_001-084.indd Sec2:40Reas_01_001-084.indd Sec2:40 5/23/07 1:20:39 PM5/23/07 1:20:39 PM

41 Data 1: Variables

Using the width and height variables is useful when writing a program to scale to
different sizes. This technique allows a simple change to the parameters of size()
to alter the dimensions and proportions of a program, rather than changing values
throughout the code. Run the following code with different values in the size()
function to see it scale to every window size.

size(100, 100);

ellipse(width*0.5, height*0.5, width*0.66, height*0.66);

line(width*0.5, 0, width*0.5, height);

line(0, height*0.5, width, height*0.5);

You should always use actual numbers in size() instead of variables. When a sketch is
exported, these numbers are used to determine the dimension of the sketch on its Web
page. More information about this can be seen in the reference for size().
 Processing variables that store the cursor position and the most recent key pressed
are discussed in Input 1 (p. 205) and Input 2 (p. 223).

 Exercises
1. Think about different types of numbers you use daily. Are they integer or
 fl oating-point numbers?
2. Make a few int and float variables. Try assigning them in different ways. Write the
 values to the console with println().
3. Create a composition that scales proportionally with different window sizes.
 Put different values into size() to test.

3-11

Reas_01_001-084.indd Sec2:41Reas_01_001-084.indd Sec2:41 5/23/07 1:20:39 PM5/23/07 1:20:39 PM

Reas_01_001-084.indd Sec2:42Reas_01_001-084.indd Sec2:42 5/23/07 1:20:40 PM5/23/07 1:20:40 PM

43

Math 1: Arithmetic, Functions
This unit focuses on performing basic mathematical operations and using the results to
control the position and properties of visual elements.

Syntax introduced:
+ (add), - (subtract), * (multiply), / (divide), % (modulus)

() (parentheses)

++ (increment), -- (decrement), += (add assign), -= (subtract assign)

*= (multiply assign), /= (divide assign), - (negation)

ceil(), floor(), round(), min(), max()

Math can be an important aspect of programming, but it’s not necessary to be good at
math to understand or enjoy programming. There are as many styles of programming as
there are people who program, and it’s the decision of the individual to utilize or ignore
math as they prefer. People who enjoy math often write programs to visualize equations
or take delight in exploring phenomena such as fractals. People who struggled with
math in school sometimes fi nd they enjoy and understand it better when it is applied
to form and motion. This book discusses arithmetic, algebra, and trigonometry in the
service of producing form and motion, a surprising range of which can be created with
basic mathematics. A nuanced understanding of these techniques can yield more control
over the software. More advanced mathematics such as linear algebra and calculus are
often used for images and motion, but they fall outside the scope of this book.

Arithmetic

In programming, the visual properties of an image on the screen are defi ned by
numbers, which means that the image can be controlled mathematically. For example,
a rectangle might have a horizontal position of 10, a vertical position of 10, a width and
height of 55, and a gray value of 153. If the gray value is stored in the variable grayVal
and 102 is added to this variable, the gray value will become 255 and the shape will
appear white on screen. This is demonstrated more succinctly in this example:

 int grayVal = 153;

 fill(grayVal);

 rect(10, 10, 55, 55); // Draw gray rectangle

 grayVal = grayVal + 102; // Assign 255 to grayVal

 fill(grayVal);

 rect(35, 30, 55, 55); // Draw white triangle

4-01

Reas_01_001-084.indd Sec2:43Reas_01_001-084.indd Sec2:43 5/23/07 1:20:40 PM5/23/07 1:20:40 PM

44 Math 1: Arithmetic, Functions

The expression to the right of the = symbol is evaluated before the value is assigned to
the variable on the left. Therefore, the statement a = 5 + 4 fi rst adds 5 and 4 to yield 9
and then assigns the value 9 to the variable a.
 Within the visual domain, addition, subtraction, multiplication, and division can
be used to control the position of elements on the screen or to change attributes such as
size or gray value. The + symbol is used for addition, the - symbol for subtraction, the *
symbol for multiplication, and the / symbol for division.

 int a = 30;

 line(a, 0, a, height);

 a = a + 40; // Assign 70 to a

 strokeWeight(4);

 line(a, 0, a, height);

 int a = 30;

 int b = 40;

 line(a, 0, a, height);

 line(b, 0, b, height);

 strokeWeight(4);

 // A calculation can be used as an input to a function

 line(b-a, 0, b-a, height);

 int a = 8;

 int b = 10;

 line(a, 0, a, height);

 line(b, 0, b, height);

 strokeWeight(4);

 line(a*b, 0, a*b, height);

 int a = 8;

 int b = 10;

 line(a, 0, a, height);

 line(b, 0, b, height);

 strokeWeight(4);

 line(a/b, 0, a/b, height);

 int y = 20;

 line(0, y, width, y);

 y = y + 6; // Assign 26 to y

 line(0, y, width, y);

 y = y + 6; // Assign 32 to y

 line(0, y, width, y);

 y = y + 6; // Assign 38 to y

 line(0, y, width, y);

4-02

4-03

4-04

4-05

4-06

Reas_01_001-084.indd Sec2:44Reas_01_001-084.indd Sec2:44 5/23/07 1:20:40 PM5/23/07 1:20:40 PM

45 Math 1: Arithmetic, Functions

 float y = 20;

 line(0, y, width, y);

 y = y * 1.6; // Assign 32.0 to y

 line(0, y, width, y);

 y = y * 1.6; // Assign 51.2 to y

 line(0, y, width, y);

 y = y * 1.6; // Assign 81.920006 to y

 line(0, y, width, y);

The +, -, *, /, and = symbols are probably familiar, but the % is more exotic. The %
operator calculates the remainder when one number is divided by another. The %, the
code notation for modulus, returns the integer remainder after dividing the number to
the left of the symbol by the number to the right.

 Expression Result Explanation

 9 % 3 0 3 goes into 9 three times, with no remainder

 9 % 2 1 2 goes into 9 four times, with 1 as the remainder

 35 % 4 3 4 goes into 35 eight times, with 3 remaining

Modulus can be explained with an anecdote. After a hard day of work, Casey and
Ben were hungry. They went to a restaurant to eat dumplings, but there were only 9
dumplings left so they had to share. If they share equally, how many dumplings can they
each eat and how many will remain? It’s obvious each can have 4 dumplings and 1 will
remain. If there are 4 people and 35 dumplings, each can eat 8 and 3 will remain. In these
examples, the modulus value is the number of remaining dumplings.
 The modulus operator is often used to keep numbers within a desired range. For
example, if a variable is continually increasing (0, 1, 2, 3, 4, 5, 6, 7, etc.), applying the
modulus operator can transform this sequence. A continually increasing number can be
made to cycle continuously between 0 and 3 by applying %4:

 x 0 1 2 3 4 5 6 7 8 9 10

 x % 4 0 1 2 3 0 1 2 3 0 1 2

Many examples throughout this book use % in this way.
 When working with mathematical operators and variables, it’s important to be
aware of the data types of the variables you’re using. The combination of two integers
will always result in an int. The combination of two fl oating-point numbers will always
result in a float, but when an int and float are operated on, the result is a float.

println(4/3); // Prints "1"

println(4.0/3); // Prints "1.3333334"

println(4/3.0); // Prints "1.3333334"

println(4.0/3.0); // Prints "1.3333334"

4-07

4-08

Reas_01_001-084.indd Sec2:45Reas_01_001-084.indd Sec2:45 5/23/07 1:20:41 PM5/23/07 1:20:41 PM

46 Math 1: Arithmetic, Functions

Integer values can be assigned to fl oating-point variables, but not vice versa. Assigning
a float to an int makes the number less accurate, so Processing requires that you do
so explicitly (discussed on page 105). Working with an int and a float will upgrade the
int and treat both numbers as fl oating-point values, but the result won’t fi t into an int
variable.

int a = 4/3; // Assign 1 to a

int b = 3/4; // Assign 0 to b

int c = 4.0/3; // ERROR!

int d = 4.0/3.0; // ERROR!

float e = 4.0/3; // Assign 1.3333334 to e

float f = 4.0/3.0; // Assign 1.3333334 to f

The last two calculations require additional explanation. The result of dividing two
integers will always be an integer: dividing the integer 4 by the integer 3 equals 1. This
result is converted to a fl oating-point variable after the calculation has fi nished, so the
1 becomes 1.0 only once it has reached the left side of the = sign. While this may seem
confusing, it can be useful for more advanced programs.

float a = 4/3; // Assign 1.0 to a

float b = 3/4; // Assign 0.0 to b

The rules of calculating int and float values can become obscured when variables
are used instead of the actual numbers. It’s important to be aware of the data types for
variables to avoid this problem.

int i = 4;

float f = 3.0;

int a = i/f; // ERROR! Assign a float value to an int variable

float b = i/f; // Assign 1.3333334 to b

It’s also important to pay attention to the value of variables to avoid making arithmetic
errors. For example, dividing a number by zero yields “infi nity” in mathematics, but in
software it just causes an error.

int a = 0;

int b = 12/a; // ERROR! ArithmeticException: / by zero

Similarly, dividing by an extremely small number can yield an enormous result. This
can be confusing when drawing shapes because they will not be visible in the display
window.

float a = 0.0001;

float b = 12/a; // Assign 120000.0 to b

4-09

4-10

4-11

4-12

4-13

Reas_01_001-084.indd Sec2:46Reas_01_001-084.indd Sec2:46 5/23/07 1:20:41 PM5/23/07 1:20:41 PM

47 Math 1: Arithmetic, Functions

Operator precedence, Grouping

The order of operations determines which math operators perform their calculations
before others. For example, multiplication is always evaluated before addition regardless
of the sequence of the elements. The expression 3 + 4 * 5 evaluates to 23 because 4 is
fi rst multiplied by 5 to yield 20 and then 3 is added to yield 23. The order of operations
specifi es that multiplication always precedes addition regardless of the order in which
they appear in the expression. The order of operations for evaluating expressions may
be changed by adding parentheses. For example, if an addition operation appears in
parentheses, it will be performed prior to multiplication. The expression (3 + 4) * 5
evaluates to 35 because 3 is fi rst added to 4 to yield 7, which is then multiplied by 5 to
yield 35. This is more concisely expressed in code:

x = 3 + 4 * 5; // Assign 23 to x

y = (3 + 4) * 5; // Assign 35 to y

In many cases, parentheses are necessary to force elements of an expression to evaluate
before others, but sometimes they are used only to clarify the order of operations. The
following lines calculate the same result because multiplication always happens before
addition, but you may fi nd the second line more clear.

x = 10 * 20 + 5; // Assign 205 to x

y = (10 * 20) + 5; // Assign 205 to y

The following table shows the operator precedence for the operators introduced so far.
Items at the top precede those toward the bottom.

 Multiplicative * / %
 Additive + -
 Assignment =

This means, for example, that division will always happen before subtraction and
addition will always happen before assignment. A complete listing for the order of
operations is listed in Appendix A (p. 661).

4-14

4-15

Reas_01_001-084.indd Sec2:47Reas_01_001-084.indd Sec2:47 5/23/07 1:20:42 PM5/23/07 1:20:42 PM

48 Math 1: Arithmetic, Functions

Shortcuts

There are many repetitive expressions in programming, so code shortcuts are used to
make programs more concise. The increment operator ++ adds the value 1 to a variable
and the decrement operator -- subtracts the value of 1:

int x = 1;

println(x); // Prints "1" to the console

x++; // Equivalent to x = x + 1

println(x); // Prints "2" to the console

int y = 1;

println(y); // Prints "1" to the console

y--; // Equivalent to y = y - 1

println(y); // Prints "0" to the console

The value is incremented or decremented after the expression is evaluated. This often
creates confusion and is shown in this example:

int x = 1;

println(x++); // Prints "1" to the console

println(x); // Prints "2" to the console

To update the value before the expression is evaluated, place the operator in front of
the variable:

int x = 1;

println(++x); // Prints "2" to the console

println(x); // Prints "2" to the console

The add assign operator += combines addition and assignment. The subtract assign
operator -= combines subtraction with assignment:

int x = 1;

println(x); // Prints "1" to the console

x += 5; // Equivalent to x = x + 5

println(x); // Prints "6" to the console

int y = 1;

println(y); // Prints "1" to the console

y -= 5; // Equivalent to y = y - 5

println(y); // Prints "-4" to the console

4-16

4-17

4-18

4-19

Reas_01_001-084.indd Sec2:48Reas_01_001-084.indd Sec2:48 5/23/07 1:20:42 PM5/23/07 1:20:42 PM

49 Math 1: Arithmetic, Functions

The multiply assign operator *= combines multiplication with assignment. The divide
assign operator /= combines division with assignment:

int x = 4;

println(x); // Prints "4" to the console

x *= 2; // Equivalent to x = x * 2

println(x); // Prints "8" to the console

int y = 4;

println(y); // Prints "4" to the console

y /= 2; // Equivalent to y = y / 2

println(y); // Prints "2" to the console

The negation operator - changes the sign of value to its right. It can be used in place of
multiplying a value by -1.

int x = 5; // Assigns 5 to x

x = -x; // Equivalent to x = x * -1

println(x); // Prints "-5"

Constraining numbers

The ceil(), floor(), round(), min(), and max() functions are used to perform
calculations on numbers that the standard arithmetic operators can’t. These functions
are different from those for drawing shapes, such as line() and ellipse(), because
they return values. This means the function outputs a number that can be assigned to
a variable.
 The ceil() function calculates the closest int value that is greater than or equal to
the value of its parameter:

int w = ceil(2.0); // Assign 2 to w

int x = ceil(2.1); // Assign 3 to x

int y = ceil(2.5); // Assign 3 to y

int z = ceil(2.9); // Assign 3 to z

The floor() function calculates the closest int value that is less than or equal to the
value of its parameter:

int w = floor(2.0); // Assign 2 to w

int x = floor(2.1); // Assign 2 to x

int y = floor(2.5); // Assign 2 to y

int z = floor(2.9); // Assign 2 to z

4-20

4-22

4-23

4-21

Reas_01_001-084.indd Sec2:49Reas_01_001-084.indd Sec2:49 5/23/07 1:20:42 PM5/23/07 1:20:42 PM

50 Math 1: Arithmetic, Functions

The round() function calculates the int value closest to the value of its parameter.
Values ending with .5 round up to the next int value:

int w = round(2.0); // Assign 2 to w

int x = round(2.1); // Assign 2 to x

int y = round(2.5); // Assign 3 to y

int z = round(2.9); // Assign 3 to z

Even though ceil(), floor(), and round() act on fl oating-point numbers, the result
is always an integer, because that’s the way the result will most often be useful. To
convert to a float, simply assign the result to a fl oat variable.

float w = round(2.1); // Assign 2.0 to w

The min() function determines the smallest value in a sequence of numbers. The max()
function determines the largest value in a sequence of numbers. Both functions can have
two or three parameters:

int u = min(5, 9); // Assign 5 to u

int v = min(-4, -12, -9); // Assign -12 to v

float w = min(12.3, 230.24); // Assign 12.3 to w

int x = max(5, 9); // Assign 9 to x

int y = max(-4, -12, -9); // Assign -4 to y

float z = max(12.3, 230.24); // Assign 230.24 to z

 Exercises
1. Use one variable to set the position and size for three ellipses.
2. Use multiplication to create a series of lines with increasing space between each.
3. Explore the functions for constraining numbers. Use min() and max() to draw
 a regular pattern of lines from a sequence of irregular numbers.

4-25

4-26

4-24

Reas_01_001-084.indd Sec2:50Reas_01_001-084.indd Sec2:50 5/23/07 1:20:43 PM5/23/07 1:20:43 PM

51

Control 1: Decisions
This unit focuses on controlling the fl ow of a program with conditional structures.
Logical operators for extending relational expressions are introduced.

Syntax introduced:
> (greater than), < (less than)

>= (greater than or equal to), <= (less than or equal to)

== (equality), != (inequality)

if, else, {} (braces)

|| (logical OR), && (logical AND), ! (logical NOT)

The programs we’ve seen so far run each line of code in sequence. They run the fi rst line,
then the second, then the third, etc. The program stops when the last line is run. It’s often
benefi cial to change this order—sometimes skipping lines or repeating lines many times
to perform a repetitive action. Although the lines of code that comprise a program are
always positioned in an order from top to bottom on the page, this doesn’t necessarily
defi ne the order in which each line is run. This order is called the fl ow of the program.
Flow can be changed by adding elements of code called control structures.

Relational expressions

What is truth? It’s easy to answer this diffi cult philosophical question in the context
of programming because the logical notions of true and false are well defi ned. Code
elements called relational expressions evaluate to true and false. A relational
expression is made up of two values that are compared with a relational operator.
In Processing, two values can be compared with relational operators as follows:

 Expression Evaluation

 3 > 5 false

 3 < 5 true

 5 < 3 false

 5 > 3 true

Each of these statements can be converted to English. Using the fi rst row as an example,
we can say, “Is three greater than fi ve?” The answer “no” is expressed with the value
false. The next row can be converted to “Is three less than fi ve?” The answer is “yes”
and is expressed with the value true. A relational expression, two values compared with
a relational operator, evaluates to true or false—there are no other possible values.
The relational operators are defi ned as follows:

Reas_01_001-084.indd Sec2:51Reas_01_001-084.indd Sec2:51 5/23/07 1:20:43 PM5/23/07 1:20:43 PM

52 Control 1: Decisions

 Operator Meaning

 > greater than

 < less than

 >= greater than or equal to

 <= less than or equal to

 == equivalent to

 != not equivalent to

The following lines of code show the results of comparing the same group of numbers
with different relational operators:

println(3 > 5); // Prints "false"

println(5 > 3); // Prints "true"

println(5 > 5); // Prints "false"

println(3 < 5); // Prints "true"

println(5 < 3); // Prints "false"

println(5 < 5); // Prints "false"

println(3 >= 5); // Prints "false"

println(5 >= 3); // Prints "true"

println(5 >= 5); // Prints "true"

println(3 <= 5); // Prints "true"

println(5 <= 3); // Prints "false"

println(5 <= 5); // Prints "true"

The equality operator, the == symbol, determines whether two values are equivalent.
It is different from the = symbol, which assigns a value, but the two are often used
erroneously in place of each other. The only way to avoid this mistake is to be careful.
It’s similar to using “their” instead of “there” when writing in English—a mistake that
even experienced writers sometimes make. The != symbol is the opposite of == and
determines whether two values are not equivalent.

println(3 == 5); // Prints "false"

println(5 == 3); // Prints "false"

println(5 == 5); // Prints "true"

println(3 != 5); // Prints "true"

println(5 != 3); // Prints "true"

println(5 != 5); // Prints "false"

5-01

5-02

Reas_01_001-084.indd Sec2:52Reas_01_001-084.indd Sec2:52 5/23/07 1:20:44 PM5/23/07 1:20:44 PM

53 Control 1: Decisions

Conditionals

Conditionals allow a program to make decisions about which lines of code run and
which do not. They let actions take place only when a specifi c condition is met.
Conditionals allow a program to behave differently depending on the values of their
variables. For example, the program may draw a line or an ellipse depending on the
value of a variable. The if structure is used in Processing to make these decisions:

 if (test) {

 statements

 }

The test must be an expression that resolves to true or false. When the test expression
evaluates to true, the code inside the { (left brace) and } (right brace) is run. If the
expression is false, the code is ignored. Code inside a set of braces is called a block.
 The following three examples present the same code with different values for the x
variable. Because this variable is used in the test for the if structure, changing it affects
which lines of code are run. Changing the value causes an ellipse, rectangle, or neither to
draw to the display window.

 // The text expressions are "x > 100" and "x < 100"

 // Because x is 150, the code inside the first block

 // runs and the ellipse draws, but the code in the second

 // block is not run and the rectangle is not drawn

 int x = 150;

 if (x > 100) { // If x is greater than 100,

 ellipse(50, 50, 36, 36); // draw this ellipse

 }

 if (x < 100) { // If x is less than 100

 rect(35, 35, 30, 30); // draw this rectangle

 }

 line(20, 20, 80, 80);

 // Because x is 50, only the rectangle draws

 int x = 50;

 if (x > 100) { // If x is greater than 100,

 ellipse(50, 50, 36, 36); // draw this ellipse

 }

 if (x < 100) { // If x is less than 100,

 rect(33, 33, 34, 34); // draw this rectangle

 }

 line(20, 20, 80, 80);

5-03

5-04

Reas_01_001-084.indd Sec2:53Reas_01_001-084.indd Sec2:53 5/23/07 1:20:44 PM5/23/07 1:20:44 PM

54 Control 1: Decisions

Decisions
The fl ow of an if, else, and else if structure shown as a diagram. The code inside each block is run if the test
evaluates to true. For each set of diagrams, the general case shows the generic format and the specifi c case shows one
example of how the format can be used within a program.

if (x < 150) {
 line(20, 20, 180, 180);
}

if (test) {
 statements
}

if
truetrue

falsefalsex<150

line(20, 20, 180, 180);

if
truetrue

falsefalse
test

statements

if (x < 150) {
 line(20, 20, 180, 180);
} else {
 ellipse(50, 50, 30, 30);
}

if

elsetruetrue

x<150

line(20, 20, 180, 180); ellipse(50, 50, 30, 30);

falsefalse

if (test) {
 statements 1
} else {
 statements 2
}

if

elsetruetrue

test

statements 1 statements 2

falsefalse

if (test 1) {
 statements 1
} else if (test 2) {
 statements 2
}

if
truetrue

test 1

statements 1

falsefalse

else if
truetrue

test 2 falsefalse

statements 2

if (x < 150) {
 line(20, 20, 180, 180);
} else if (x > 150) {
 ellipse(50, 50, 30, 30);
}

if
truetrue

x<150

line(20, 20, 180, 180);

falsefalse

else if
truetrue

x>150 falsefalse

ellipse(50, 50, 30, 30);

General case if structure

A specific if structure

A specific if/else structure

General case if/else structure

General case if/else if structure

A specific if/else if structure

Reas_01_001-084.indd Sec2:54Reas_01_001-084.indd Sec2:54 5/23/07 1:20:44 PM5/23/07 1:20:44 PM

55 Control 1: Decisions

 // Because x is 100, only the line draws

 int x = 100;

 if (x > 100) { // If x is greater than 100,

 ellipse(50, 50, 36, 36); // draw this ellipse

 }

 if (x < 100) { // If x is less than 100,

 rect(33, 33, 34, 34); // draw this rectangle

 }

 line(20, 20, 80, 80); // Always draw the line

To run a different set of code when the relational expression for an if structure is not
true, use the else keyword. The keyword else extends an if structure so that when
the expression associated with the structure is false, the code in the else block is
run instead.

 // Because x is 90, only the rectangle draws

 int x = 90;

 if (x > 100) { // If x is greater than 100,

 ellipse(50, 50, 36, 36); // draw this ellipse

 } else { // Otherwise,

 rect(33, 33, 34, 34); // draw this rectangle

 }

 line(20, 20, 80, 80); // Always draw the line

 // Because x is 290, only the ellipse draws

 int x = 290;

 if (x > 100) { // If x is greater than 100,

 ellipse(50, 50, 36, 36); // draw this ellipse

 } else { // Otherwise,

 rect(33, 33, 34, 34); // draw this rectangle

 }

 line(20, 20, 80, 80); // Always draw the line

5-05

5-06

5-07

Reas_01_001-084.indd Sec2:55Reas_01_001-084.indd Sec2:55 5/23/07 1:20:45 PM5/23/07 1:20:45 PM

56 Control 1: Decisions

Conditionals can be embedded within other conditionals to control which lines of code
will run. In the next example, the code for drawing the ellipse or line can be reached only
if x is larger than 100. If this expression evaluates to true, a second comparison of
x determines which of these shapes will be drawn.

 // If x is greater than 100 and less than 300, draw the

 // ellipse. If x is greater than or equal to 300, draw

 // the line. If x is not greater than 100, draw the

 // rectangle. Because x is 420, only the line draws.

 int x = 420;

 if (x > 100) { // First test to draw ellipse or line

 if (x < 300) { // Second test determines which to draw

 ellipse(50, 50, 36, 36);

 } else {

 line(50, 0, 50, 100);

 }

 } else {

 rect(33, 33, 34, 34);

 }

Conditionals can be extended further by combining an else with an if. This allows
conditionals to use multiple tests to determine which lines the program should run. This
technique is used when there are many choices and only one can be selected at a time.

 // If x is less than or equal to 100, then draw

 // the rectangle. Otherwise, if x is greater than

 // or equal to 300, draw the line. If x is between

 // 100 and 300, draw the ellipse. Because x is 101,

 // only the ellipse draws.

 int x = 101;

 if (x <= 100) {

 rect(33, 33, 34, 34);

 } else if (x >= 300) {

 line(50, 0, 50, 100);

 } else {

 ellipse(50, 50, 36, 36);

 }

5-08

5-09

Reas_01_001-084.indd Sec2:56Reas_01_001-084.indd Sec2:56 5/23/07 1:20:45 PM5/23/07 1:20:45 PM

57 Control 1: Decisions

Logical operators

Logical operators are used to combine two or more relational expressions and to invert
logical values. They allow for more than one condition to be considered simultaneously.
The logical operators are symbols for the logical concepts of AND, OR, and NOT:

 Operator Meaning

 && AND

 || OR

 ! NOT

The following table outlines all possible combinations and the results.

 Expression Evaluation

 true && true true

 true && false false

 false && false false

 true || true true

 true || false true

 false || false false

 !true false

 !false true

The logical OR operator, two vertical bars (sometimes called pipes), makes the relational
expression true if only one part is true. The following example shows how to use it:

 int a = 10;

 int b = 20;

 // The expression "a > 5" must be true OR "b < 30"

 // must be true. Because they are both true, the code

 // in the block will run.

 if ((a > 5) || (b < 30)) {

 line(20, 50, 80, 50);

 }

 // The expression "a > 15" is false, but "b < 30"

 // is true. Because the OR operator requires only one part

 // to be true in the entire expression, the code in the

 // block will run.

 if ((a > 15) || (b < 30)) {

 ellipse(50, 50, 36, 36);

 }

Compound logical expressions can be tricky to fi gure out, but they are simpler when
looked at step by step. Parentheses are useful hints in determining the order of

5-10

Reas_01_001-084.indd Sec2:57Reas_01_001-084.indd Sec2:57 5/23/07 1:20:46 PM5/23/07 1:20:46 PM

58 Control 1: Decisions

evaluation. Looking at the test of the if structure in line 6 of the previous example, fi rst
the variables are replaced with their values, then each subexpression is evaluated, and
fi nally the expression with the logical operator is evaluated:

 Step 1 (a > 5) || (b < 30)

 Step 2 (10 > 5) || (20 < 30)

 Step 3 true || true

 Step 4 true

The logical AND operator, two ampersands, allows the entire relational statement to be
true only if both parts are true. The following example is the same as the last except
the logical OR operators have been changed to the logical AND. Because each operator
compares the values differently, only the line is drawn here, whereas the previous
example drew both the line and circle.

 int a = 10;

 int b = 20;

 // The expression "a > 5" must be true AND "b < 30"

 // must be true. Because they are both true, the code

 // in the block will run.

 if ((a > 5) && (b < 30)) {

 line(20, 50, 80, 50);

 }

 // The expression "a > 15" is false, but "b < 30" is

 // true. Because the AND operator requires both to be

 // true, the code in the block will not run.

 if ((a > 15) && (b < 30)) {

 ellipse(50, 50, 36, 36);

 }

Technically, the steps shown above aren’t the whole story. When using AND, the fi rst
part of the expression will be evaluated. If that part is false, then the second part of the
expression won’t even be evaluated. For example, in this expression . . .

 (a > 5) && (b < 30)

. . . if a > 5 evaluates to false, then b < 30 is ignored for effi ciency. This is called a short
circuit operator. The same happens for the OR operator, where the fi rst true statement
will end evaluation. For example, if the expression is:

 (a > 5) || (b < 30)

If a > 5 is true, then the b < 30 will be ignored, because the entire expression will
evaluate to true, regardless of the value of b < 30. Outside of effi ciency, this has many

5-11

Reas_01_001-084.indd Sec2:58Reas_01_001-084.indd Sec2:58 5/23/07 1:20:46 PM5/23/07 1:20:46 PM

59 Control 1: Decisions

practical applications in more advanced code.
 The logical NOT operator is an exclamation mark. It inverts the logical value of the
associated boolean variables. It changes true to false, and false to true. The logical
NOT operator can be applied only to boolean variables.

boolean b = true; // Assign true to b

println(b); // Prints "true"

println(!b); // Prints "false"

b = !b; // Assign false to b

println(b); // Prints "false"

println(!b); // Prints "true"

println(5 > 3); // Prints "true"

println(!(5 > 3)); // Prints "false"

int x = 5;

println(!x); // ERROR! It's only possible to ! a boolean variable

 // Because b is true, the line draws

 boolean b = true;

 if (b == true) { // If b is true,

 line(20, 50, 80, 50); // draw the line

 }

 if (!b == true) { // If b is false,

 ellipse(50, 50, 36, 36); // draw the ellipse

 }

 Exercises
1. Create a few relational expressions and print their evaluation to the console
 with println().
2. Create a composition with a series of lines and ellipses. Use an if structure to select
 which lines of code to run and which to skip.
3. Add an else to the code from exercise 2 to change which code is run.

5-12

5-13

Reas_01_001-084.indd Sec2:59Reas_01_001-084.indd Sec2:59 5/23/07 1:20:46 PM5/23/07 1:20:46 PM

Reas_01_001-084.indd Sec2:60Reas_01_001-084.indd Sec2:60 5/23/07 1:20:47 PM5/23/07 1:20:47 PM

61

Control 2: Repetition

This unit focuses on controlling the fl ow of programs with iterative structures.

Syntax introduced:
for

The early history of computers is the history of automating calculation. A “computer”
was originally a person who was paid to calculate math by hand. What we know as
a computer today emerged from machines built to automate tedious mathematical
calculations. The earliest mechanical computers were calculators developed for speed
and accuracy in performing repetitive calculations. Because of this heritage, computers
are excellent at executing repetitive tasks accurately and quickly. Modern computers
are also logic machines. Building on the work of the logicians Leibniz and Boole, modern
computers use logical operations such as AND, OR, and NOT to determine which lines of
code are run and which are not.

Iteration

Iterative structures are used to compact lengthy lines of repetitive code. Decreasing
the length of the code can make programs easier to manage and can also help to
reduce errors. The table below shows equivalent programs written without an iterative
structure and with a for structure. The original 14 lines of code on the left are reduced to
the 4 lines on the right:

Original code Code expressed using a for structure

size(200, 200); size(200, 200);

line(20, 20, 20, 180); for (int i = 20; i < 150; i += 10) {

line(30, 20, 30, 180); line(i, 20, i, 180);

line(40, 20, 40, 180); }

line(50, 20, 50, 180);

line(60, 20, 60, 180);

line(70, 20, 70, 180);

line(80, 20, 80, 180);

line(90, 20, 90, 180);

line(100, 20, 100, 180);

line(110, 20, 110, 180);

line(120, 20, 120, 180);

line(130, 20, 130, 180);

line(140, 20, 140, 180);

Reas_01_001-084.indd Sec2:61Reas_01_001-084.indd Sec2:61 5/23/07 1:20:47 PM5/23/07 1:20:47 PM

62 Control 2: Repetition

for (init; test; update) {
 statements
}

truetrue

test

init

update

statements

falsefalse

for (int i = 20; i < 80; i += 5) {
 line(20, i, 80, i+15);
}

truetrue

i < 80

int i = 20

i += 5

line(20, i, 80, i+15);

falsefalse

General case for structure

A specific for structure

Repetition
The fl ow of a for structure shown as a diagram. These images show the central importance of
the test statement in deciding whether to run the code in the block or to exit. The general case
shows the generic format, and the specifi c case shows one example of how the format can be
used within a program.

Reas_01_001-084.indd Sec2:62Reas_01_001-084.indd Sec2:62 5/23/07 1:20:48 PM5/23/07 1:20:48 PM

63 Control 2: Repetition

The for structure performs repetitive calculations and is structured like this:

 for (init; test; update) {

 statements

 }

The parentheses associated with the structure enclose three statements: init, test, and
update. The statements inside the block are run continuously while the test evaluates
to true. The init portion assigns the initial value of the variable used in the test. The
update is used to modify the variable after each iteration through the block. A for
structure runs in the following sequence:

 1. The init statement is run

 2. The test is evaluated to true or false

 3. If the test is true, continue to step 4. If the test is false, jump to step 6

 4. Run the statements within the block

 5. Run the update statement and jump to step 2

 6. Exit the structure and continue running the program

The following examples demonstrate how the for structure is used within a program to
control the way shapes are drawn to the display window.

 // The init is "int i = 20", the test is "i < 80",

 // and the update is "i += 5". Notice the semicolon

 // terminating the first two elements

 for (int i = 20; i < 80; i += 5) {

 // This line will continue to run until "i"

 // is greater than or equal to 80

 line(20, i, 80, i+15);

 }

 for (int x = -16; x < 100; x += 10) {

 line(x, 0, x+15, 50);

 }

 strokeWeight(4);

 for (int x = -8; x < 100; x += 10) {

 line(x, 50, x+15, 100);

 }

 noFill();

 for (int d = 150; d > 0; d -= 10) {

 ellipse(50, 50, d, d);

 }

6-01

6-02

6-03

Reas_01_001-084.indd Sec2:63Reas_01_001-084.indd Sec2:63 5/23/07 1:20:48 PM5/23/07 1:20:48 PM

64 Control 2: Repetition

All for one and one for all
The for structure is fl exible, but it always follows the rules. These examples show how it can be
used to generate various patterns.

for (int x = 20; x <= 80; x += 5) {
 line(x, 20, x, 80);
}

for (int x = 20; x <= 80; x += 5) {
 line(20, x, 80, x);
}

for (int x = 20; x < 80; x += 5) {
 line(x+20, 20, x, 80);
}

for (float x = 80; x > 20; x -= 5) {
 line(20, x+20, 80, x);
}

for (float x = 20; x < 80; x *= 1.2) {
 line(x, 20, x, 80);
}

for (float x = 80; x > 20; x /= 1.2) {
 line(20, x, 80, x);
}

for (int x = 20; x <= 85; x += 5) {
 if (x <= 50) {
 line(x, 20, x, 60);
 } else {
 line(x, 40, x, 80);
 }
}

for (int x = 20; x <= 80; x += 5) {
 if ((x % 10) == 0) {
 line(20, x, 50, x);
 } else {
 line(50, x, 80, x);
 }
}

Reas_01_001-084.indd Sec2:64Reas_01_001-084.indd Sec2:64 5/23/07 1:20:49 PM5/23/07 1:20:49 PM

65 Control 2: Repetition

 for (int i = 0; i < 100; i += 2) {

 stroke(255-i);

 line(i, 0, i, 200);

 }

Nested iteration

The for structure produces repetitions in one dimension. Nesting one of these
structures into another compounds their effect, creating iteration in two dimensions.
Instead of drawing 9 points and then drawing another 9 points, they combine to create
81 points; for each point drawn in the outer structure, 9 points are drawn in the inner
structure. The inner structure runs through a complete cycle for each single iteration of
the outer structure. In the following examples, the two dimensions are translated into
x-coordinates and y-coordinates:

 for (int y = 10; y < 100; y += 10) {

 point(10, y);

 }

 for (int x = 10; x < 100; x += 10) {

 point(x, 10);

 }

 for (int y = 10; y < 100; y += 10) {

 for (int x = 10; x < 100; x += 10) {

 point(x, y);

 }

 }

This technique is useful for creating diverse patterns and effects. The numbers produced
by embedding iterative elements can be applied to color, position, size, transparency, and
any other visual attribute.

 fill(0, 76);

 noStroke();

 smooth();

 for (int y = -10; y <= 100; y += 10) {

 for (int x = -10; x <= 100; x += 10) {

 ellipse(x + y/8.0, y + x/8.0, 15 + x/2, 10);

 }

 }

6-04

6-05

6-06

6-07

6-08

Reas_01_001-084.indd Sec2:65Reas_01_001-084.indd Sec2:65 5/23/07 1:20:49 PM5/23/07 1:20:49 PM

66 Control 2: Repetition

for (int y = 20; y <= 80; y += 5) {

 for (int x = 20; x <= 80; x += 5) {

 point(x, y);

 }

}

for (int y = 20; y <= 80; y += 3) {

 for (int x = 20; x <= 80; x += 10) {

 point(x, y);

 }

}

for (int y = 20; y <= 80; y += 10) {

 for (int x = 20; x <= y; x += 5) {

 line(x, y, x-3, y-3);

 }

}

for (float y = 20; y <= 80; y *= 1.2) {

 for (int x = 20; x <= 80; x += 5) {

 line(x, y, x, y-2);

 }

}

for (int y = 20; y <= 85; y += 5) {

 for (int x = 20; x <= 85; x += 5) {

 if (x <= 50) {

 line(x, y, x-3, y-3);

 } else {

 line(x, y, x-3, y+3);

 }

 }

}

for (int y = 20; y <= 80; y += 5) {

 for (int x = 20; x <= 80; x += 5) {

 if ((x % 10) == 0) {

 line(x, y, x+3, y-3);

 } else {

 line(x, y, x+3, y+3);

 }

 }

}

Embedding (nesting)
Embedding one for structure inside another is a highly malleable technique for drawing patterns.
These examples show only a few of the possible options.

Reas_01_001-084.indd Sec2:66Reas_01_001-084.indd Sec2:66 5/23/07 1:20:49 PM5/23/07 1:20:49 PM

67 Control 2: Repetition

 noStroke();

 for (int y = 0; y < 100; y += 10) {

 for (int x = 0; x < 100; x += 10) {

 fill((x+y) * 1.4);

 rect(x, y, 10, 10);

 }

 }

 for (int y = 1; y < 100; y += 10) {

 for (int x = 1; x < y; x += 10) {

 line(x, y, x+6, y+6);

 line(x+6, y, x, y+6);

 }

 }

Formatting code blocks

It’s important to space code so the blocks are clear. The lines inside a block are typically
offset to the right with spaces or tabs. When programs become longer, clearly defi ning
the beginning and end of the block reveals the structure of the program and makes it
more legible. This is the convention used in this book:

int x = 50;

if (x > 100) {

 line(20, 20, 80, 80);

} else {

 line(80, 20, 20, 80);

}

This is an alternative format that is sometimes used elsewhere:

int x = 50;

if (x > 100)

{

 line(20, 20, 80, 80);

}

else

{

 line(20, 80, 80, 20);

}

6-09

6-10

6-11

6-12

Reas_01_001-084.indd Sec2:67Reas_01_001-084.indd Sec2:67 5/23/07 1:20:50 PM5/23/07 1:20:50 PM

68 Control 2: Repetition

It’s essential to use formatting to show the hierarchy of your code. The Processing
environment will attempt basic formatting as you type, and you can use the “Auto
Format” function from the Tools menu to clean up your code at any time. The line()
function in the following code fragment is inside the if structure, but the spacing does
not reveal this at a quick glance. Avoid formatting code like this:

int x = 50;

if (x > 100) {

line(20, 20, 80, 80); // Avoid formatting code like this

} else { // because it makes it difficult to see

line(80, 20, 20, 80); // what is inside the block

}

 Exercises
1. Draw a regular pattern with fi ve lines. Rewrite the code using a for structure.
2. Draw a dense pattern by embedding two for structures.
3. Combine two relational expressions with a logical operator to control the form
 of a pattern.

6-13

Reas_01_001-084.indd Sec2:68Reas_01_001-084.indd Sec2:68 5/23/07 1:20:50 PM5/23/07 1:20:50 PM

69

Shape 2: Vertices
This unit focuses on drawing lines and shapes from sequences of vertices.

Syntax introduced:
beginShape(), endShape(), vertex()

curveVertex(), bezierVertex()

The geometric primitives introduced in Shape 1 provide extraordinary visual potential,
but a programmer may often desire more complex shapes. Fortunately, there are many
ways to defi ne visual form with software. This unit introduces a way to defi ne shapes
as a series of coordinates, called vertices. A vertex is a position defi ned by an x- and
y-coordinate. A line has two vertices, a triangle has three, a quadrilateral has four, and so
on. Organic shapes such as blobs or the outline of a leaf are constructed by positioning
many vertices in spatial patterns:

These shapes are simple compared to the possibilities. In contemporary video games,
for example, highly realistic characters and environmental elements may be made up
of more than 15,000 vertices. They represent more advanced uses of this technique, but
they are created using similar principles.

Vertex

To create a shape from vertex points, fi rst use the beginShape() function, then
specify a series of points with the vertex() function and complete the shape with
endShape(). The beginShape() and endShape() functions must always be used
in pairs. The vertex() function has two parameters to defi ne the x-coordinate and
y-coordinate:

 vertex(x, y)

By default, all shapes drawn with the vertex() function are fi lled white and have a
black outline connecting all points except the fi rst and last. The fill(), stroke(),
noFill(), noStroke(), and strokeWeight() functions control the attributes of
shapes drawn with the vertex() function, just as they do for those drawn with the
shape functions discussed in Shape 1 (p. 23). To close the shape, use the CLOSE constant
as a parameter for endShape().

Reas_01_001-084.indd Sec2:69Reas_01_001-084.indd Sec2:69 5/23/07 1:20:51 PM5/23/07 1:20:51 PM

70 Shape 2: Vertices

 noFill();

 beginShape();

 vertex(30, 20);

 vertex(85, 20);

 vertex(85, 75);

 vertex(30, 75);

 endShape();

 noFill();

 beginShape();

 vertex(30, 20);

 vertex(85, 20);

 vertex(85, 75);

 vertex(30, 75);

 endShape(CLOSE);

The order of the vertex positions changes the way the shape is drawn. The following
example uses the same vertex positions as code 7-01, but the order of the third and
fourth points are reversed.

 noFill();

 beginShape();

 vertex(30, 20);

 vertex(85, 20);

 vertex(30, 75);

 vertex(85, 75);

 endShape();

Adding more vertex points reveals more of the potential of these functions. The
following examples show variations of turning off the fi ll and stroke attributes and
embedding vertex() functions within a for structure.

 fill(0);

 noStroke();

 smooth();

 beginShape();

 vertex(10, 0);

 vertex(100, 30);

 vertex(90, 70);

 vertex(100, 70);

 vertex(10, 90);

 vertex(50, 40);

 endShape();

7-01

7-02

7-03

7-04

Reas_01_001-084.indd Sec2:70Reas_01_001-084.indd Sec2:70 5/23/07 1:20:51 PM5/23/07 1:20:51 PM

71 Shape 2: Vertices

 noFill();

 smooth();

 strokeWeight(20);

 beginShape();

 vertex(52, 29);

 vertex(74, 35);

 vertex(60, 52);

 vertex(61, 75);

 vertex(40, 69);

 vertex(19, 75);

 endShape();

 noStroke();

 fill(0);

 beginShape();

 vertex(40, 10);

 for (int i = 20; i <= 100; i += 5) {

 vertex(20, i);

 vertex(30, i);

 }

 vertex(40, 100);

 endShape();

A shape can have thousands of vertex points, but drawing too many points can slow
down your programs.

Points, Lines

The beginShape() function can accept different parameters to defi ne what to draw
from the vertex data. The same points can be used to create a series of points, an
unfi lled shape, or a continuous line. The parameters POINTS and LINES are used to
create different confi gurations of points and lines from the coordinates defi ned in the
vertex() functions. Remember to type these parameters in uppercase letters because
Processing is case-sensitive (p. 20).

 // Draws a point at each vertex

 beginShape(POINTS);

 vertex(30, 20);

 vertex(85, 20);

 vertex(85, 75);

 vertex(30, 75);

 endShape();

7-05

7-06

7-07

Reas_01_001-084.indd Sec2:71Reas_01_001-084.indd Sec2:71 5/23/07 1:20:51 PM5/23/07 1:20:51 PM

72 Shape 2: Vertices

 // Draws a line between each pair of vertices

 beginShape(LINES);

 vertex(30, 20);

 vertex(85, 20);

 vertex(85, 75);

 vertex(30, 75);

 endShape();

Shapes

Use the parameters TRIANGLES, TRIANGLE_STRIP, TRIANGLE_FAN, QUADS, and
QUAD_STRIP with beginShape() to create other kinds of shapes. It’s important to be
aware of the spatial order of the vertex points when using these parameters because
they affect how a shape is rendered. If the order required for each parameter is not
followed, the expected shape will not draw. It’s easy to change between working with
TRIANGLES and a TRIANGLE_STRIP because the vertices can remain in the same
spatial order, but this is not the case for changing between QUADS and a QUAD_STRIP.
Refer to the examples below and the facing diagram for more information.

 // Connects each grouping of three vertices as a triangle

 beginShape(TRIANGLES);

 vertex(75, 30);

 vertex(10, 20);

 vertex(75, 50);

 vertex(20, 60);

 vertex(90, 70);

 vertex(35, 85);

 endShape();

 // Starting with the third vertex, connects each

 // subsequent vertex to the previous two

 beginShape(TRIANGLE_STRIP);

 vertex(75, 30);

 vertex(10, 20);

 vertex(75, 50);

 vertex(20, 60);

 vertex(90, 70);

 vertex(35, 85);

 endShape();

7-08

7-09

7-10

Reas_01_001-084.indd Sec2:72Reas_01_001-084.indd Sec2:72 5/23/07 1:20:52 PM5/23/07 1:20:52 PM

73 Shape 2: Vertices

Parameters for beginShape()
There are eight options for the MODE parameter of the beginShape() function, and each interprets vertex data in a
different way. The notation V1, V2, V3, etc., represents the order and position of each vertex point.

POINTS, LINES

 The same data can be interpreted
as a sequence of points or lines.
 The spatial order of the points
affects what is drawn when using
LINES.

TRIANGLES, TRIANGLE_FAN,

TRIANGLE_STRIP

Groups of three vertices are
drawn as individual triangles or a
connected group.

Unexpected results occur if the
defi ned order is not followed.

QUADS, QUAD_STRIP

Groups of four vertices are
drawn as individual quads or
a connected group. The spatial
order determines whether a quad
or a “bow” is drawn. Note that the
order is reversed for QUADS and
QUAD_STRIP.

POINTS

TRIANGLES TRIANGLE_STRIP TRIANGLE_FAN

V1

V4

V2

V3

V1

V2

V4

V3

LINES LINES

V1

V4

V2

V3

V1

V2

V3

V4

QUADS

QUADS

QUAD_STRIP

QUAD_STRIP

V5

V6

V8

V7

V1

V2

V4

V3

V5

V6

V8

V7

V1

V2

V3

V4

V5

V6

V7

V8

V1

V2

V3

V4

V5

V6

V7

V8

V1

V4

V5

V6V2

V3 V1,V6

V1,V6

V3

V5

V4V2

TRIANGLE_FAN

V3

V5

V4V2

V1

V4

V5

V6V2

V3

TRIANGLES TRIANGLE_STRIP

V1

V2

V6

V3V5

V4
V1 V4 V5

V6V2 V3

Reas_01_001-084.indd Sec2:73Reas_01_001-084.indd Sec2:73 5/23/07 1:20:52 PM5/23/07 1:20:52 PM

74 Shape 2: Vertices

 beginShape(TRIANGLE_FAN);

 vertex(10, 20);

 vertex(75, 30);

 vertex(75, 50);

 vertex(90, 70);

 vertex(10, 20);

 endShape();

 beginShape(QUADS);

 vertex(30, 25);

 vertex(85, 30);

 vertex(85, 50);

 vertex(30, 45);

 vertex(30, 60);

 vertex(85, 65);

 vertex(85, 85);

 vertex(30, 80);

 endShape();

 // Notice the different vertex order for

 // this example in relation to example 7-12

 beginShape(QUAD_STRIP);

 vertex(30, 25);

 vertex(85, 30);

 vertex(30, 45);

 vertex(85, 50);

 vertex(30, 60);

 vertex(85, 65);

 vertex(30, 80);

 vertex(85, 85);

 endShape();

Curves

The vertex() function works well for drawing straight lines, but if you want to create
shapes made of curves, the two functions curveVertex() and bezierVertex()
can be used to connect points with curves. These functions can be run between
beginShape() and endShape() only when beginShape() has no parameter.
 The curveVertex() function is used to set a series of points that connect with a
curve. It has two parameters that set the x-coordinate and y-coordinate of the vertex.

 curveVertex(x, y)

The fi rst and last curveVertex() within a beginShape() and endShape() act as

7-11

7-12

7-13

Reas_01_001-084.indd Sec2:74Reas_01_001-084.indd Sec2:74 5/23/07 1:20:53 PM5/23/07 1:20:53 PM

75 Shape 2: Vertices

control points, setting the curvature for the beginning and end of the line. The curvature
for each segment of the curve is calculated from each pair of points in consideration of
points before and after. Therefore, there must be at least four curveVertex() functions
within beginShape() and endShape() to draw a segment.

 smooth();

 noFill();

 beginShape();

 curveVertex(20, 80); // C1 (see p.76)

 curveVertex(20, 40); // V1

 curveVertex(30, 30); // V2

 curveVertex(40, 80); // V3

 curveVertex(80, 80); // C2

 endShape();

Each bezierVertex() defi nes the position of two control points and one anchor point
of a Bézier curve:

 bezierVertex(cx1, cy1, cx2, cy2, x, y)

The fi rst time bezierVertex() is used within beginShape(), it must be prefaced
with vertex() to set the fi rst anchor point. The line is drawn between the point defi ned
by vertex() and the point defi ned by the x and y parameters to bezierVertex().
The fi rst four parameters to the function position the control points to defi ne the shape
of the curve. The curve from code 2-21 (p. 30) was converted to this technique to yield the
following example:

 noFill();

 beginShape();

 vertex(32, 20); // V1 (see p.76)

 bezierVertex(80, 5, 80, 75, 30, 75); // C1, C2, V2

 endShape();

Long, continuous curves can be made with bezierVertex(). After the fi rst vertex()
and bezierVertex(), each subsequent call to the function continues the shape by
connecting each new point to the previous point.

 smooth();

 noFill();

 beginShape();

 vertex(15, 30); // V1 (see p.76)

 bezierVertex(20, -5, 70, 5, 40, 35); // C1, C2, V2

 bezierVertex(5, 70, 45, 105, 70, 70); // C3, C4, V3

 endShape();

7-14

7-15

7-16

Reas_01_001-084.indd Sec2:75Reas_01_001-084.indd Sec2:75 5/23/07 1:20:53 PM5/23/07 1:20:53 PM

76 Shape 2: Vertices

Curves
These curves are converted to software with the vertex(), curveVertex(), and bezierVertex() functions.
The notation V0, V1, V2, etc., represents the order and position of each vertex point, and the notation C1, C2, C3, etc.,
represents the control points. Some of these curves are translated to software in codes 7-14 to 7-18.

Curve vertices
The curveVertex() function
defi nes coordinates that are
connected with curved shapes.
The fi rst and last points are control
points that defi ne the shape of the
curve at the end and beginning.

Bézier vertices
Bézier curves are defi ned by vertex
points and control points used as
parameters to the bezierVertex()
function. The control points defi ne
the shape of the curves that are
drawn between the vertex points.

C1

C1

V1
V1

V2 V3

V2

V3
C2 C2

V3

V2V1

C1

V1

V2

C1

C2

V3

V1

V2

C1

C2

V1

V2

C1 C2

V1

V2
C1

C2

V1

V2

C1 C2

C4

C3

V3

V4

V5

C1,V1,V3

C3,V2

C2

C4

V1 V2

V3

C1

C2 C1

C2

C3

V1

V2

C4,V3

C3

C4

V1,C1

C2

C4 C3,V2

V3

C2

C1 C2

V1

V2

V3

V4

V5

C1

V1

V2

V3
V4

V5

V6

C2

Reas_01_001-084.indd Sec2:76Reas_01_001-084.indd Sec2:76 5/23/07 1:20:54 PM5/23/07 1:20:54 PM

77 Shape 2: Vertices

To make a sharp turn, use the same position to specify the vertex and the following
control point. To close the shape, use the same position to specify the fi rst and last
vertex.

 smooth();

 noStroke();

 beginShape();

 vertex(90, 39); // V1 (see p.76)

 bezierVertex(90, 39, 54, 17, 26, 83); // C1, C2, V2

 bezierVertex(26, 83, 90, 107, 90, 39); // C3, C4, V3

 endShape();

Place the vertex() function within bezierVertex() functions to break the sequence
of curves and draw a straight line.

 smooth();

 noFill();

 beginShape();

 vertex(15, 40); // V1 (see p.76)

 bezierVertex(5, 0, 80, 0, 50, 55); // C1, C2, V2

 vertex(30, 45); // V3

 vertex(25, 75); // V4

 bezierVertex(50, 70, 75, 90, 80, 70); // C3, C4, V5

 endShape();

A good technique for creating complex shapes with beginShape() and endShape()
is to draw them fi rst in a vector drawing program such as Inkscape or Illustrator. The
coordinates can be read as numbers in this environment and then used in Processing.
Another strategy for drawing intricate shapes is to create them in a vector-drawing
program and then import the coordinates as a fi le. Processing includes a simple library
for reading SVG fi les. Other libraries that support more formats and greater complexity
can be found on the Processing website at www.processing.org/reference/libraries.

 Exercises
1. Use beginShape() to draw a shape of your own design.
2. Use different parameters for beginShape() to change the way a series of vertices
 are drawn.
3. Draw a complex curved shape of your own design using bezierVertex().

7-17

7-18

Reas_01_001-084.indd Sec2:77Reas_01_001-084.indd Sec2:77 5/23/07 1:20:54 PM5/23/07 1:20:54 PM

Reas_01_001-084.indd Sec2:78Reas_01_001-084.indd Sec2:78 5/23/07 1:20:54 PM5/23/07 1:20:54 PM

79

Math 2: Curves
This unit introduces drawing curves with mathematical equations.

Syntax introduced:
sq(), sqrt(), pow(), norm(), lerp(), map()

Basic mathematical equations can be used to draw shapes to the screen and modify their
attributes. These equations augment the drawing functions discussed in Shape 1 (p. 23)
and Shape 2 (p. 69). They can control movement and the way elements respond to the
cursor. This math is used to accelerate and decelerate shapes in motion and move objects
along curved paths.

Exponents, Roots

The sq() function is used to square a number and return the result. The result is always
a positive number, because multiplying two negative numbers yields a positive result.
For example, -1 *-1 = 1. This function has one parameter:

 sq(value)

The value parameter can be any number. When sq() is used, the result can be assigned
to a variable:

float a = sq(1); // Assign 1 to a: Equivalent to 1 * 1

float b = sq(-5); // Assign 25 to b: Equivalent to -5 * -5

float c = sq(9); // Assign 81 to c: Equivalent to 9 * 9

The sqrt() function is used to calculate the square root of a number and return the
result. It is the opposite of sq(). The square root of a number is always positive, even
though there may be a valid negative root. The square root s of number a satisfi es the
equation s*s = a. This function has one parameter which must be a positive number:

 sqrt(value)

As in the sq() function, the value parameter can be any number, and when the function
is used the result can be assigned to a variable:

float a = sqrt(6561); // Assign 81 to a

float b = sqrt(625); // Assign 25 to b

float c = sqrt(1); // Assign 1 to c

8-01

8-02

Reas_01_001-084.indd Sec2:79Reas_01_001-084.indd Sec2:79 5/23/07 1:20:55 PM5/23/07 1:20:55 PM

80 Math 2: Curves

The pow() function calculates a number raised to an exponent. It has two parameters:

 pow(num, exponent)

The num parameter is the number to multiply, and the exponent parameter is the
number of times to make the calculation. The following example shows how it is used:

float a = pow(1, 3); // Assign 1.0 to a: Equivalent to 1*1*1

float b = pow(3, 4); // Assign 81.0 to b: Equivalent to 3*3*3*3

float c = pow(3, -2); // Assign 0.11 to c: Equivalent to 1 / 3*3

float d = pow(-3, 3); // Assign -27.0 to d: Equivalent to -3*-3*-3

Any number (except 0) raised to the zero power equals 1. Any number raised to the
power of one equals itself.

float a = pow(8, 0); // Assign 1 to a

float b = pow(3, 1); // Assign 3 to b

float c = pow(4, 1); // Assign 4 to c

Normalizing, Mapping

Numbers are often converted to the range 0.0 to 1.0 for making calculations. This is
called normalizing the values. When numbers between 0.0 and 1.0 are multiplied
together, the result is never less than 0.0 or greater than 1.0. This allows any number
to be multiplied by another or by itself many times without leaving this range. For
example, multiplying the value 0.2 by itself 5 times (0.2 * 0.2 * 0.2 * 0.2 * 0.2) produces
the result 0.00032. Because normalized numbers have a decimal point, all calculations
should be made with the float data type.
 To normalize a number, divide it by the maximum value that it represents. For
example, to normalize a series of values between 0.0 and 255.0, divide each by 255.0:

 Initial value Calculation Normalized value

 0.0 0.0 / 255.0 0.0

 102.0 102.0 / 255.0 0.4

 255.0 255.0 / 255.0 1.0

This can also be accomplished via the norm() function. It has three parameters:

 norm(value, low, high)

The number used as the value parameter is converted to a value between 0.0 and 1.0.
The low and high parameters set the respective minimum and maximum values of the

8-03

8-04

Reas_01_001-084.indd Sec2:80Reas_01_001-084.indd Sec2:80 5/23/07 1:20:55 PM5/23/07 1:20:55 PM

81 Math 2: Curves

number's current range. If value is outside the range, the result may be less than 0 or
greater than 1. The following example shows how to use the function to make the same
calculations as the above table.

float x = norm(0.0, 0.0, 255.0); // Assign 0.0 to x

float y = norm(102.0, 0.0, 255.0); // Assign 0.4 to y

float z = norm(255.0, 0.0, 255.0); // Assign 1.0 to z

After normalization, a number can be converted to another range through arithmetic.
For example, to convert numbers between 0.0 and 1.0 in a range between 0.0 and 500.0,
multiply by 500.0. To put numbers between 0.0 and 1.0 to numbers between 200.0
and 250.0, multiply by 50 then add 200. The following table presents a few sample
conversions. The parentheses are used to improve readability:

 Initial range of x Desired range of x Conversion

 0.0 to 1.0 0.0 to 255.0 x * 255.0

 0.0 to 1.0 -1.0 to 1.0 (x * 2.0) - 1.0

 0.0 to 1.0 -20.0 to 60.0 (x * 80.0) - 20.0

The lerp() function can be used to accomplish these calculations. The name “lerp” is
a contraction for “linear interpolation.” The function has three parameters:

 lerp(value1, value2, amt)

The value1 and value2 parameters defi ne the minimum and maximum values
and the amt parameter defi nes the value to interpolate between the values. The amt
parameter should always be a value between 0.0 and 1.0. The following example shows
how to use lerp() to make the value conversions on the last line of the previous table.

float x = lerp(-20.0, 60.0, 0.0); // Assign -20.0 to x

float y = lerp(-20.0, 60.0, 0.5); // Assign 20.0 to y

float z = lerp(-20.0, 60.0, 1.0); // Assign 60.0 to z

The map() function is useful to convert directly from one range of numbers to another.
It has fi ve parameters.

 map(value, low1, high1, low2, high2)

The value parameter is the number to re-map. Similar to the norm function, the low1
and low2 parameters are the minimum and maximum values of the number's current
range. The low2 and high2 parameters are the minimum and maximum values for
the new range. The next example shows how to use map() to convert values from the
range 0 to 255 into the range -1 to 1. This is the same as fi rst normalizing the value, then
multiplying and adding to move it from the range 0 to 1 into the range -1 to 1.

8-05

8-06

Reas_01_001-084.indd Sec2:81Reas_01_001-084.indd Sec2:81 5/23/07 1:20:56 PM5/23/07 1:20:56 PM

82 Math 2: Curves

Exponential equations
Each of these curves shows the relationship between x and y determined by an equation. The linear
equations in the left column are contrasted with exponential curves to the right. Codes 8-08 and
8-09 demonstrate how to translate these curves into code.

Reas_01_001-084.indd Sec2:82Reas_01_001-084.indd Sec2:82 5/23/07 1:20:56 PM5/23/07 1:20:56 PM

83 Math 2: Curves

float x = map(20.0, 0.0, 255.0, -1.0, 1.0); // Assign -0.84 to x

float y = map(0.0, 0.0, 255.0, -1.0, 1.0); // Assign -1.0 to y

float z = map(255.0, 0.0, 255.0, -1.0, 1.0); // Assign 1.0 to z

Simple curves

Exponential functions are useful for creating simple curves. Normalized values are used
with the pow() function to produce exponentially increasing or decreasing numbers
that never exceed the value 1. These equations have the form:

 y = xn

where the value of x is between 0.0 and 1.0 and the value of n is any integer. In these
equations, as the x value increases linearly the resulting y value increases exponentially.
When continuously plotted, these numbers produce this diagram:

 X Y

 0.0 0.0

 0.2 0.0016

 0.4 0.0256

 0.6 0.1296

 0.8 0.4096

 1.0 1.0

The following example shows how to put this equation into code. It iterates over
numbers from 0 to 100 and normalizes the values before making the curve calculation.

 for (int x = 0; x < 100; x++) {

 float n = norm(x, 0.0, 100.0); // Range 0.0 to 1.0

 float y = pow(n, 4); // Calculate curve

 y *= 100; // Range 0.0 to 100.0

 point(x, y);

 }

Other curves can be created by changing the parameters to pow() in line 3.

 for (int x = 0; x < 100; x++) {

 float n = norm(x, 0.0, 100.0); // Range 0.0 to 1.0

 float y = pow(n, 0.4); // Calculate curve

 y *= 100; // Range 0.0 to 100.0

 point(x, y);

 }

8-07

8-08

8-09

Reas_01_001-084.indd Sec2:83Reas_01_001-084.indd Sec2:83 5/23/07 1:20:57 PM5/23/07 1:20:57 PM

84 Math 2: Curves

The following three examples demonstrate how the same curve is used to draw different
shapes and patterns.

 // Draw circles at points along the curve y = x^4

 noFill();

 smooth();

 for (int x = 0; x < 100; x += 5) {

 float n = norm(x, 0.0, 100.0); // Range 0.0 to 1.0

 float y = pow(n, 4); // Calculate curve

 y *= 100; // Scale y to range 0.0 to 100.0

 strokeWeight(n * 5); // Increase thickness

 ellipse(x, y, 120, 120);

 }

 // Draw a line from the top of the display window to

 // points on a curve y = x^4 from x in range -1.0 to 1.0

 for (int x = 5; x < 100; x += 5) {

 float n = map(x, 5, 95, -1, 1);

 float p = pow(n, 4);

 float ypos = lerp(20, 80, p);

 line(x, 0, x, ypos);

 }

 // Create a gradient from y = x and y = x^4

 for (int x = 0; x < 100; x++) {

 float n = norm(x, 0.0, 100.0); // Range 0.0 to 1.0

 float val = n * 255.0;

 stroke(val);

 line(x, 0, x, 50); // Draw top gradient

 float valSquare = pow(n, 4) * 255.0;

 stroke(valSquare);

 line(x, 50, x, 100); // Draw bottom gradient

 }

Exponential curves are used in this unit to generate form, but code 23-06 and 31-09 in
subsequent units demonstrate their use to control motion and response.

 Exercises
1. Draw the curve y = 1-x4 to the display window.
2. Use the data from the curve y = x8 to draw something unique.
3. Compose a range of gradients created from curves.

8-10

8-11

8-12

Reas_01_001-084.indd Sec2:84Reas_01_001-084.indd Sec2:84 5/23/07 1:20:58 PM5/23/07 1:20:58 PM

85

Color 1: Color by Numbers
This unit introduces code elements and concepts for working with color in software.

Syntax introduced:
color, color(), colorMode()

When Casey and Ben studied color in school, they spent hours carefully mixing paints
and applying it to sheets of paper. They cut paper into perfect squares and carefully
arranged them into precise gradations from blue to orange, white to yellow, and many
other combinations. Over time, they developed an intuition that allowed them to
achieve a specifi c color value by mixing the appropriate components. Through focused
labor, they learned how to isolate properties of color, understand the interactions
between colors, and discuss qualities of color.
 Working with color on screen is different from working with color on paper or
canvas. While the same rigor applies, knowledge of pigments for painting (cadmium
red, Prussian blue, burnt umber) and from printing (cyan, yellow, magenta) does not
translate into the information needed to create colors for digital displays. For example,
adding all the colors together on a computer monitor produces white, while adding all
the colors together with paint produces black (or a strange brown). A computer monitor
mixes colors with light. The screen is a black surface, and colored light is added. This is
known as additive color, in contrast to the subtractive color model for inks on paper and
canvas. This image presents the difference between these models:

The most common way to specify color on the computer is with RGB values. An RGB
value sets the amount of red, green, and blue light in a single pixel of the screen. If you
look closely at a computer monitor or television screen, you will see that each pixel is
comprised of three separate light elements of the colors red, green, and blue; but because
our eyes can see only a limited amount of detail, the three colors mix to create a single
color. The intensities of each color element are usually specifi ed with values between 0
and 255 where 0 is the minimum and 255 is the maximum. Many software applications

Additive color Subtractive color

Reas_02_085-100.indd Sec2:85Reas_02_085-100.indd Sec2:85 5/23/07 1:27:21 PM5/23/07 1:27:21 PM

86 Color 1: Color by Numbers

also use this range. Setting the red, green, and blue components to 0 creates black.
Setting these components to 255 creates white. Setting red to 255 and green and blue
to 0 creates an intense red.
 Selecting colors with convenient numbers can save effort. For example, it’s
common to see the parameters (0, 0, 255) used for blue and (0, 255, 0) for green. These
combinations are often responsible for the garish coloring associated with technical
images produced on the computer. They seem extreme and unnatural because they
don’t account for the human eye’s ability to distinguish subtle values. Colors that appeal
to our eyes are usually not convenient numbers. Rather than picking numbers like 0 and
255, try using a color selector and choosing colors. Processing’s color selector is opened
from the Tools menu. Colors are selected by clicking a location on the color fi eld or by
entering numbers directly. For example, in the fi gure on the facing page, the current
blue selected is defi ned by an R value of 35, a G value of 211, and a B value of 229. These
numbers can be used to recreate the chosen color in your code.

Setting colors

In Processing, colors are defi ned by the parameters to the background(), fill(), and
stroke() functions:

 background(value1, value2, value3)

 fill(value1, value2, value3)

 fill(value1, value2, value3, alpha)

 stroke(value1, value2, value3)

 stroke(value1, value2, value3, alpha)

By default, the value1 parameter defi nes the red color component, value2 the green
component, and value3 the blue. The optional alpha parameter to fill() or stroke()
defi nes the transparency. The alpha parameter value 255 means the color is entirely
opaque, and the value 0 means it’s entirely transparent (it won’t be visible).

 background(242, 204, 47);

 background(174, 221, 60);

9-01

9-02

Reas_02_085-100.indd Sec2:86Reas_02_085-100.indd Sec2:86 5/23/07 1:27:21 PM5/23/07 1:27:21 PM

87 Color 1: Color by Numbers

 background(129, 130, 87);

 noStroke();

 fill(174, 221, 60);

 rect(17, 17, 66, 66);

 background(129, 130, 87);

 noFill();

 strokeWeight(4);

 stroke(174, 221, 60);

 rect(19, 19, 62, 62);

 background(116, 193, 206);

 noStroke();

 fill(129, 130, 87, 102); // More transparent

 rect(20, 20, 30, 60);

 fill(129, 130, 87, 204); // Less transparent

 rect(50, 20, 30, 60);

 background(116, 193, 206);

 int x = 0;

 noStroke();

 for (int i = 51; i <= 255; i += 51) {

 fill(129, 130, 87, i);

 rect(x, 20, 20, 60);

 x += 20;

 }

Color Selector
Drag the cursor inside the window or
input numbers to select a color. The large
square area determines the saturation
and brightness, and the thin vertical strip
determines the hue. The numeric value of
the selected color is displayed in HSB, RGB,
and hexadecimal notation.

9-03

9-04

9-05

9-06

Reas_02_085-100.indd Sec2:87Reas_02_085-100.indd Sec2:87 5/23/07 1:27:22 PM5/23/07 1:27:22 PM

88 Color 1: Color by Numbers

 background(56, 90, 94);

 smooth();

 strokeWeight(12);

 stroke(242, 204, 47, 102); // More transparency

 line(30, 20, 50, 80);

 stroke(242, 204, 47, 204); // Less transparency

 line(50, 20, 70, 80);

 background(56, 90, 94);

 smooth();

 int x = 0;

 strokeWeight(12);

 for (int i = 51; i <= 255; i += 51) {

 stroke(242, 204, 47, i);

 line(x, 20, x+20, 80);

 x += 20;

 }

Transparency can be used to create new colors by overlapping shapes. The colors
originating from overlaps depend on the order in which the shapes are drawn.

 background(0);

 noStroke();

 smooth();

 fill(242, 204, 47, 160); // Yellow

 ellipse(47, 36, 64, 64);

 fill(174, 221, 60, 160); // Green

 ellipse(90, 47, 64, 64);

 fill(116, 193, 206, 160); // Blue

 ellipse(57, 79, 64, 64);

 background(255);

 noStroke();

 smooth();

 fill(242, 204, 47, 160); // Yellow

 ellipse(47, 36, 64, 64);

 fill(174, 221, 60, 160); // Green

 ellipse(90, 47, 64, 64);

 fill(116, 193, 206, 160); // Blue

 ellipse(57, 79, 64, 64);

9-07

9-08

9-09

9-10

Reas_02_085-100.indd Sec2:88Reas_02_085-100.indd Sec2:88 5/23/07 1:27:22 PM5/23/07 1:27:22 PM

89 Color 1: Color by Numbers

Color data

The color data type is used to store colors in a program, and the color() function
is used to assign a color variable. The color() function can create gray values, gray
values with transparency, color values, and color values with transparency. Variables of
the color data type can store all of these confi gurations:

 color(gray)

 color(gray, alpha)

 color(value1, value2, value3)

 color(value1, value2, value3, alpha)

The parameters of the color() function defi ne a color. The gray parameter used alone
or with alpha defi nes tones ranging from white to black. The alpha parameter defi nes
transparency with values ranging from 0 (transparent) to 255 (opaque). The value1,
value2, and value3 parameters defi ne values for the different components. Variables
of the color data type are defi ned and assigned in the same way as the int and float
data types discussed in Data 1 (p. 37).

color c1 = color(51); // Creates gray

color c2 = color(51, 204); // Creates gray with transparency

color c3 = color(51, 102, 153); // Creates blue

color c4 = color(51, 102, 153, 51); // Creates blue with transparency

After a color variable has been defi ned, it can be used as the parameter to the
background(), fill(), and stroke() functions.

 color ruby = color(211, 24, 24, 160);

 color pink = color(237, 159, 176);

 background(pink);

 noStroke();

 fill(ruby);

 rect(35, 0, 20, 100);

RGB, HSB

Processing uses the RGB color model as its default for working with color, but the HSB
specifi cation can be used instead to defi ne colors in terms of their hue, saturation, and
brightness. The hue of a color is what most people normally think of as the color name:
yellow, red, blue, orange, green, violet. A pure hue is an undiluted color at its most
intense. The saturation is the degree of purity in a color. It is the continuum from the
undiluted, pure hue to its most diluted and dull. The brightness of a color is its relation
to light and dark.

9-12

9-11

Reas_02_085-100.indd Sec2:89Reas_02_085-100.indd Sec2:89 5/23/07 1:27:23 PM5/23/07 1:27:23 PM

Color by numbers
Every color within a program is set by numbers, and there are more than 16 million colors to choose from.
This diagram presents a few colors and their corresponding numbers for the RGB and HSB color models.
The RGB column is in relation to colorMode(RGB, 255) and the HSB column is in relation to
colorMode(HSB, 360, 100, 100).

360 100 100255 0 0 #FF0000

351 96 99252 9 45 #FC0A2E

342 93 98249 16 85 #F91157

332 90 98249 23 126 #F91881

323 87 97246 31 160 #F720A4

314 84 96244 38 192 #F427C4

304 81 96244 45 226 #F42EE7

295 78 95226 51 237 #E235F2

285 75 95196 58 237 #C43CF2

276 71 94171 67 234 #AB45EF

267 68 93148 73 232 #944BED

257 65 93126 81 232 #7E53ED

248 62 92108 87 229 #6C59EA

239 59 9195 95 227 #5F61E8

229 56 91102 122 227 #667DE8

220 53 90107 145 224 #6B94E5

210 50 90114 168 224 #72ACE5

201 46 89122 186 221 #7ABEE2

192 43 88127 200 219 #7FCDE0

182 40 88134 216 219 #86DDE0

173 37 87139 216 207 #8BDDD4

164 34 86144 214 195 #90DBC7

154 31 86151 214 185 #97DBBD

145 28 85156 211 177 #9CD8B5

135 25 85162 211 172 #A2D8B0

126 21 84169 209 169 #A9D6AD

117 18 83175 206 169 #AFD3AD

107 15 83185 206 175 #BAD3B3

98 12 82192 204 180 #C1D1B8

89 9 81197 201 183 #C5CEBB

79 6 81202 201 190 #CACEC2

70 3 80202 200 193 #CACCC5

RGB HSB HEX

Reas_02_085-100.indd Sec2:90Reas_02_085-100.indd Sec2:90 5/23/07 1:27:23 PM5/23/07 1:27:23 PM

91 Color 1: Color by Numbers

The colorMode() function sets the color space for a program:

 colorMode(mode)

 colorMode(mode, range)

 colorMode(mode, range1, range2, range3)

The parameters to colorMode() change the way Processing interprets color data. The
mode parameter can be either RGB or HSB. The range parameters allow Processing to
use different values than the default of 0 to 255. A range of values frequently used in
computer graphics is between 0.0 and 1.0. Either a single range parameter sets the range
for all the color components, or the range1, range2, and range3 parameters set the
range for each—either red, green, blue or hue, saturation, brightness, depending on the
value of the mode parameter.

// Set the range for the red, green, and blue values from 0.0 to 1.0

colorMode(RGB, 1.0);

A useful setting for HSB mode is to set the range1, range2, and range3 parameters
respectively to 360, 100, and 100. The hue values from 0 to 360 are the degrees around
the color wheel, and the saturation and brightness values from 0 to 100 are percentages.
This setting matches the values used in many color selectors and therefore makes it easy
to transfer color data between other programs and Processing:

// Set the range for the hue to values from 0 to 360 and the

// saturation and brightness to values between 0 and 100

colorMode(HSB, 360, 100, 100);

The following examples reveal the differences between hue, saturation, and brightness.

 // Change the hue, saturation and brightness constant

 colorMode(HSB);

 for (int i = 0; i < 100; i++) {

 stroke(i*2.5, 255, 255);

 line(i, 0, i, 100);

 }

 // Change the saturation, hue and brightness constant

 colorMode(HSB);

 for (int i = 0; i < 100; i++) {

 stroke(132, i*2.5, 204);

 line(i, 0, i, 100);

 }

9-13

9-14

9-15

9-16

Reas_02_085-100.indd Sec2:91Reas_02_085-100.indd Sec2:91 5/23/07 1:27:24 PM5/23/07 1:27:24 PM

92 Color 1: Color by Numbers

 // Change the brightness, hue and saturation constant

 colorMode(HSB);

 for (int i = 0; i < 100; i++) {

 stroke(132, 108, i*2.5);

 line(i, 0, i, 100);

 }

 // Change the saturation and brightness, hue constant

 colorMode(HSB);

 for (int i = 0; i < 100; i++) {

 for (int j = 0; j < 100; j++) {

 stroke(132, j*2.5, i*2.5);

 point(i, j);

 }

 }

It’s easy to make smooth transitions between colors by changing the values used for
color(), fill(), and stroke(). The HSB model has an enormous advantages over
the RGB model when working with code because it’s more intuitive. Changing the values
of the red, green, and blue components often has unexpected results, while estimating
the results of changes to hue, saturation, and brightness follows a more logical path. The
following examples show a transition from green to blue. The fi rst example makes this
transition using the RGB model. It requires calculating all three color values, and the
saturation of the color unexpectedly changes in the middle. The second example makes
the transition using the HSB model. Only one number needs to be altered, and the hue
changes smoothly and independently from the other color properties.

 // Shift from blue to green in RGB mode

 colorMode(RGB);

 for (int i = 0; i < 100; i++) {

 float r = 61 + (i*0.92);

 float g = 156 + (i*0.48);

 float b = 204 - (i*1.43);

 stroke(r, g, b);

 line(i, 0, i, 100);

 }

 // Shift from blue to green in HSB mode

 colorMode(HSB, 360, 100, 100);

 for (int i = 0; i < 100; i++) {

 float newHue = 200 - (i*1.2);

 stroke(newHue, 70, 80);

 line(i, 0, i, 100);

 }

9-17

9-18

9-19

9-20

Reas_02_085-100.indd Sec2:92Reas_02_085-100.indd Sec2:92 5/23/07 1:27:25 PM5/23/07 1:27:25 PM

93 Color 1: Color by Numbers

Hexadecimal

Hexadecimal (hex) notation is an alternative notation for defi ning color. This method
is popular with designers working on the Web because standards such as HyperText
Markup Language (HTML) and Cascading Style Sheets (CSS) use this notation. Hex
notation for color encodes each of the numbers from 0 to 255 into a two-digit value
using the numbers 0 through 9 and the letters A through F. In this way three RGB values
from 0 to 255 can be written as a single six-digit hex value. A few sample conversions
demonstrate this notation:

 RGB Hex

 255, 255, 255 #FFFFFF

 0, 0, 0 #000000

 102, 153, 204 #6699CC

 195, 244, 59 #C3F43B

 116, 206, 206 #74CECE

Converting color values from RGB to hex notation is not intuitive. Most often, the value
is taken from a color selector. For instance, you can copy and paste a hex value from
Processing’s color selector into your code. When using color values encoded in hex
notation, you must place a # before the value to distinguish it within the code.

 // Code 9-03 rewritten using hex numbers

 background(#818257);

 noStroke();

 fill(#AEDD3C);

 rect(17, 17, 66, 66);

There’s more information about hex notation in Appendix D (p. 669).

 Exercises
1. Explore a wide range of color combinations within one composition.
2. Use HSB color and a for structure to design a gradient between two colors.
3. Redraw your composition from exercise 1 using hexadecimal color values.

9-21

Reas_02_085-100.indd Sec2:93Reas_02_085-100.indd Sec2:93 5/23/07 1:27:25 PM5/23/07 1:27:25 PM

Reas_02_085-100.indd Sec2:94Reas_02_085-100.indd Sec2:94 5/23/07 1:28:59 PM5/23/07 1:28:59 PM

95

Image 1: Display, Tint
This unit introduces loading and displaying images.

Syntax introduced:
PImage, loadImage(), image()

tint(), noTint()

Digital photographs are fundamentally different from analog photographs captured on
fi lm. Like computer screens, digital photos are rectangular grids of color. The dimensions
of digital images are measured in units of pixels. If an image is 320 pixels wide and 240
pixels high, it has 76,800 total pixels. If an image is 1280 pixels wide and 1024 pixels
wide, the total number of pixels is an impressive 1,310,720 (1.3 megapixels). Every digital
image has a color depth. The color depth refers to the number of bits (p. 669) used to
store each pixel. If the color depth of an image is 1, each pixel can be one of two values,
for example, black or white. If the color depth is 4, each pixel can be one of 16 values.
If the color depth of an image is 8, each pixel can be one of 256 values. Looking at the
same image displayed with different color depths reveals how this affects the image’s
appearance:

 1-bit (1 color) 2-bit (4 colors) 4-bit (16 colors) 8-bit (256 colors)

When the Apple Macintosh computer was introduced in 1984, it had a black-and-white
screen. Since then, the reproduction of color on screen has rapidly improved. Many
contemporary screens have a color depth of 24, which means each pixel can be one of
16,777,216 available colors. This number is typically referred to as “millions of colors.”
 Digital images are comprised of numbers representing colors. The fi le format of an
image determines how the numbers are ordered in the fi le. Some fi le formats store the
color data in mathematically complex arrangements to compress the data and reduce
the size of the resulting fi le. A program that loads an image fi le must know the fi le
format of the image so it can translate the fi le’s data into the expected image. Different
types of digital image formats serve specifi c needs. Processing can load GIF, JPEG, and
PNG images, along with some other formats as described in the reference. If you don’t
already have your images in one of these formats, you can convert other types of digital
images to these formats with programs such as GIMP or Adobe Photoshop. Refer to the
documentation for these programs if you’re unsure how to convert images.

Reas_02_085-100.indd Sec2:95Reas_02_085-100.indd Sec2:95 5/23/07 1:28:01 PM5/23/07 1:28:01 PM

96 Image 1: Display, Tint

How do you know which image format to use? They all have obscure names that don’t
help in making this decision, but each format’s advantages becomes clear through
comparison:

 Format Extension Color depth Transparency

 GIF .gif 1-bit to 8-bit 1-bit

 JPEG .jpg 24-bit None

 PNG .png 1-bit to 24-bit 8-bit

If you are displaying your work on the Internet, image compression becomes an
important issue. GIF images are useful for simple graphics with a limited number of
colors and transparency. PNG images have similar characteristics but support the full
range of colors and transparency. The JPEG format works well for photos, and JPEG fi les
will be smaller than most images saved as PNG. This is because JPEG is a “lossy” format,
which means it sacrifi ces some image quality to reduce fi le size.

Display

Processing can load images, display them on the screen, and change their size, position,
opacity, and tint. There’s a data type for images called PImage. The same way that
integers are stored in variables of the int data type and values of true and false are
stored in the boolean data type, images are stored in variables of the PImage data
type. Before displaying an image, it’s necessary to fi rst load it with the loadImage()
function. Be sure to include the fi le format extension as a part of the name and to put
the entire name in quotes (e.g., “pup.gif”, “kat.jpg”, “ignatz.png”). For the image to load,
it must be in the data folder of the current program. Add the image by selecting the “Add
File” option in the Sketch menu of the Processing environment. Navigate to the image’s
location on your computer, select the image’s icon or name, and click “Open” to add it
to the sketch’s data folder. As a shortcut, you can also drag and drop an image to the
Processing window. To make sure the image was added, select “Show Sketch Folder” from
the Sketch menu. The image will be inside the data folder. With the image fi le in the
right place, you can load and then display it with the image() function:

 image(name, x, y)

 image(name, x, y, width, height)

The parameters for image() determine the image to draw and its position and size. The
name parameter must be a PImage variable. The x and y parameters set the position of
the upper-left corner of the image. The image will display at its actual size (in units of
pixels), but you can change the size by adding the width and height parameters. Be
careful to use the correct capitalization when loading images. If the image is arch.jpg,
trying to load Arch.jpg or arch.JPG will create an error. Also, avoid the use of spaces in
image names, which can cause problems.

Reas_02_085-100.indd Sec2:96Reas_02_085-100.indd Sec2:96 5/23/07 1:27:29 PM5/23/07 1:27:29 PM

97 Image 1: Display, Tint

 PImage img;

 // Image must be in the sketch's "data" folder

 img = loadImage("arch.jpg");

 image(img, 0, 0);

 PImage img;

 // Image must be in the sketch's "data" folder

 img = loadImage("arch.jpg");

 image(img, 20, 20, 60, 60);

Image color, Transparency

Images are colored with the tint() function. This function is used the same way as
fill() and stroke(), but it affects only images:

 tint(gray)

 tint(gray, alpha)

 tint(value1, value2, value3)

 tint(value1, value2, value3, alpha)

 tint(color)

All images drawn after running tint() will be tinted by the color specifi ed in the
parameters. This has no permanent effect on the images, and running the noTint()
function disables the coloration for all images drawn after it is run.

 PImage img;

 img = loadImage("arch.jpg");

 tint(102); // Tint gray

 image(img, 0, 0);

 noTint(); // Disable tint

 image(img, 50, 0);

 PImage img;

 img = loadImage("arch.jpg");

 tint(0, 153, 204); // Tint blue

 image(img, 0, 0);

 noTint(); // Disable tint

 image(img, 50, 0);

10-01

10-02

10-03

10-04

Reas_02_085-100.indd Sec2:97Reas_02_085-100.indd Sec2:97 5/23/07 1:27:29 PM5/23/07 1:27:29 PM

98 Image 1: Display, Tint

 color yellow = color(220, 214, 41);

 color green = color(110, 164, 32);

 color tan = color(180, 177, 132);

 PImage img;

 img = loadImage("arch.jpg");

 tint(yellow);

 image(img, 0, 0);

 tint(green);

 image(img, 33, 0);

 tint(tan);

 image(img, 66, 0);

The parameters for tint() follow the color space determined by the colorMode()
function (remember, the default color mode is RGB, with all values ranging from 0 to
255). If the color mode is changed to HSB or a different range, the tint values should be
specifi ed relative to that mode.
 To make an image transparent without changing its color, set the tint to white.
The value will depend on the current color mode, but the default white value is 255.

 PImage img;

 img = loadImage("arch.jpg");

 background(255);

 tint(255, 102); // Alpha to 102 without changing the tint

 image(img, 0, 0, 100, 100);

 tint(255, 204, 0, 153); // Tint to yellow, alpha to 153

 image(img, 20, 20, 100, 100);

 PImage img;

 img = loadImage("arch.jpg");

 background(255);

 tint(255, 51);

 // Draw the image 10 times, moving each to the right

 for (int i = 0; i < 10; i++) {

 image(img, i*10, 0);

 }

GIF and PNG images retain their transparency when loaded and displayed in Processing.
This allows anything drawn before the image to be visible through the transparent
sections of the image. GIF images have only 1-bit transparency, meaning each pixel can
only be completely opaque or completely transparent. The PNG format supports 8-bit
transparency, meaning there are 256 levels of opacity.

10-05

10-06

10-07

Reas_02_085-100.indd Sec2:98Reas_02_085-100.indd Sec2:98 5/23/07 1:27:30 PM5/23/07 1:27:30 PM

99 Image 1: Display, Tint

 // Loads a GIF image with 1-bit transparency

 PImage img;

 img = loadImage("archTrans.gif");

 background(255);

 image(img, 0, 0);

 image(img, -20, 0);

 // Loads a PNG image with 8-bit transparency

 PImage img;

 img = loadImage("arch.png");

 background(255);

 image(img, 0, 0);

 image(img, -20, 0);

 Exercises
1. Draw two images in the display window.
2. Draw three images in the display window, each with a different tint.
3. Load a GIF or PNG image with transparency and create a collage by layering
 the image.

10-08

10-09

Reas_02_085-100.indd Sec2:99Reas_02_085-100.indd Sec2:99 5/23/07 1:27:30 PM5/23/07 1:27:30 PM

%37

&38

'39

(40

)41

*42

+43

,44

-45

.46

/47

048

149

250

351

452

553

654

856

957

:58

;59

<60

=61

>62

?63

@64

A65

B66

C67

D68

E69

F70

G71

H72

I73

K75

L76

M77

N78

O79

P80

Q81

R82

S83

T84

U85

V86

W87

X88

Y89

Z90

[91

\92
Reas_02_085-100.indd Sec2:100Reas_02_085-100.indd Sec2:100 5/23/07 1:27:31 PM5/23/07 1:27:31 PM

101

Data 2: Text
This unit introduces code elements for working with language.

Syntax introduced:
char, String

I SENSE THE SUN IN THE STREET,
ALL SPACE IN THE STREET.
BANG! THE SUN HAS SLID.

This poem was generated from software written by Margaret Masterman and was
featured in the 1968 Cybernetic Serendipity exhibition at the Institute of Contemporary
Arts (ICA) in London. This exhibition exposed the public to examples of software-
generated poems, music, and drawings. While the poem may or may not conform to your
ideas about great poetry, the exhibition was important for its early emphasis on using
the computer as a language processing machine. A common misconception holds that
computer programming is applicable only to technical fi elds. While there is a strong
connection between programming and technology, it’s not the only realm in which
computers can make for interesting collaborators. Programming can be approached
with an emphasis on language, making computers potentially interesting to a far
broader audience.
 Some of the earliest explorations of the computer outside scientifi c research focused
on software as a language engine. The history of artifi cial intelligence (AI) has a strong
component of language processing. John McCarthy’s LISP programming language
made processing text easy and became popular for early experimentation in AI. The
controversial ELIZA software, written by Joseph Weizenbaum in 1966, parodies the dialog
between a Rogerian therapist and a patient by rephrasing the patient’s statements as
questions. People input statements through a keyboard and the software constructs a
reply. For example, if the patient types “I feel depressed,” ELIZA might respond, “Why
do you say you are depressed?” Terry Winograd’s SHRDLU project, c. 1970, used the same
kind of interaction between keyboard input and text response, but it earnestly explored
the computer’s potential for understanding natural language. SHRDLU made it possible
for a person to have a discussion with the computer about an arrangement of simulated
blocks. For example, to the query “How many blocks are not in the box?” the software
would respond “Four of them” based on the current status of the blocks.
 Researchers have continued to explore language as an interface with and input to
software. Emerging software services such as automated translation and speech-to-text
conversions are not always reliable, but they are fascinating to explore. For example, if
we take two simple English sentences . . .

 Translation requires nuance. Can it be performed by a machine?

Reas_03_101-172.indd Sec2:101Reas_03_101-172.indd Sec2:101 5/23/07 1:33:28 PM5/23/07 1:33:28 PM

102 Data 2: Text

. . . and convert them to Italian using an online translation service, we are given this text:

 La traduzione richiede la sfumatura. Può essere effettuata da una macchina?

If we take the Italian translation and convert it back to English, we now have

 The translation demands the shading. Can be carried out from one machine?

Similarly, software designed to convert spoken language into written language has its
limitations. Both technologies, however, can be used in controlled circumstances as
unique ways of working with text and software.
 This unit does not discuss artifi cial intelligence or language parsing, but text is one
of the most common types of data created and modifi ed by software. The text created
for Email, publications, and Web pages is a vast resource of data that can be stored and
presented through the data types and functions introduced below.

Characters

The char data type stores typographic symbols such as A, d, 5, and $. The name char
is short for character, and this type of data is distinguished from other typographic
symbols in the program by surrounding single quotes. Char variables are declared and
assigned in the same way as the int and float types.

char a = 'n'; // Assign 'n' to variable a

char b = n; // ERROR! Without quotes, n is a variable

char c = "n"; // ERROR! The "" defines n as a String, not a char

char d = 'not'; // ERROR! The char type can hold only one character

The following example creates a new char variable, assigns values, and prints the
values to the console.

char letter = 'A'; // Declare variable letter and assign 'A'

println(letter); // Prints "A" to the console

letter = 'B'; // Assign 'B' to variable letter

println(letter); // Prints "B" to the console

Many characters have a corresponding number on the standardized ASCII table. For
example, A is 65, B is 66, C is 67, etc. You can fi nd which character matches which number
by looking at an ASCII table (such as in Appendix C, p. 664) or by testing with the
println() function:

char letter = 'A'; // Declare variable letter and assign 'A'

println(letter); // Prints "A" to the console

int n = letter; // Assign the numerical value of 'A' to variable n

println(n); // Prints "65" to the console

11-01

11-02

11-03

Reas_03_101-172.indd Sec2:102Reas_03_101-172.indd Sec2:102 5/23/07 1:33:28 PM5/23/07 1:33:28 PM

103 Data 2: Text

Appendix C also includes information about using non-ASCII characters (for instance, a
character with an accent or an umlaut) or characters from non-Roman alphabets such as
Japanese or Korean.
 The mapping between numeric and alphabetic formats emphasizes the importance
of data types. The following program prints the letters A to Z to the console by
incrementing the char variable in a for structure.

char letter = 'A'; // Declare variable letter and assign 'A'

for (int i = 0; i < 26; i++) {

 print(letter); // Prints a character to the console

 letter++; // Add 1 to the value of the character

}

println('.'); // Adds a period to the end of the alphabet

Words, Sentences

Use the String data type to store words and sentences. Surrounding double quotes
distinguish strings from characters and the rest of the program. Quotation marks defi ne
“s” as a string, while single quotes (apostrophes) defi ne ‘s’ as a character, and without
either it could be a variable name. The String data type is different from the data types
int, float, and char because it is an object (p. 395), a composite data type containing
multiple data elements and functions. The previously introduced data types PImage and
PFont are also objects. String variables are declared and assigned in the familiar way,
but the word String must be capitalized:

String a = "Eponymous"; // Assign "Eponymous" to a

String b = 'E'; // ERROR! The '' define E as a char

String c = "E"; // Assign "E" to c

string d = "E"; // ERROR! String must be capitalized

The following example demonstrates some basic ways to use this data type:

// The String data type can contain long and short text elements

String s1 = "Rakete bee bee?";

String s2 = "Rrrrrrrrrrrrrrrrummmmmpffff tillffff tooooo?";

println(s1); // Prints "Rakete bee bee?"

println(s2); // Prints "Rrrrrrrrrrrrrrrrummmmmpffff tillffff tooooo?"

// Strings can be combined with the + operator

String s3 = "Rakete ";

String s4 = "rinnzekete";

String s5 = s3 + s4;

println(s5); // Prints "Rakete rinnzekete"

11-04

11-05

11-06

Reas_03_101-172.indd Sec2:103Reas_03_101-172.indd Sec2:103 5/23/07 1:33:29 PM5/23/07 1:33:29 PM

104 Data 2: Text

If you have a large quantity of text to display in your programs, it’s better to load the
text into the program from a fi le than to store it in String variables. This process is
explained in Input 6 (p. 427). The char and String data types will be used to more
interesting ends in the proceeding units on Typography and Input. There are many
functions inside the String data type for operating on text. They perform actions such
as making all the letters lowercase or looking only at one letter within the text. These
functions are explained in the next unit.

 Exercises
1. Create fi ve char variables and assign a character to each. Write each to the console.
2. Create two String variables and assign a word to each. Write each to the console.
3. Store a sentence in a String and write it to the console.

Reas_03_101-172.indd Sec2:104Reas_03_101-172.indd Sec2:104 5/23/07 1:33:29 PM5/23/07 1:33:29 PM

105

Data 3: Conversion, Objects
This unit introduces converting values from one data format to another and working with
data as objects.

Syntax introduced:
boolean(), byte(), char(), int(), float(), str()

“.” (dot operator)

PImage.width, PImage.height

String.length(), String.startsWidth(), String.endsWidth(),

String.charAt(), String.toCharArray(), String.subString(),

String.toLowerCase(), String.toUpperCase()

String.equals()

When a variable is created, its data type is specifi ed. If the variable will store numeric
data, the int or float types are used. If the variable will store character data, a String
can be used to store multiple characters, or the char data type can store just one. A true
or false value is stored in a boolean variable, an image is stored in a PImage variable,
and a typeface is stored in a PFont font variable. After the variable is created, it can only
be assigned data elements of its type. Sometimes, though, it’s necessary to convert a
value from one type of data to another, a task for which Processing has several functions.
 The data types int, float, boolean, and char are called primitive data types
because they store a single data element. The types String, PImage, and PFont
are different. Variables created from these data types are objects. Objects are usually
composed of several primitive data types (or other objects), and can also have functions
inside to act on their data. For example, a String object stores an array of characters and
has functions that return the number of characters or the character at a specifi c location.
Objects are visually distinguished from primitive data types with capitalization.

Data conversion

Some data type conversions are automatic and others need to be made explicit with
functions written for data type conversion. Automatic conversions are made between
compatible types. For example, an int can be automatically converted to a float, but
a float can’t be automatically converted to an int:

float f = 12.6;

int i = 127;

f = i; // Converts 127 to 127.0

i = f; // Error: Can't automatically convert a float to an int

12-01

Reas_03_101-172.indd Sec2:105Reas_03_101-172.indd Sec2:105 5/23/07 1:33:30 PM5/23/07 1:33:30 PM

106 Data 3: Conversion, Objects

How does one know which data types are compatible and which require an explicit
conversion? Conversions that involve a loss of information must be explicit. When
converting an int to a float, nothing is lost. When converting a float to an int,
however, the numbers after the decimal point are lost. Explicit conversions are a way of
stating in code that this loss of information is intentional. The functions for explicit data
type conversion are boolean(), byte(), char(), float(), int(), and str(). Each is
used to convert other data types to the type for which the function is named.
 The boolean() function converts the number 0 to false and all other numbers to
true. It converts the string “true” to true and the string “false” to false.

int i = 0;

boolean b = boolean(i); // Assign false to b

int n = 12;

b = boolean(n); // Assign true to b

String s = "false";

b = boolean(s); // Assign false to b

The byte() function converts other types of data to a byte representation. A byte can
only be a whole number between -128 and 127; therefore, when a number outside this
range is converted, its value wraps to the corresponding byte representation.

float f = 65.0;

byte b = byte(f); // Assign 65 to b

char c = 'E';

b = byte(c); // Assign 69 to b

f = 130.0;

b = byte(f); // Assign -126 to b

The char() function converts other types of data to a character representation.
An explanation of the numbering can be found in Appendix C (p. 664).

int i = 65;

byte y = 72.0;

char c = char(i); // Assign 'A' to c

c = char(y); // Assign 'H' to c

The float() function converts other types of data to a fl oating-point representation.
It is most often used when making calculations. As discussed in Math 1 (p. 43), dividing
two integers will always evaluate as an integer, which is a problem when working with
fractions. For example, when the integer number 3 is divided by 6, the answer is the
integer value 0 rather than the often desired fl oating-point value 0.5. Converting one
of these values to a float allows the expression to evaluate to a fl oating-point value.

12-02

12-03

12-04

Reas_03_101-172.indd Sec2:106Reas_03_101-172.indd Sec2:106 5/23/07 1:33:30 PM5/23/07 1:33:30 PM

107 Data 3: Conversion, Objects

int i = 2;

int j = 3;

float f1 = i/j; // Assign 0.0 to f1

float f2 = i/float(j); // Assign 0.6666667 to f2

The int() function converts other types of data to an integer representation. Many
of the math functions only return float values, and it’s necessary to convert them to
integers for use in other parts of a program.

float f = 65.3;

int i = int(f); // Assign 65 to i

char c = 'E';

i = int(c); // Assign 69 to i

The str() function converts other types of data to a string representation:

int i = 3;

String s = str(i); // Assign "3" to s

float f = -12.6;

s = str(f); // Assign "-12.6" to s

boolean b = true;

s = str(b); // Assign "true" to s

The nf() function (p. 422) provides more control when converting an int or a float to
a String. It can set the number of decimal places and pad the number with zeros.

Objects

Variables created with the PImage, PFont, and String data types are objects. Variables
within an object are called fi elds, and functions within an object are called methods.
Fields and methods are accessed with the dot operator, a period placed between the
name of the object and the name of a data element or function inside the object. The
PImage, PFont, and String data types each have their own unique additional data
elements and functions.
 The PImage data type has two fi elds that store the width and height of the image,
named, appropriately, width and height. To access these, write the name of the object
followed by a dot and the name of the variable:

PImage img = loadImage("ohio.jpg"); // Load a 320 x 240 pixel image

int w = img.width; // Assign 320 to w

int h = img.height; // Assign 240 to h

println(w); // Prints "320"

println(h); // Prints "240"

12-05

12-06

12-07

12-08

Reas_03_101-172.indd Sec2:107Reas_03_101-172.indd Sec2:107 5/23/07 1:33:31 PM5/23/07 1:33:31 PM

108 Data 3: Conversion, Objects

The width and height variables can only be read—assigning a value to them will
cause problems. The image’s width and height values can be used to position images
side by side or to place shapes in relation to an image. The PImage object has many
functions for manipulating the pixels of an image. They are discussed in Image 3 (p. 321),
Image 4 (p. 347), and Image 5 (p. 355).
 The String data type includes methods for examining individual characters
within the string, extracting parts of strings, converting an entire string to uppercase or
lowercase characters, and comparing two String variables. Some of the most common
String methods are introduced below, and more are discussed in the Processing
reference.
 The length() method returns the number of characters in a String object:

String s1 = "Player Piano";

String s2 = "P";

println(s1.length()); // Prints "12"

println(s2.length()); // Prints "1"

Notice the difference in syntax between the array fi eld length (p. 304) and the String
method length(). They both calculate the number of elements in their object, but
because the technique for getting the number of elements in a String is a method, the
parentheses are necessary.
 The startsWith() and endsWith() methods test whether a string starts or ends
with the string used as the parameter:

String s1 = "Slaughterhouse Five";

println(s1.startsWith("S")); // Prints "true"

println(s1.startsWith("Five")); // Prints "false"

println(s1.endsWith("Five")); // Prints "true"

The charAt() method is used to read a single character within a string. This method
has one parameter to defi ne the character that is returned.

String s = "Verde";

println(s.charAt(0)); // Prints "V"

println(s.charAt(2)); // Prints "r"

println(s.charAt(4)); // Prints "e"

The toCharArray() method creates an array of characters from the contents of
a string.

String s = "Azzurro";

char[] c = s.toCharArray();

println(c[0]); // Prints "A"

println(c[1]); // Prints "z"

12-09

12-10

12-11

12-12

Reas_03_101-172.indd Sec2:108Reas_03_101-172.indd Sec2:108 5/23/07 1:33:31 PM5/23/07 1:33:31 PM

109 Data 3: Conversion, Objects

The String method substring() returns a new string that is a part of the original.
When the method is used with one parameter, the string is read from the position given
as the parameter to the end of the string. When two parameters are used, the string
between the two parameter positions is returned.

String s = "Giallo";

println(s.substring(2)); // Prints "allo"

println(s.substring(4)); // Prints "lo"

println(s.substring(1, 4)); // Prints "ial"

println(s.substring(0, s.length()-1)); // Prints "Giall"

The String method toLowerCase() returns a copy of the string with all of the
characters made lowercase. The method toUpperCase() does the same for uppercase.

String s = "Nero";

println(s.toLowerCase()); // Prints "nero"

println(s.toUpperCase()); // Prints "NERO"

Because the String data type is an object, it’s not possible to compare two strings with
relational operators. Using == to compare two objects will compare only whether they are
stored in the same location in memory, not their actual contents. Instead, the equals()
method is used to determine whether two String variables contain the same characters.

String s1 = "Bianco";

String s2 = "Bianco";

String s3 = "Nero";

println(s1.equals(s2)); // Prints "true"

println(s1.equals(s3)); // Prints "false"

This unit introduced ways to utilize the additional data and functions within objects.
These methods will be useful in the following units, but the full potential of working
with objects is not revealed until Structure 4 (p. 395), which presents the techniques for
writing your own objects.

 Exercises
1. Write a program to convert the value of an integer to other data types. Display the
 conversions in the console.
2. Load an image and display its height and width to the console using the PImage fi elds.
3. Explore the String methods and use one or more of them to reconfi gure two sentences
 into one variable.

12-13

12-14

12-15

Reas_03_101-172.indd Sec2:109Reas_03_101-172.indd Sec2:109 5/23/07 1:33:31 PM5/23/07 1:33:31 PM

Reas_03_101-172.indd Sec2:110Reas_03_101-172.indd Sec2:110 5/23/07 1:33:32 PM5/23/07 1:33:32 PM

111

Typography 1: Display
This unit introduces loading and setting fonts and displaying letters on screen.

Syntax introduced:
PFont, loadFont(), textFont(), text()

textSize(), textLeading(), textAlign(), textWidth()

The evolution of typographic reproduction and display technologies has and continues
to impact human culture. Early printing techniques developed by Johannes Gutenberg in
fi fteenth-century Germany using positionable letters cast from lead provided a catalyst
for increased literacy and the scientifi c revolution. Automated typesetting machines,
such as the Linotype invented in the nineteenth century, changed the way information
was produced, distributed, and consumed. In the digital era, the way we consume text
has changed drastically since the proliferation of personal computers in the 1980s and
the rapid growth of the Internet in the 1990s. Text from Emails, websites, and instant
messages fi ll computer screens, and while many of the typographic rules of the past
apply, type on screen requires additional considerations for the sake of communication
and legibility.
 Letters on screen are created by setting the color of pixels. The quality of the
typography is constrained by the resolution of the screen. Because screens have a low
resolution in comparison to paper, techniques have been developed to enhance the
appearance of type on screen. The fonts on the earliest Apple Macintosh computers
were comprised of small bitmap images created at specifi c sizes like 10, 12, and 24 points.
Using this technology, a variation of each font was designed for each size of a particular
typeface. For example, the character A in the San Francisco typeface used a different
image to display the character at size 12 and 18. When the LaserWriter printer was
introduced in 1985, Postscript technology defi ned fonts with a mathematical description
of each character’s outline. This allowed type on screen to scale to large sizes and still
look smooth. Apple and Microsoft later developed TrueType, another outline font
format. More recently, these technologies were merged into the OpenType format. In the
meantime, methods to smooth black-and-white text on screen were introduced. These
anti-aliasing techniques use gray pixels at the edge of characters to compensate for low
screen resolution.
 The proliferation of personal computers in the mid-1980s spawned a period of
rapid typographic experimentation. Digital typefaces are software, and the old rules
of metal and photo type no longer apply. The Dutch typographers known as LettError
explain, “The industrial methods of producing typography meant that all letters had to
be identical . . . Typography is now produced with sophisticated equipment that doesn’t
impose such rules. The only limitations are in our expectations.”1 LettError expanded
the possibilities of typography with their typeface Beowolf (p. 169). It prints every
letter differently so that each time an A is printed, for example, it will have a different

Reas_03_101-172.indd Sec2:111Reas_03_101-172.indd Sec2:111 5/23/07 1:33:33 PM5/23/07 1:33:33 PM

112 Typography 1: Display

shape. During this time, typographers such as Zuzana Licko and Barry Deck began
creating radical and innovative typefaces with the assistance of new software tools. The
fl exibility of software has enabled extensive font revivals and historic homages such as
Adobe Garamond from Robert Slimbach and The Proteus Project from Jonathan Hoefl er.
Typographic nuances such as ligatures—connections between letter pairs such as fi ,
≠, and æ—made impractical by modern mechanized typography are fl ourishing again
through software font tools.

Loading fonts, Drawing text

Before letters can be displayed on the screen with Processing, a font must fi rst be
converted into the VLW format. To convert a font, select the “Create Font” option from
the Tools menu. A window opens and displays the names of the fonts installed on your
computer that can be converted. Select a font from the list and click “OK.” The font
generates and is copied into the current sketch’s data folder. To make sure the font is
there, click on the Sketch menu and select “Show Sketch Folder.”
 Like the early Macintosh fonts, the VLW format used by Processing stores each letter
of the alphabet as an image. The VLW format is a quick way to render text and makes
it possible to include a font with a sketch. A font created at size 12 will therefore have a
smaller fi le size than a font stored at size 96 because the images require less space. The
Create Font dialog box offers the option to set the size of the font and to select whether
it will be smooth (antialiased). This box also offers the option to export “All Characters,”
which means every character in the font will be included. The name of the fi le can also
be changed before the font is created.
 After the font is created, drawing letters to the display window is a multistep
process. Before a font is used in a program, it must be loaded and set as the current font.
Processing has a unique data type called PFont to store font data. Make a new variable
of the type PFont and use the loadFont() function to load the font. The textFont()
function must be used to set the current font. The text() function is used to draw
characters to the screen:

 text(data, x, y)

 text(stringdata, x, y, width, height)

The data parameter can be a String, char, int, or float. The stringdata parameter
can only be a String. The x and y parameters set the position of the lower-left corner.
The optional width and height parameters set boundaries. The text() function draws
the characters at the current font’s original size. The fill() function controls the color
and transparency of text. This function affects text the same way it affects shapes such
as rect() and ellipse(). Text is not affected by stroke().
 The following examples use a font named Ziggurat. To run these examples, you
will need to use the “Create Font” tool to create your own font. Change the name of the
parameter of loadFont() to the name of the font that you created.

Reas_03_101-172.indd Sec2:112Reas_03_101-172.indd Sec2:112 5/23/07 1:33:33 PM5/23/07 1:33:33 PM

113 Typography 1: Display

 PFont font; // Declare the variable

 font = loadFont("Ziggurat-32.vlw"); // Load the font

 textFont(font); // Set the current text font

 fill(0);

 text("LAX", 0, 40); // Write "LAX" at coordinate (0,40)

 text("AMS", 0, 70); // Write "AMS" at coordinate (0,70)

 text("FRA", 0, 100); // Write "FRA" at coordinate (0,100)

 PFont font;

 font = loadFont("Ziggurat-32.vlw");

 textFont(font);

 fill(0);

 text(19, 0, 36); // Write 19 at coordinate (0,36)

 text(72, 0, 70); // Write 72 at coordinate (0,70)

 text('R', 62, 70); // Write 'R' at coordinate (62,70)

 PFont font;

 font = loadFont("Ziggurat-12.vlw");

 textFont(font);

 fill(0);

 String s = "Response is the medium";

 text(s, 10, 20, 80, 50);

 PFont font;

 font = loadFont("Ziggurat-32.vlw");

 textFont(font);

 fill(255); // White

 text("DAY", 0, 40);

 fill(0); // Black

 text("CVG", 0, 70);

 fill(102); // Gray

 text("ATL", 0, 100);

 PFont font;

 font = loadFont("Ziggurat-72.vlw");

 textFont(font);

 fill(0, 160); // Black with low opacity

 text("1", 0, 80);

 text("2", 15, 80);

 text("3", 30, 80);

 text("4", 45, 80);

 text("5", 60, 80);

13-01

13-02

13-03

13-04

13-05

Reas_03_101-172.indd Sec2:113Reas_03_101-172.indd Sec2:113 5/23/07 1:33:33 PM5/23/07 1:33:33 PM

114 Typography 1: Display

To use two fonts in one program, create two PFont variables and use the textFont()
function to change the current font.

 PFont font1, font2;

 font1 = loadFont("Ziggurat-32.vlw");

 font2 = loadFont("ZigguratItalic-32.vlw");

 fill(0);

 // Set the font to Ziggurat-32.vlw

 textFont(font1);

 text("GNU", 6, 45);

 // Set the font to ZigguratItalic-32.vlw

 textFont(font2);

 text("GNU", 2, 80);

Text attributes

Processing includes functions to control the way text is displayed— for example, by
changing its size, leading (the spacing between lines), and alignment. Processing can
also calculate the width of any character or group of characters, a useful function for
arranging shapes and typographic elements.
 Fonts in Processing are images and not vector outlines. When the font is drawn
at a different size from the size at which it was created, it is scaled and therefore does
not always look as crisp and smooth. For example, if a font is created at 12 pixels and is
displayed at 96 pixels, it will appear blurry. The textSize() function sets the current
font size:

 textSize(size)

The size parameter defi nes the dimension of the letters in units of pixels.

 // Reducing a font created at 32 pixels

 PFont font;

 font = loadFont("Ziggurat-32.vlw");

 textFont(font);

 fill(0);

 text("LNZ", 0, 40); // Large

 textSize(18);

 text("STN", 0, 75); // Medium

 textSize(12);

 text("BOS", 0, 100); // Small

13-06

13-07

Reas_03_101-172.indd Sec2:114Reas_03_101-172.indd Sec2:114 5/23/07 1:33:34 PM5/23/07 1:33:34 PM

115 Typography 1: Display

 // Enlarging a font created at 12 pixels

 PFont font;

 font = loadFont("Ziggurat-12.vlw");

 textFont(font);

 textSize(32);

 fill(0);

 text("LNZ", 0, 40); // Large

 textSize(18);

 text("STN", 0, 75); // Medium

 textSize(12);

 text("BOS", 0, 100); // Small

The textLeading() function sets the spacing between lines of text:

 textLeading(dist)

The dist parameter defi nes this space in units of pixels.

 PFont font;

 font = loadFont("Ziggurat-12.vlw");

 textFont(font);

 String lines = "L1 L2 L3";

 textLeading(10);

 fill(0);

 text(lines, 5, 15, 30, 100);

 textLeading(20);

 text(lines, 36, 15, 30, 100);

 textLeading(30);

 text(lines, 68, 15, 30, 100);

Letters and words can be drawn from their center, left, and right edges. The
textAlign() function sets the alignment for drawing text:

 textAlign(MODE)

The MODE parameter can be LEFT, CENTER, or RIGHT. It sets the display characteristics
of the letters in relation to the value of the x parameter used in the text() function.
 The settings for textSize(), textLeading(), and textAlign() will be used
for all subsequent calls to the text() function. However, note that the textSize()
function will reset the text leading, and the textFont() function will reset both the
size and the leading.

13-08

13-09

Reas_03_101-172.indd Sec2:115Reas_03_101-172.indd Sec2:115 5/23/07 1:33:34 PM5/23/07 1:33:34 PM

116 Typography 1: Display

 PFont font;

 font = loadFont("Ziggurat-12.vlw");

 textFont(font);

 line(50, 0, 50, 100);

 fill(0);

 textAlign(LEFT);

 text("Left", 50, 20);

 textAlign(RIGHT);

 text("Right", 50, 40);

 textAlign(CENTER);

 text("Center", 50, 80);

The textWidth() function calculates and returns the pixel width of any character
or text string. This number is calculated from the current font and size as defi ned by
the textFont() and textSize() functions. Because the letters of every font are a
different size and letters within many fonts have different widths, this function is the
only way to know how wide a string or character is when displayed on screen. For this
reason, always use textWidth() to position elements relative to text, rather than
hard-coding them into your program.

 PFont font;

 font = loadFont("Ziggurat-32.vlw");

 textFont(font);

 fill(0);

 char c = 'U';

 float cw = textWidth(c);

 text(c, 22, 40);

 rect(22, 42, cw, 5);

 String s = "UC";

 float sw = textWidth(s);

 text(s, 22, 76);

 rect(22, 78, sw, 5);

 Exercises
1. Explore different typefaces in Processing. Draw your favorite word to the display
 window in your favorite typeface.
2. Draw a paragraph of text to the display window. Carefully select the composition.
3. Use two different typefaces to display the dialog between two characters.

 Notes

1. Ellen Lupton, Thinking with Type: A Critical Guide for Designers, Writers, Editors, & Students

 (Princeton Architectural Press, 2004), p. 29.

13-10

13-11

Reas_03_101-172.indd Sec2:116Reas_03_101-172.indd Sec2:116 5/23/07 1:33:35 PM5/23/07 1:33:35 PM

117

Math 3: Trigonometry
This unit introduces the basics of trigonometry and how to utilize it for generating form.

Syntax introduced:
PI, QUARTER_PI, HALF_PI, TWO_PI, radians(), degrees()

sin(), cos(), arc()

Trigonometry defi nes the relationships between the sides and angles of triangles. The
trigonometric functions sine and cosine generate repeating numbers that can be used to
draw waves, circles, arcs, and spirals.

Angles, Waves

Degrees are a common way to measure angles. A right angle is 90°, halfway around
a circle is 180°, and the full circle is 360°. In working with trigonometry, angles are
measured in units called radians. Using radians, the angle values are expressed in
relation to the mathematical value π, written in Latin characters as “pi” and pronounced
“pie.” In terms of radians, a right angle is π/2, halfway around a circle is simply π, and
the full circle is 2π.

The numerical value of π is a constant thought to be be infi nitely long and without a
repeating pattern. It is the ratio of the circumference of a circle to its diameter. When
writing Processing code, use the mathematical constant PI to represent this number.
Other commonly used values of π are expressed with the constants QUARTER_PI,
HALF_PI, and TWO_PI. Run the following line of code to see the value of π to 8
signifi cant digits.

println(PI); // Prints the value of PI to the text area

In casual use, the numerical value of π is 3.14, and 2π is 6.28. Angles can be converted
from degrees to radians with the radians() function, or vice versa using degrees().

Degree values

90

45

30

180

270

0,360

Radian values

π/2

π/4

π/6

π

π+π/2

0,2π

14-01

Reas_03_101-172.indd Sec2:117Reas_03_101-172.indd Sec2:117 5/23/07 1:33:35 PM5/23/07 1:33:35 PM

118 Math 3: Trigonometry

This short program demonstrates the conversions between these representations:

float r1 = radians(90);

float r1 = radians(180);

println(r1); // Prints "1.5707964"

println(r2); // Prints "3.1415927"

float d1 = degrees(PI);

float d2 = degrees(TWO_PI);

println(d1); // Prints "180.0"

println(d2); // Prints "360.0"

If you prefer working with degrees, use the radians() function in your programs to
convert the degree values for use with functions that require radian values.
 The sin() and cos() functions are used to determine the sine and cosine value
of any angle. Each of these functions requires one parameter:

 sin(angle)

 cos(angle)

The angle parameter is always specifi ed as a radian value. The values returned
from these functions are always between the fl oating-point values of -1.0 and 1.0.
The relationship between sine values and angles are shown here:

As angles increase in value, the sine values repeat. At the angle 0.0, the value of sine is
also 0.0, and this value decreases as the angle increases. When the angle reaches 90.0°
(π/2), the sine value increases until is it zero again at the angle 180.0° (π), then it
continues to increase until the angle reaches 270.0° (π + π/2), at which point it begins
decreasing until the angle reaches 360.0° (2π). At this point, the values repeat the cycle.
The sine values can been seen by putting a sin() function inside a for structure and
iterating while changing the angle value:

1

0

0Degrees

Sine wave

Constants

Radians
90 180 270 360

0Sine value -1 0 1 0

0 HALF_PI PI PI+HALF_PI TWO_PI

0 ππ/2 π+π/2 2π

Decimal radians 0 1.57 3.14 4.71 6.28

-1

14-02

Reas_03_101-172.indd Sec2:118Reas_03_101-172.indd Sec2:118 5/23/07 1:33:36 PM5/23/07 1:33:36 PM

119 Math 3: Trigonometry

for (float angle = 0; angle < TWO_PI; angle += PI/24.0) {

 println(sin(angle));

}

Because the values from sin() are numbers between -1.0 and 1.0, they are easy to use
in controlling a composition. Multiplying the numbers by 50.0, for example, will return
values between -50.0 and 50.0.

for (float angle = 0; angle < TWO_PI; angle += PI/24.0) {

 println(sin(angle) * 50.0);

}

To convert the sine values to a range of positive numbers, fi rst add the value 1.0 to create
numbers between 0.0 and 2.0. Divide that number by 2.0 to get a number between 0.0
and 1.0, which can then be simply remapped to any range. Alternatively, the map()
function can be used to convert the values from sin() to any range. In this example, the
values from sin() are put into the range between 0 and 1000.

for (float angle = 0; angle < TWO_PI; angle += PI/24.0) {

 float newValue = map(sin(angle), -1, 1, 0, 1000);

 println(newValue);

}

If we set the y-coordinates for a series of points with the numbers returned from the
sin() function and continually increase the value of the angle parameter before each
new coordinate is calculated, the sine wave emerges:

size(700, 100);

noStroke();

fill(0);

float angle = 0.0;

for (int x = 0; x <= width; x += 5) {

 float y = 50 + (sin(angle) * 35.0);

 rect(x, y, 2, 4);

 angle += PI/40.0;

}

Replacing some fi xed numbers in the previous program with variables allows you to
control the waveform by simply changing the values of the variables. The offset
variable controls the y-coordinates of the wave, the scaleVal variable controls the

14-03

14-04

14-05

14-06

Reas_03_101-172.indd Sec2:119Reas_03_101-172.indd Sec2:119 5/23/07 1:33:37 PM5/23/07 1:33:37 PM

120 Math 3: Trigonometry

Modulating a sine wave
Different values for the variables in code 14-07 create a range of waves.
Notice how each variable affects a different attribute of the wave.

offset = 25

offset = 75

scaleVal = 5.0

scaleVal = 45.0

angleInc = PI/12.0

angleInc = PI/90.0

angle = HALF_PI

angle = PI

Reas_03_101-172.indd Sec2:120Reas_03_101-172.indd Sec2:120 5/23/07 1:33:37 PM5/23/07 1:33:37 PM

121 Math 3: Trigonometry

height of the wave, and the angleInc variable controls the speed at which the angle
increases, thereby creating a wave with a higher or lower frequency.

size(700, 100);

noStroke();

smooth();

fill(0);

float offset = 50.0; // Y offset

float scaleVal = 35.0; // Scale value for the wave magnitude

float angleInc = PI/28.0; // Increment between the next angle

float angle = 0.0; // Angle to receive sine values from

for (int x = 0; x <= width; x += 5) {

 float y = offset + (sin(angle) * scaleVal);

 rect(x, y, 2, 4);

 angle += angleInc;

}

The cos() function returns values in the same range and pattern as sin(), but the
numbers are offset by π/2 radians (90°).

size(700, 100);

noStroke();

smooth();

float offset = 50.0;

float scaleVal = 20.0;

float angleInc = PI/18.0;

float angle = 0.0;

for (int x = 0; x <= width; x += 5) {

 float y = offset + (sin(angle) * scaleVal);

 fill(255);

 rect(x, y, 2, 4);

 y = offset + (cos(angle) * scaleVal);

 fill(0);

 rect(x, y, 2, 4);

 angle += angleInc;

}

14-07

14-08

Reas_03_101-172.indd Sec2:121Reas_03_101-172.indd Sec2:121 5/23/07 1:33:38 PM5/23/07 1:33:38 PM

122 Math 3: Trigonometry

The following examples demonstrate ways to use the numbers from the sin() function
to generate shapes.

size(700, 100);

float offset = 50;

float scaleVal = 30.0;

float angleInc = PI/56.0;

float angle = 0.0;

beginShape(TRIANGLE_STRIP);

for (int x = 4 ; x <= width+5; x += 5) {

 float y = sin(angle) * scaleVal;

 if ((x % 2) == 0) { // Every other time through the loop

 vertex(x, offset + y);

 } else {

 vertex(x, offset - y);

 }

 angle += angleInc;

}

endShape();

size(700, 100);

smooth();

strokeWeight(2);

float offset = 126.0;

float scaleVal = 126.0;

float angleInc = 0.42;

float angle = 0.0;

for (int x = -52; x <= width; x += 5) {

 float y = offset + (sin(angle) * scaleVal);

 stroke(y);

 line(x, 0, x+50, height);

 angle += angleInc;

}

14-09

14-10

Reas_03_101-172.indd Sec2:122Reas_03_101-172.indd Sec2:122 5/23/07 1:33:38 PM5/23/07 1:33:38 PM

123 Math 3: Trigonometry

size(700, 100);

smooth();

fill(255, 20);

float scaleVal = 18.0;

float angleInc = PI/28.0;

float angle = 0.0;

for (int offset = -10; offset < width+10; offset += 5) {

 for (int y = 0; y <= height; y += 2) {

 float x = offset + (sin(angle) * scaleVal);

 noStroke();

 ellipse(x, y, 10, 10);

 stroke(0);

 point(x, y);

 angle += angleInc;

 }

 angle += PI;

}

Circles, Arcs, Spirals

Circles can be drawn from sine and cosine waves. The example below has an angle that
increments by 12°, all the way up to 360°. On each step, the cos() value of the angle is
used to draw the x-coordinate, and the sin() value draws the y-coordinate. Because
sin() and cos() return numbers between -1.0 and 1.0, the result is multiplied by the
radius variable to draw a circle with radius 38. Adding 50 to the x and y positions sets
the center of the circle at (50,50).

 noStroke();

 smooth();

 int radius = 38;

 for (int deg = 0; deg < 360; deg += 12) {

 float angle = radians(deg);

 float x = 50 + (cos(angle) * radius);

 float y = 50 + (sin(angle) * radius);

 ellipse(x, y, 6, 6);

 }

14-11

14-12

Reas_03_101-172.indd Sec2:123Reas_03_101-172.indd Sec2:123 5/23/07 1:33:39 PM5/23/07 1:33:39 PM

124 Math 3: Trigonometry

If the angle is incremented only part of the way around the circle, an arc is drawn. For
example, changing line 4 in the preceding program gives the following result:

 noStroke();

 smooth();

 int radius = 38;

 for (int deg = 0; deg < 220; deg += 12) {

 float angle = radians(deg);

 float x = 50 + (cos(angle) * radius);

 float y = 50 + (sin(angle) * radius);

 ellipse(x, y, 6, 6);

 }

To simplify drawing arcs, Processing includes an arc() function:

 arc(x, y, width, height, start, stop)

Arcs are drawn along the outer edge of an ellipse defi ned by the x, y, width, and height
parameters. The start and stop parameters specify the angles needed to draw the arc
form in units of radians. The following examples show the function in use.

 strokeWeight(2);

 arc(50, 55, 50, 50, 0, HALF_PI);

 arc(50, 55, 60, 60, HALF_PI, PI);

 arc(50, 55, 70, 70, PI, TWO_PI - HALF_PI);

 noFill();

 arc(50, 55, 80, 80, TWO_PI - HALF_PI, TWO_PI);

 smooth();

 noFill();

 randomSeed(0);

 strokeWeight(10);

 stroke(0, 150);

 for (int i = 0; i < 160; i += 10) {

 float begin = radians(i);

 float end = begin + HALF_PI;

 arc(67, 37, i, i, begin, end);

 }

14-13

14-14

14-15

Reas_03_101-172.indd Sec2:124Reas_03_101-172.indd Sec2:124 5/23/07 1:33:39 PM5/23/07 1:33:39 PM

125 Math 3: Trigonometry

To create a spiral, multiply the sine and cosine values by increasing or decreasing scalar
values. In the following examples, the spiral grows as the radius variable increases:

 noStroke();

 smooth();

 float radius = 1.0;

 for (int deg = 0; deg < 360*6; deg += 11) {

 float angle = radians(deg);

 float x = 75 + (cos(angle) * radius);

 float y = 42 + (sin(angle) * radius);

 ellipse(x, y, 6, 6);

 radius = radius + 0.34;

 }

 smooth();

 float radius = 0.15;

 float cx = 33; // Center x- and y-coordinates

 float cy = 66;

 float px = cx; // Start with center as the

 float py = cy; // previous coordinate

 for (int deg = 0; deg < 360*5; deg += 12) {

 float angle = radians(deg);

 float x = cx + (cos(angle) * radius);

 float y = cy + (sin(angle) * radius);

 line(px, py, x, y);

 radius = radius * 1.05;

 px = x;

 py = y;

 }

The content of this unit is applied to controlling movement in Motion 2 (p. 291).

 Exercises
1. Create a composition with the data generated using sin().
2. Explore drawing circles and arcs with sin() and cos(). Develop a composition
 from the results of the exploration.
3. Generate a series of spirals and organize them into a composition.

14-16

14-17

Reas_03_101-172.indd Sec2:125Reas_03_101-172.indd Sec2:125 5/23/07 1:33:39 PM5/23/07 1:33:39 PM

Reas_03_101-172.indd Sec2:126Reas_03_101-172.indd Sec2:126 5/23/07 1:33:40 PM5/23/07 1:33:40 PM

127

Math 4: Random
This unit introduces the basics of trigonometry and random numbers and explains
how to utilize them for generating form.

Syntax introduced:
random(), randomSeed(), noise(), noiseSeed()

Random compositional choices have a long history, particularly in modern art. In 1913
Marcel Duchamp’s 3 Stoppages Étalon employed the curves of dropped threads to derive
novel units of measurement. Jean Arp used chance operations to defi ne the position of
elements in his collages. The composer John Cage sometimes tossed coins to determine
the order and duration of notes in his scores. Artists integrate chance, randomness, and
noise into their work either as a creative exercise or as a way of relinquishing some
control to an external force. Actions like dropping, throwing, rolling, etc., deprive the
artists of certain aspects of decisions. The world’s chaos can be channeled into making
images and objects with physical media. In contrast, computers are machines that make
consistent and accurate calculations and must therefore simulate random numbers to
approximate the kind of chance operations used in nondigital art.
 There is an obvious contrast between rigid structure and complete chaos, and some
of the most satisfying aesthetic experiences are created by infusing one with the other.
The tension between order and chaos can actively engage our attention:

If a composition is obviously Conversely, if a composition A balance between the two can
ordered, it will not hold is entirely chaotic, it will yield a more satisfying result.
attention beyond a quick glance. also not retain one’s gaze.

Unexpected values

The random() function is used to create unpredictable values within the range specifi ed
by its parameters.

 random(high)

 random(low, high)

When one parameter is passed to the function, it returns a float from zero up to (but
not including) the value of the parameter. The function call random(5.0) returns

Reas_03_101-172.indd Sec2:127Reas_03_101-172.indd Sec2:127 5/23/07 1:33:41 PM5/23/07 1:33:41 PM

128 Math 4: Random

values from 0.0 up to 5.0. If two parameters are used, the function returns a value
between the two parameters. Running random(-5.0, 10.2) returns values from
 -5.0 up to 10.2.
 The numbers returned from random() are always fl oating-point values; therefore,
they cannot be assigned to an int variable. The int() function can be used to convert
a float value to an int.

float f = random(5.2); // Assign f a float value from 0 to 5.2

int i = random(5.2); // ERROR! Can't assign a float to an int

int j = int(random(5.2)); // Assign j an int value from 0 to 5

Because the numbers returned from random() are not predictable, each time the
program is run, the result is different. The numbers from this function can be used to
control almost any aspect of a program.

 smooth();

 strokeWeight(10);

 stroke(0, 130);

 line(0, random(100), 100, random(100));

 line(0, random(100), 100, random(100));

 line(0, random(100), 100, random(100));

 line(0, random(100), 100, random(100));

 line(0, random(100), 100, random(100));

The version of random() with two parameters provides more control over the results of
the function. The previous example has been modifi ed so the lines always progress from
the upper-left to the lower-right, but the precise position is a chance operation. Storing
the results of random() into a variable makes it possible to use the value more than
once in the program. This program uses the random value r to set both the y-coordinate
of the fi rst point of the line and its stroke value.

 smooth();

 strokeWeight(20);

 stroke(0, 230);

 float r = random(5, 45);

 stroke(r * 5.6, 230);

 line(0, r, 100, random(55, 95));

 r = random(5, 45);

 stroke(r * 5.6, 230);

 line(0, r, 100, random(55, 95));

 r = random(5, 45);

 stroke(r * 5.6, 230);

 line(0, r, 100, random(55, 95));

15-01

15-02

15-03

Reas_03_101-172.indd Sec2:128Reas_03_101-172.indd Sec2:128 5/23/07 1:33:41 PM5/23/07 1:33:41 PM

129 Math 4: Random

Using random() within a for structure is an easy way to generate random numbers.

 background(0);

 stroke(255, 60);

 for (int i = 0; i < 100; i++) {

 float r = random(10);

 strokeWeight(r);

 float offset = r * 5.0;

 line(i-20, 100, i+offset, 0);

 }

To use random values to determine the fl ow of the program, you can place the
random() function in a relational expression. In the fi rst example below, either a line
or an ellipse is drawn, depending on whether the result of the random() function is less
than 50 or greater than or equal to 50, respectively. In the second example, between 1 and
50 vertical lines are drawn according to the result of the random() function.

 float r = random(100);

 if (r < 50.0) {

 line(0, 0, 100, 100);

 } else {

 ellipse(50, 50, 75, 75);

 }

 int num = int(random(50)) + 1;

 for (int i = 0; i < num; i++) {

 line(i * 2, 0, i * 2, 100);

 }

It’s sometimes desirable to include unpredictable numbers in your programs but to
force the same sequence of numbers each time the program is run. The randomSeed()
function is the key to producing such numbers.

 randomSeed(value)

The value parameter must be an int. Use the same value parameter in a program
each time it is run to force the same random numbers to be produced in the same order.
There is a unique sequence of random values for every integer value. You might fi nd that

15-04

15-05

15-06

Reas_03_101-172.indd Sec2:129Reas_03_101-172.indd Sec2:129 5/23/07 1:33:42 PM5/23/07 1:33:42 PM

130 Math 4: Random

using the number 1843 as the value parameter produces numbers that suit your needs,
while the number 258 will not.
 The following program is a slight variation on code 15-04. Adding randomSeed()
ensures it will produce the same values every time it is run. Change the value
parameter assigned to randomSeed() to generate a different set of numbers and
thereby change the image produced by the program.

 int s = 6; // Seed value

 background(0);

 stroke(255, 60);

 randomSeed(s); // Produce the same numbers each time

 for (int i = 0; i < 100; i++) {

 float r = random(10);

 strokeWeight(r);

 float offset = r * 5;

 line(i-20, 100, i+offset, 0);

 }

Noise

The noise() function is a more controllable way to create unexpected values. It uses
the Perlin Noise technique, developed by Ken Perlin.1 Originally used for simulating
natural textures through subtle irregularities, Perlin Noise is now also used for
generating shapes and realistic motion. It works by interpolating between random
values to create smoother transitions than the numbers returned from random().
The noise function has between one and three parameters:

 noise(x)

 noise(x, y)

 noise(x, y, z)

The version of the function with one parameter is used to create a single sequence
of random numbers. Additional parameters produce noise in more dimensions. For
example, the version with two parameters can be used to create a two-dimensional
texture. The version with three parameters can be used to create a three-dimensional
shape or texture or an animated two-dimensional texture. Regardless of the number or
value of the parameters, this function always returns values between 0.0 and 1.0. If other
values are desired, an equation can be applied to the result to change the range (p. 81).
 The numbers returned by noise can be made closer to or farther from the previous
value by way of changes in the rate at which the parameter increases. As a general
rule, the smaller the difference, the smoother the resulting noise sequence will be.
A small change generates numbers that are closer to the previous value than a large
increase would. Steps of 0.005– 0.03 work best for most applications, but this will differ

15-07s=6

s=12

Reas_03_101-172.indd Sec2:130Reas_03_101-172.indd Sec2:130 5/23/07 1:33:42 PM5/23/07 1:33:42 PM

131 Math 4: Random

depending on use. The following program uses the inc variable to defi ne the difference
between each number. Notice the differences between the results as the value of inc
increases. The noiseSeed() function, which works like randomSeed(), is used to
produce the same sequence of numbers each time the program runs.

size(600, 100);

float v = 0.0;

float inc = 0.1;

noStroke();

fill(0);

noiseSeed(0);

for (int i = 0; i < width; i = i+4) {

 float n = noise(v) * 70.0;

 rect(i, 10 + n, 3, 20);

 v = v + inc;

}

Add a second parameter to noise() to open the possibility of creating a two-
dimensional texture. In the following example, embedded for structures are used to
generate continuous noise values on the x-axis and y-axis. The values returned from
noise() are used to set the gray values for a grid of points drawn to the screen.

 float xnoise = 0.0;

 float ynoise = 0.0;

 float inc = 0.04;

 for (int y = 0; y < height; y++) {

 for (int x = 0; x < width; x++) {

 float gray = noise(xnoise, ynoise) * 255;

 stroke(gray);

 point(x, y);

 xnoise = xnoise + inc;

 }

 xnoise = 0;

 ynoise = ynoise + inc;

 }

15-08

15-09inc=0.04

inc=0.02

inc=0.1

inc=0.01

inc=0.1

Reas_03_101-172.indd Sec2:131Reas_03_101-172.indd Sec2:131 5/23/07 1:33:42 PM5/23/07 1:33:42 PM

132 Math 4: Random

Diverse textures can be created using noise() in collaboration with sin(). The
following example deforms a regular sequence of bars created with sin() into a texture
reminiscent of one found in nature. The power variable sets the amount the texture
deforms from the lines and the density parameter sets the granularity of the texture.

 float power = 3; // Turbulence power

 float d = 8; // Turbulence density

 noStroke();

 for (int y = 0; y < height; y++) {

 for (int x = 0; x < width; x++) {

 float total = 0.0;

 for (float i = d; i >= 1; i = i/2.0) {

 total += noise(x/d, y/d) * d;

 }

 float turbulence = 128.0 * total / d;

 float base = (x * 0.2) + (y * 0.12);

 float offset = base + (power * turbulence / 256.0);

 float gray = abs(sin(offset)) * 256.0;

 stroke(gray);

 point(x, y);

 }

 }

Examples showing noise used for motion are given in Motion 2 (p. 291).

 Exercises
1. Use three variables assigned to random values to create a composition that is
 different every time the program is run.
2. Create a composition using a for structure and random() to make a composition
 of a different density every time the program is run.
3. Use noise() and noiseSeed() to create the same irregular shape every time
 a program is run.

 Notes

1. Perlin Noise was developed in the 1980s, and in 1997 Perlin received an Academy Award

 for Technical Achievement for this research. See http://mrl.nyu.edu/~perlin/doc/oscar.html and

 http://www.noisemachine.com/talk1.

15-10d=8

d=32

d=128

Reas_03_101-172.indd Sec2:132Reas_03_101-172.indd Sec2:132 5/23/07 1:33:43 PM5/23/07 1:33:43 PM

133

Transform 1: Translate, Matrices
This unit introduces coordinate system transformations and explains how to control
their scope.

Syntax introduced:
translate(), pushMatrix(), popMatrix()

The coordinate system introduced in Shape 1 uses the upper-left corner of the display
window as the origin with the x-coordinates increasing to the right and the y-
coordinates increasing downward. This system can be modifi ed with transformations.
The coordinates can be translated, rotated, and scaled so shapes are drawn to the display
window with a different position, orientation, and size.

Translation

The translate() function moves the origin from the upper-left corner of the screen
to another location. It has two parameters. The fi rst is the x-coordinate offset and the
second is the y-coordinate offset:

 translate(x, y)

The values of the x and y parameters are added to any shapes drawn after the function
is run. If 10 is used as the x parameter and 30 is used as the y parameter, a point drawn
at coordinate (0,5) will instead be drawn at coordinate (10,35). Only elements drawn after
the transformation are affected. The following examples show how this works.

 // The same rectangle is drawn, but only the second is

 // affected by translate() because it is drawn after

 rect(0, 5, 70, 30);

 translate(10, 30); // Shifts 10 pixels right and 30 down

 rect(0, 5, 70, 30);

 // A negative number used as a parameter to translate()

 // moves the coordinates in the opposite direction

 rect(0, 5, 70, 30);

 translate(10, -10); // Shifts 10 pixels right and up

 rect(0, 5, 70, 30);

16-01

16-02

Reas_03_101-172.indd Sec2:133Reas_03_101-172.indd Sec2:133 5/23/07 1:33:43 PM5/23/07 1:33:43 PM

134 Transform 1: Translate, Matrices

The translate() function is additive. If translate(10,30) is run twice, all the
elements drawn after will display with an x-offset of 20 and a y-offset of 60.

 rect(0, 5, 70, 30);

 translate(10, 30); // Shifts 10 pixels right and 30 down

 rect(0, 5, 70, 30);

 translate(10, 30); // Shifts everything again for a total

 rect(0, 5, 70, 30); // 20 pixels right and 60 down

Controlling transformations

The transformation matrix is a set of numbers that defi nes how geometry is drawn to
the screen. Transformation functions such as translate() alter the numbers in this
matrix and cause the geometry to draw differently. In the previous examples, we saw
how transformations accumulate as the program runs. The pushMatrix() function
records the current state of all transformations so that a program can return to it later.
To return to the previous state, use popMatrix().
 Think of each matrix as a sheet of paper with the current list of transformations
(translate, rotate, scale) written on the surface. When a function such as translate()
is run, it is added to the paper. To save the current matrix for later use, add a new sheet
of paper to the top of the pile and copy the information from the sheet below. Any new
changes are made to the top sheet of paper, preserving the numbers on the sheet(s)
below. To return to a previous coordinate matrix, simply remove and discard the top
sheet of paper to reveal the saved transformations below:

This is essentially how coordinate matrices are updated and stored, but more technical
terms are used. Adding a sheet of paper is pushing, removing a sheet is popping and
the pile of pages is called a stack. The pushMatrix() function is used to add a new
coordinate matrix to the stack, and popMatrix() is used to remove one from the
stack. Each pushMatrix() must have a corresponding popMatrix(). The function
pushMatrix() cannot be used without popMatrix() and vice versa.
 Compare the two examples below. Both draw the same rectangles, but with
different results. The second example employs pushMatrix() and popMatrix() to
isolate the effects of the translate() function to apply only to the fi rst rectangle.
Because the other rectangle is drawn after the call to popMatrix() it draws from its
x-coordinate without being affected by the translation.

pushMatrix() popMatrix()

16-03

Reas_03_101-172.indd Sec2:134Reas_03_101-172.indd Sec2:134 5/23/07 1:33:44 PM5/23/07 1:33:44 PM

135 Transform 1: Translate, Matrices

 translate(33, 0); // Shift 33 pixels right

 rect(0, 20, 66, 30);

 rect(0, 50, 66, 30);

 pushMatrix();

 translate(33, 0); // Shift 33 pixels right

 rect(0, 20, 66, 30);

 popMatrix(); // Remove the shift

 // This shape is not affected by translate() because

 // the transformation is isolated between the pushMatrix()

 // and popMatrix()

 rect(0, 50, 66, 30);

Embedding the pushMatrix() and popMatrix() functions can further control their
range. In the following example, the fi rst rectangle is affected by the fi rst translation, the
second rectangle is affected by the fi rst and second translations, and the third rectangle
is only affected by the fi rst translation because the second translation is isolated with
a pushMatrix() and popMatrix() pair. The fourth rectangle is not affected by any
of the translations because the popMatrix() on the second-to-last line cancels the
pushMatrix() on the fi rst line.

 pushMatrix();

 translate(20, 0);

 rect(0, 10, 70, 20); // Draws at (20, 30)

 pushMatrix();

 translate(30, 0);

 rect(0, 30, 70, 20); // Draws at (50, 30)

 popMatrix();

 rect(0, 50, 70, 20); // Draws at (20, 50)

 popMatrix();

 rect(0, 70, 70, 20); // Draws at (0, 70)

The transformation functions for rotating and scaling are introduced in
Transform 2 (p. 137).

 Exercises
1. Use translate() to reposition a shape.
2. Use multiple translations to reposition a series of shapes.
3. Use pushMatrix() and popMatrix() to rearrange the composition from exercise 2.

16-04

16-05

16-06

Reas_03_101-172.indd Sec2:135Reas_03_101-172.indd Sec2:135 5/23/07 1:33:44 PM5/23/07 1:33:44 PM

Reas_03_101-172.indd Sec2:136Reas_03_101-172.indd Sec2:136 5/23/07 1:40:53 PM5/23/07 1:40:53 PM

137

Transform 2: Rotate, Scale
This unit introduces the transformation functions for rotating and scaling and explains
how to combine the functions to control the effect.

Syntax introduced:
rotate(), scale()

The transformation functions are powerful ways to modify the geometry displayed to
the screen. It’s simple to use one, but combining them requires a greater understanding
of how they work. The order in which transformation functions are run can radically
change the way they affect the coordinates.

Rotation, Scaling

The rotate() function rotates the coordinate system so that shapes can be drawn
to the screen at an angle. It has one parameter that sets the amount of the rotation as
an angle:

 rotate(angle)

The rotate function assumes that the angle is specifi ed in units of radians (p. 117).
Shapes are always rotated around their position relative to the origin (0,0), and positive
numbers rotate them in a clockwise direction.
 As with all transformations, the effects of rotation are cumulative. If there is a
rotation of π/4 radians and another of π/4 radians, objects drawn afterward will be
rotated π/2 radians. The following examples show the most basic use of the rotate()
function.

 smooth();

 rect(55, 0, 30, 45);

 rotate(PI/8);

 rect(55, 0, 30, 45);

 smooth();

 rect(10, 60, 70, 20);

 rotate(-PI/16);

 rect(10, 60, 70, 20);

 rotate(-PI/8);

 rect(10, 60, 70, 20);

17-01

17-02

Reas_03_101-172.indd Sec2:137Reas_03_101-172.indd Sec2:137 5/23/07 1:40:03 PM5/23/07 1:40:03 PM

138 Transform 2: Rotate, Scale

These examples make it clear that rotating objects around the origin has limitations. To
rotate an object at a different position, it’s necessary to use translate() followed by
rotate(). This is explained in the next section, “Combining transformations.”
 The scale() function magnifi es the coordinate system so that shapes are drawn
larger. It has one or two parameters to set the amount of increase or decrease:

 scale(size)

 scale(xsize, ysize)

The version with one parameter scales shapes in all dimensions, and the version with
two parameters can scale the x-dimension separately from the y-dimension. The
parameters to scale are defi ned in terms of percentages expressed as decimals. Examples
of decimal percentages are 2.0 for 200%, 1.5 for 150%, and 0.5 for 50%. The following
examples show the most basic use of the scale() function.

 smooth();

 ellipse(32, 32, 30, 30);

 scale(1.8);

 ellipse(32, 32, 30, 30);

 smooth();

 ellipse(32, 32, 30, 30);

 scale(2.8, 1.8);

 ellipse(32, 32, 30, 30);

As the previous examples show, the stroke weight is also affected by scale(). To keep
the same stroke weight and scale a shape, divide the parameter of the strokeWeight()
function by the scale value.

 float s = 1.8;

 smooth();

 ellipse(32, 32, 30, 30);

 scale(s);

 strokeWeight(1.0 / s);

 ellipse(32, 32, 30, 30);

As with translate() and rotate(), the effects of each scale() accumulate each
time the function is run.

 rect(10, 20, 70, 20);

 scale(1.7);

 rect(10, 20, 70, 20);

 scale(1.7);

 rect(10, 20, 70, 20);

17-03

17-04

17-05

17-06

Reas_03_101-172.indd Sec2:138Reas_03_101-172.indd Sec2:138 5/23/07 1:33:46 PM5/23/07 1:33:46 PM

139 Transform 2: Rotate, Scale

Combining transformations

When shapes are drawn to the screen, the transform(), rotate(), and scale()
functions affect them in relation to the origin. For example, rotating a rectangle at
coordinate (50,20) will cause the shape to orbit around the origin and not around its
center or corner as you might expect:

To rotate this shape around its upper-left corner, you must place that point at the
coordinate (0,0). A translation is used to put the shape into the desired position in
relation to the global coordinates. When the rotate function is run, the shape now orbits
around its upper-left corner, the origin of its local coordinate system:

There are two ways to think about transformations. One method is to view the
coordinate system as modifi ed and the coordinates for shapes as converted to the new
coordinate system. For example, if the coordinate system is rotated 30°, the coordinates
of any shape drawn to the screen are converted into this modifi ed system and displayed
with a 30° tilt. The other school of thought applies the transformations directly to the
shapes. In this same example, the shape itself is perceived to be rotated 30°.
 The order in which transformations are made affects the results. The following two
examples have the same lines of code, but the order of the translate() and rotate()
functions is reversed :

 translate(width/2, height/2);

 rotate(PI/8);

 rect(-25, -25, 50, 50);

 rotate(PI/8);

 translate(width/2, height/2);

 rect(-25, -25, 50, 50);

translate(50,20)rect(0,0,40,20) rotate(PI/12)

rect(50,20,40,20) rotate(PI/12)

17-07

17-08

Reas_03_101-172.indd Sec2:139Reas_03_101-172.indd Sec2:139 5/23/07 1:33:46 PM5/23/07 1:33:46 PM

140 Transform 2: Rotate, Scale

Transformation combinations
The order in which transformations occur in a program affects how they combine. For example, a
rotate() after a translate() will have a different effect than the reverse. These diagrams present two
ways to think about the transformations in codes 17-06 and 17-07.

Rotate Draw rectangleTranslate

Translate

Code 17-07 analyzed from two perspectives

Rotate Draw rectangleTranslate

RotateDraw rectangle

Translate RotateDraw rectangle

Coordinate view
Reading the code from
top to bottom

Shape view
Reading the code from
bottom to top

Code 17-08 analyzed from two perspectives

Coordinate view
Reading the code from
top to bottom

Shape view
Reading the code from
bottom to top

Reas_03_101-172.indd Sec2:140Reas_03_101-172.indd Sec2:140 5/23/07 1:33:47 PM5/23/07 1:33:47 PM

141 Transform 2: Rotate, Scale

These simple examples demonstrate the potential in combining transformations but
also make clear that transformations require thought and planning. More combined
examples follow:

 translate(10, 60);

 rect(0, 0, 70, 20);

 rotate(-PI/12);

 rect(0, 0, 70, 20);

 rotate(-PI/6);

 rect(0, 0, 70, 20);

 translate(45, 60);

 rect(-35, -5, 70, 10);

 rotate(-PI/8);

 rect(-35, -5, 70, 10);

 rotate(-PI/8);

 rect(-35, -5, 70, 10);

 noFill();

 translate(10, 20);

 rect(0, 0, 20, 10);

 scale(2.2);

 rect(0, 0, 20, 10);

 scale(2.2);

 rect(0, 0, 20, 10);

 noFill();

 translate(50, 30);

 rect(-10, 5, 20, 10);

 scale(2.5);

 rect(-10, 5, 20, 10);

The effects of the transformation functions accumulate throughout the program, and
these effects can be magnifi ed with a for structure.

 background(0);

 smooth();

 stroke(255, 120);

 translate(66, 33); // Set initial offset

 for (int i = 0; i < 18; i++) { // 18 repetitions

 strokeWeight(i); // Increase stroke weight

 rotate(PI/12); // Accumulate the rotation

 line(0, 0, 55, 0);

 }

17-09

17-10

17-11

17-12

17-13

Reas_03_101-172.indd Sec2:141Reas_03_101-172.indd Sec2:141 5/23/07 1:33:48 PM5/23/07 1:33:48 PM

142 Transform 2: Rotate, Scale

 background(0);

 smooth();

 noStroke();

 fill(255, 48);

 translate(33, 66); // Set initial offset

 for (int i = 0; i < 12; i++) { // 12 repetitions

 scale(1.2); // Accumulate the scaling

 ellipse(4, 2, 20, 20);

 }

Working with these examples will be more helpful than reading the explanation over
and over. Try these examples inside Processing and make modifi cations to the numbers
used and the sequence of translate, rotate, and scale to develop a sense of how these
functions work.

New coordinates

The default position of the coordinate origin (0,0) is the upper-left corner of the display
window, the x-coordinate numbers increase to the right, the y-coordinates increase
from the top, and each coordinate maps directly to a pixel position. The transformation
functions can change these defaults to modify the coordinate system. The following
examples move the origin to the center and lower-left corner of the display window and
modify the scale.

 // Shift the origin (0,0) to the center

 size(100, 100);

 translate(width/2, height/2);

 line(-width/2, 0, width/2, 0); // Draw x-axis

 line(0, -height/2, 0, height/2); // Draw y-axis

 smooth();

 noStroke();

 fill(255, 204);

 ellipse(0, 0, 45, 45); // Draw at the origin

 ellipse(-width/2, height/2, 45, 45);

 ellipse(width/2, -height/2, 45, 45);

The translate() and scale() functions can combine to change the range of values.
In the following example, the right edge of the screen is mapped to the x-coordinate
of 1.0, the left edge to the x-coordinate -1.0, the top edge to the y-coordinate 1.0, and
the bottom edge to the y-coordinate -1.0. This system will always scale to fi t the entire
display window. Run this program, but change the parameters to size() to see it work.

17-14

17-15

Reas_03_101-172.indd Sec2:142Reas_03_101-172.indd Sec2:142 5/23/07 1:33:48 PM5/23/07 1:33:48 PM

143 Transform 2: Rotate, Scale

 // Shift the origin (0,0) to the center

 // and resizes the coordinate system

 size(100, 100);

 scale(width/2, height/2);

 translate(1.0, 1.0);

 strokeWeight(1.0/width);

 line(-1, 0, 1, 0); // Draw x-axis

 line(0, -1, 0, 1); // Draw y-axis

 smooth();

 noStroke();

 fill(255, 204);

 ellipse(0, 0, 0.9, 0.9); // Draw at the origin

 ellipse(-1.0, 1.0, 0.9, 0.9);

 ellipse(1.0, -1.0, 0.9, 0.9);

The translate() and scale() functions can be combined to put the origin in the
lower-left corner of the screen. This is the coordinate system used by Adobe Illustrator
and PostScript. Scaling the y-axis by -1 causes the y-coordinates to increment in
the opposite direction. This can be useful when converting a program written using
this coordinate system into Processing, rather than converting the y-coordinate of
every point.

 // Shift the origin (0,0) to the lower-left corner

 size(100, 100);

 translate(0, height);

 scale(1.0, -1.0);

 line(0, 1, width, 1); // Draw x-axis

 line(0, 1, 0, height); // Draw y-axis

 smooth();

 noStroke();

 fill(255, 204);

 ellipse(0, 0, 45, 45); // Draw at the origin

 ellipse(width/2, height/2, 45, 45);

 ellipse(width, height, 45, 45);

 Exercises
1. Use rotate() to change the orientation of a shape.
2. Use scale() with a for structure to scale a shape multiple times.
3. Combine translate() and rotate() to rotate a shape around its own center.

17-16

17-17

Reas_03_101-172.indd Sec2:143Reas_03_101-172.indd Sec2:143 5/23/07 1:33:48 PM5/23/07 1:33:48 PM

Reas_03_101-172.indd Sec2:144Reas_03_101-172.indd Sec2:144 5/23/07 1:33:49 PM5/23/07 1:33:49 PM

145

Development 1: Sketching, Techniques
This unit discusses the idea of sketching code and the iterative development process.

There are similarities between learning a programming language and learning a new
spoken language. Initially, one learns basic elements of a spoken language—such as
simple words and grammar rules—and mimics short phrases. Learning to communicate
ideas and express emotions within the language takes more time. Similarly, the fi rst
step in computer programming is to understand the basic elements such as comments,
variables, and functions. The next step is to learn to read and modify simple example
programs. Later, one begins to write programs from scratch. The most interesting and
diffi cult stage of learning to program comes later, as one gains the ability to put the
language elements together to express ideas about form, motion, and behavior. Like
learning a foreign language, becoming fl uent in a programming language can take years.

Sketching software

Sketching ranges from informal exploration to focused refi nement. It is used to create
many variations within a short period of time, or to develop a specifi c idea. Sketching
forces the defi nition of vague ideas by making them physical. Sketches are powerful
communication tools—they can get ideas out of one’s head and into a format that can
be better understood by others.
 It is important to work out ideas on paper before investing time in writing code.
Paper and pencil allow for fast iteration in the early stages of a project. The most
important aspect of programming is fi guring out what will be created and how it will
function, so working out these ideas away from a computer keeps the focus on an idea,
rather than on its implementation.
 A good paper sketch for software will include a series of images that demonstrate
how the narrative structure of the piece works, much like an animator’s storyboard. In
addition to images that will appear on screen, sketches often contain diagrams of the
program’s fl ow, data elements, and notation for showing how forms will move and
interact. Programs can also be planned using combinations of image mock-ups, formal
schematics, and text descriptions.
 After refi ned ideas reach a point where working on paper is no longer useful,
code can continue the development. The fi rst step in creating code is a continuation
of the sketching process. Write short pieces of code independently before worrying
about the structure of the larger program. Writing small, focused programs makes a
developer better at writing code when it matters most: when working on a more refi ned
implementation.

Reas_03_101-172.indd Sec2:145Reas_03_101-172.indd Sec2:145 5/23/07 1:33:53 PM5/23/07 1:33:53 PM

146 Development 1: Sketching, Techniques

Processing programs are called sketches to emphasize this method of working. The
Processing sketchbook is a way of storing and organizing programs. Code sketches can be
reviewed and developed incrementally like drawings in a paper sketchbook. Ideas that
fl ash by while walking or just after waking up can be quickly made into code and stored
for future use. The Processing environment encourages this type of writing because one
need only press the New button in the toolbar to start a new sketch.
 Some programming languages encourage a sketching approach, and others make
it diffi cult. Scripting languages, such as Perl or Python, are designed to encourage rapid
development at the expense of running speed and control. Processing is not a scripting
language, but is designed to “feel” like a scripting language while providing the same
capabilities as a more complete language like Java. This topic is discussed in more depth
in Appendix F (p. 679).

Programming techniques

There are as many ways to write programs as there are people who write software. Some
common strategies for creating programs include modifi cation, augmentation, collage,
and writing code from scratch. People learning to code often expect most programs to
be written from scratch, but that’s rarely the case, particularly for the style of work built
with Processing. Learning to read and modify code helps programmers increase their
skills. Even advanced programmers work from others’ examples when learning new
techniques.

Modifi cation
Changing the values of variables in existing programs is a good way to explore code.
Programs can be modifi ed by trial and error or more deliberately. One way to start
understanding a program is to change slightly the value of one variable and then run
the code to see the result. If there is no obvious difference, change the value again.
Making the correlation between a variable and a change in the way a program runs
is a good fi rst step to understanding how it works. Disabling lines of code by placing
them inside a /* and */ comment block (called “commenting out”) is another way
to decrypt a program. A little understanding of the way a program is structured can
facilitate logical guesses about what different lines of code are doing. These modifi cation
techniques aid in learning new skills or parsing an example. Making small changes to
an existing program encourages exploration and getting a feel for the code.

Augmentation
Augmentation uses existing code as a base for further exploration. It is similar to but
more ambitious than modifi cation. Generic program examples can serve as a foundation
for longer, more specifi c programs. An example that draws a Bézier curve can be used as
a base for drawing a series of curves (as shown in Shape 2, p. 69). A program that displays
a photograph can form the basis of a photo montage application. Sample programs

Reas_03_101-172.indd Sec2:146Reas_03_101-172.indd Sec2:146 5/23/07 1:33:53 PM5/23/07 1:33:53 PM

147 Development 1: Sketching, Techniques

provide a concise reminder of syntax. The spartan programs presented in this
book provide a broad base for making enhancements.

Collage
The collage technique involves cutting and pasting elements of different programs
together to create a new program. It’s analogous to creating music by sampling or
making a visual collage from newspaper and magazine clippings. In order to avoid
errors, combine code carefully by copying a few lines of code at a time and running
the program to make sure it’s always working. Copying large portions of code can
introduce a number of simultaneous errors. Mindlessly copying and pasting code can
create “Frankenstein” code that’s diffi cult to debug. As an individual’s knowledge of
programming increases, using this technique becomes easier, and common problems
can be avoided, such as adding multiple copies of the same method, like draw()
or setup(), to the code.

Coding from scratch
Rarely do programmers write a complete program entirely from scratch. At the
minimum, most people start with a template. A template is an outline with code
infrastructure common to many programs. Sometimes it’s not possible to fi nd a related
example or appropriate template and it’s necessary to start with a blank page. In this
case, comments are a great way to start building a program. Comments can be used
to build an outline of the program’s intention, logic, and fl ow. After this structure has
been defi ned, lines of code can be slowly added and run in an attempt to realize those
decisions.

Regardless of the technique used for programming, writing a few lines of code or
making only a few changes at a time is a good tactic. Entering many lines of untested
code before running the program increases the potential for multiple errors. The more
errors in a program, the more diffi cult they become to fi nd. Running a growing program
piece by piece reduces the chance for multiple errors. As your comfort with code and
your skills increase, it becomes possible to make more modifi cations between tests.

Reas_03_101-172.indd Sec2:147Reas_03_101-172.indd Sec2:147 5/23/07 1:33:53 PM5/23/07 1:33:53 PM

Reas_03_101-172.indd Sec2:148Reas_03_101-172.indd Sec2:148 5/23/07 1:33:54 PM5/23/07 1:33:54 PM

149

Synthesis 1: Form and Code
This unit presents examples of synthesizing concepts from Structure 1 though Transform 2.

The previous units introduced concepts and techniques including coordinates,
drawing with vertices, variables, iteration, conditionals, trigonometry, and
transformations. Understanding each of these in isolation is the fi rst step toward
learning how to program. Learning how to combine these elements is the second step.
There are many ways to combine the components of every programming language for
purposes of communication and expression. This programming skill is best acquired
through writing more ambitious software and reading more complex programs
written by others. This unit introduces four new programs that push beyond those on
the previous pages.
 Artists and designers throughout the twentieth century practiced the ideas
and visual styles currently associated with software culture, long before personal
computers became a common tool. The aesthetic legacies of the Bauhaus, art deco,
modernist architecture, and op art movements retain a strong voice in contemporary
culture, while new forms have emerged through software explorations within the
scientifi c and artistic communities. The programs in this unit reference images from
the last hundred years; sampling from Dadaist collage, optical paintings, a twenty-
year-old software program, and mathematics.

The software featured in this unit is longer than the brief examples given in this book. It’s not practical to print it
on these pages, but the code is included in the Processing code download at www.processing.org/learning.

Reas_03_101-172.indd Sec2:149Reas_03_101-172.indd Sec2:149 5/23/07 1:33:54 PM5/23/07 1:33:54 PM

150 Synthesis 1: Form and Code

Collage Engine. Reacting to the horror of World War I, European artists and poets within
the Dada cultural movement produced works that were deliberately irrational and absurd
and that rejected the current standards of art. The poet Tristan Tzara devised a technique
for writing that involved taking text from the newspaper, separating the individual words,
and putting them back together in random order.
 The images shown here were produced using a similar technique with photographs
from the fi rst section of The New York Times of 9 June 2006. The pictures were cut, scanned,
and then repositioned randomly to produce these collages.

Reas_03_101-172.indd Sec2:150Reas_03_101-172.indd Sec2:150 5/23/07 1:42:30 PM5/23/07 1:42:30 PM

151 Synthesis 1: Form and Code

Riley Waves. These images were infl uenced by the paintings of Bridget Riley, a British
artist who has exhibited her work since the mid-1960s. Riley’s optically vibrant works
often have a strong emotional and visceral effect on the viewer. She works exclusively
with simple geometric shapes such as curves and lines and constructs visual vibrations
through repetition. Because each of the waves in these images transitions from thick
to thin, only the beginShape() and endShape() functions could create them. Like
code 14-09 (p. 122), each wave is comprised of a sequence of triangles drawn using the
TRIANGLE_STRIP parameter.

Reas_03_101-172.indd Sec2:151Reas_03_101-172.indd Sec2:151 5/23/07 1:42:02 PM5/23/07 1:42:02 PM

152 Synthesis 1: Form and Code

Wilson Grids. In his 1985 book Drawing with Computers, the artist Mark Wilson surveys
the technology of that era and presents many examples of code for drawing to pen
plotters and screens. These images were created from code converted from Wilson’s
programs (written in the BASIC language) to Processing. They utilize the embedded
for technique introduced in code 6-07 (p. 65).

Reas_03_101-172.indd Sec2:152Reas_03_101-172.indd Sec2:152 5/23/07 1:43:21 PM5/23/07 1:43:21 PM

153 Synthesis 1: Form and Code

Mandelbrot Set. A fractal is a shape that appears similar at different scales. Examples
of fractals in nature include clouds, mountains, and the network of blood vessels.
Fractal is a term coined by the mathematician Benoit Mandelbrot, who also devised the
Mandelbrot set, an equation that defi nes a fractal image. The Mandelbrot set left the
confi nes of the mathematics community and entered into popular culture in the 1980s
through the popularization of fractal images in books and magazines. These images of
the Mandelbrot set were created by changing the scale to render the equation as pixels.
The gray value for each pixel of the display window is determined through the equation.

Reas_03_101-172.indd Sec2:153Reas_03_101-172.indd Sec2:153 5/23/07 1:43:51 PM5/23/07 1:43:51 PM

Detail of Substrate, 2004. Image courtesy of Jared Tarbell.

Reas_03_101-172.indd Sec2:154Reas_03_101-172.indd Sec2:154 5/23/07 2:14:44 PM5/23/07 2:14:44 PM

155

Interviews 1: Print

 Jared Tarbell. Fractal.Invaders, Substrate
 Martin Wattenberg. Shape of Song
 James Paterson. The Objectivity Engine
 LettError. RandomFont Beowolf

Reas_03_101-172.indd Sec2:155Reas_03_101-172.indd Sec2:155 5/23/07 2:14:19 PM5/23/07 2:14:19 PM

Reas_03_101-172.indd Sec2:156Reas_03_101-172.indd Sec2:156 5/23/07 2:15:43 PM5/23/07 2:15:43 PM

157 Interviews 1: Print

Fractal.Invaders, Substrate (Interview with Jared Tarbell)

 Creator Jared Tarbell
 Year 2004
 Medium Software, Prints
 Software Flash, Processing
 URL www.complexification.net

 What are Fractal.Invaders and Substrate?
 Fractal.Invaders and Substrate are unique programs that both generate space-filling
patterns on a two-dimensional surface. Each uses simplified algorithmic processes to render
a more complex whole.
 Fractal.Invaders begins with a rectangular region and recursively fills it with little
“invader” objects. Each invader is a combination of black squares arranged in a 5 * 5 grid
generated at random during runtime. The only rule of construction requires that the left side
of the invader be a mirror copy of the right side. This keeps them laterally symmetric, which
endows them with a special attractiveness to the human eye.
 There are a total of 32,768 (215) possible invaders. The magnitude of 15 comes from the
product of 3 columns and 5 rows (the last 2 columns of the grid are ignored since they are the
same as the first 2). The 2 comes from the fact that each space in the grid can be either black
or white.
 A small bit of interactivity allows each invader to be clicked. Clicking an invader destroys it,
although the empty space left behind is quickly filled with smaller invaders. In this way, the user
is ultimately doomed.
 Substrate begins similarly with an empty rectangular region. It has been compared
to crystal formation and the emergent patterns of urban landscapes. A single line (known
internally as a “crack” since the algorithm was inspired by sunbaked mud cracks) begins
drawing itself from some random point in some random direction. The line continues to draw
itself until it either (a) hits the edge of the screen or (b) hits another line, at which point it stops
and two more lines begin. The one simple rule used in the creation of new lines is that they
begin at tangents to existing lines. This process is repeated until there are too many lines to keep
track of or the program is stopped.
 Before writing the program, I only had a vague idea of what it might look like. It wasn’t
until the first couple of bug-free executions that I realized something incredible was happening.
The resulting form was much more complex than the originating algorithm. This particular
quality of software is what keeps me interested.
 Interesting effects can be created by introducing small variations in the way the first couple
of lines are drawn. One of my favorite initial conditions is the creation of three lines, each in
its own localized space with a direction that varies from the others by about 30 degrees. After
growing for a short time into coherent lattices, they eventually crash into each other, creating
an affluence of odd shapes and unexpected mazes.
 The watercolor quality of the rendering is achieved by placing large numbers of mostly
transparent pixels perpendicular to each line’s growth. The trick is to deposit precisely the same Su

bs
tr

at
e,

20
04

. I
m

ag
e

co
ur

te
sy

 o
f t

he
 a

rt
is

t.

Reas_03_101-172.indd Sec2:157Reas_03_101-172.indd Sec2:157 5/23/07 2:15:20 PM5/23/07 2:15:20 PM

158 Interviews 1: Print

number of pixels regardless of the length of the area being filled. This produces an interesting
density modulation across an even mass of pixels.
 Why did you create this software?
 For me, one of the most enjoyable subjects in computer science is combination. I ask myself
a question like, “Given some rules and a few simple objects, how many possible ways can they
be combined?” Seldom can I answer this using thought alone, mainly because the complexity
of even just a few elements is outside the realm of my imagination. Instead, I write computer
programs to solve it for me. Fractal.Invaders is definitely one of these questions, and is answered
completely with the rendering of every single invader. Substrate asks a similar question but with
results that, although beautiful, are a little less complete.
 What software tools were used?
 For Fractal.Invaders, I used a combination of Flash and custom software to create and
capture the invaders, respectively. In Flash, all work was done using ActionScript. A single
symbolic element (black square) exists in the library. Code takes this square and duplicates
it hundreds of thousands of times. The entire generative process takes about five minutes
to complete, depending on the size of the region to be filled and the speed of the execution.
Capturing a high-resolution image of the result is accomplished with a program that scales the
Shockwave Flash (SWF) file very large and saves the screen image out to a file.
 Substrate was created entirely in Processing. Processing was particularly well suited for this
as it excels at drawing, especially when dropping millions of deep-color pixels. Processing can
also save out extremely large graphic images in an automated fashion. Oftentimes I will run a
Processing project overnight. In the morning I awake to a vast collection of unique images, the
best of which are archived as print editions.
 Why did you use these tools?
 I use Flash because I am comfortable working within it. I use Processing because it enables
me to do things Flash simply cannot. Both environments allow me to take a program from
concept to completion in a number of hours. Complex visual logic can be built up without the
bulky overhead required in more traditional graphic programming languages.
 Flash excels at rendering very high resolution images nicely, displaying native vector
objects with a high degree of precision and full antialiasing. Processing gives me the
computational speed to increase the number of objects in the system by a magnitude of 20
or more. Both programs allow me to produce work that is capable of being viewed by a large
number of people worldwide.
 Why do you choose to work with software?
 With software, anything that can be imagined can be built. Software has a mysterious,
undefined border. Programming is truly a process of creating something from nothing. I enjoy
most John Maeda’s perspective: “While engaged in the deepest trance of coding, all one needs to
wish for is any kind of numerical or symbolic resource, and in a flash of lightning it is suddenly
there, at your disposal.”

Fractal.Invaders, 2004. Image courtesy of the artist.

Reas_03_101-172.indd Sec2:158Reas_03_101-172.indd Sec2:158 5/23/07 1:34:02 PM5/23/07 1:34:02 PM

159 Interviews 1: Print

Reas_03_101-172.indd Sec2:159Reas_03_101-172.indd Sec2:159 5/23/07 1:34:04 PM5/23/07 1:34:04 PM

Reas_03_101-172.indd Sec2:160Reas_03_101-172.indd Sec2:160 5/23/07 2:17:17 PM5/23/07 2:17:17 PM

161 Interviews 1: Print

Shape of Song (Interview with Martin Wattenberg)

 Creator Martin Wattenberg
 Year 2002
 Medium Software, Prints
 Software Java
 URL www.turbulence.org/Works/song

 What is Shape of Song?
 The Shape of Song is an attempt to answer the seemingly paradoxical question “What
does music look like?” The custom software in this work draws musical patterns in the form of
translucent arches, allowing viewers to literally see the shape of a composition.
 One of the satisfying aspects of the visualization, to me, is that different musical
styles translate to characteristic, distinct visual styles. Folk songs yield simple, repetitive
arrangements. Classical pieces have an almost mathematically precise visual structure. Jazz
translates to my favorite diagrams, for they often start out with extremely regular patterns and
then devolve into something close to chaos.
 The work itself has existed in many different forms. It began as a program that I could
only run myself. Later I turned it into a Web-based project that let viewers upload their own
music. Watching people upload works was fascinating: viewers often tried “extreme” music (the
most atonal, the noisiest, the silliest top-40 tunes) to stretch the visualization. Many people are
startled when they look at visualizations of “low-culture” music, such as a Led Zeppelin song,
because the diagrams are so complex. So the artwork is a good anti-snobbery machine.
 Finally, I created prints of some of my favorite diagrams. Most of my work has been purely
screen-based, so it was a bit of adventure to work on paper. The level of detail provided by print
is wonderful. To see all the different scales of structure at once is beautiful, I think.
 I’m currently working on a more dynamic version that will include temporal aspects.
My goal is to weave together more closely the spatial rhythms with the actual rhythm of the
underlying music.
 Why did you create Shape of Song?
 This project was a personal exploration of the nature of music, balance, and the translation
between eye and ear. Music visualization has been a subject of interest for centuries, which is
one of the appeals of working on it: you have the sense that you are part of history.
 I wanted to understand some of the symmetries found in music. Much of music
visualization is aimed at literal translations of notes and rhythms into color and animation.
Something more abstract appealed to me, and I pursued a representation of the overall musical
form instead.
 Although the images created in The Shape of Song are far from a literal translation of the
music, the arc-based diagrams came closer than anything else to expressing the mystery and
beauty I feel when listening to the underlying compositions.

Vi
su

al
iz

at
io

n
of

 V
iv

al
di

’s
Co

nc
er

to
 N

o.
 3

in
 F

 m
aj

or
, O

p.
 8

, R
V

29
3,

“L
’a

ut
un

no
.”

Im
ag

e
co

ur
te

sy
 o

f t
he

 a
rt

is
t.

Reas_03_101-172.indd Sec2:161Reas_03_101-172.indd Sec2:161 5/23/07 2:16:41 PM5/23/07 2:16:41 PM

162 Interviews 1: Print

 Why did you write your own software tools?
 I had to; they didn’t exist yet!
A more nuanced answer includes the fact that I actually used a great deal of existing work
when writing the code. The method I used to analyze the music is a standard structure in
computer science known as a suffix tree. (Suffix trees work by turning sequences into trees and
are traditionally used for rapid searching of text. I am always happy when a piece of computer
science, designed for mundane purposes, turns out to be useful in an artwork.) During the course
of the project I also used a variety of libraries: some provided by Sun, the developers of the Java
programming language, for graphics; and some written by others for writing graphics files and
reading scores in the “MIDI” music format.
 The use of the MIDI format is a quirk of the piece: more common formats, such as MP3, are
harder for my algorithms to handle. (You can think of MIDI as analogous to vector graphics,
while MP3s are like JPEGs; if you’re trying to find simple patterns like squares or circles, it’s far
easier with a vector format!) At the time I first started working on the piece, MIDI files were
extremely common, but they are becoming more and more rare. That raises some questions
about the longevity of the piece, but perhaps by the time MIDI is obsolete someone will develop
a reliable algorithm for translating MP3s into musical scores.
 To sum up, while the goal of my code was original, most of the computer’s time is spent in
algorithms or code developed by others.
 Why do you choose to work with software?
 Software is the best way I’ve found to express myself. When I work in other media, the
results somehow always seem worse in reality than in my head. The software I create, however,
has a magical quality: it ends up being better than what I originally imagined.
 To put it more metaphorically: when I create art, I feel like I am in conversation with the
artwork. If I sketch or write, it’s like talking to a caustic debater, exposing all the flaws in my
thinking. Valuable, perhaps, but also discouraging! When I write programs, I have the opposite
feeling: that I am talking with a sympathetic and brilliant partner who helps me organize my
thoughts and points out connections I hadn’t seen myself.
 A second attraction of software art is that it is a new, growing field. There is a kind of
energy associated with beginnings that I love. Each new piece seems like it’s pointing out new
directions, and there’s a feeling that you’re in a group of settlers on a frontier. As with the
American frontier, some people settle down and found new cities, some people keep finding new
paths, and some discover gold mines.

Vi
su

al
iz

at
io

n
of

 V
iv

al
di

’s
Co

nc
er

to
 N

o.
 3

in
 F

 m
aj

or
, O

p.
 8

, R
V

29
3,

“L
’a

ut
un

no
.”

Im
ag

e
co

ur
te

sy
 o

f t
he

 a
rt

is
t.

Reas_03_101-172.indd Sec2:162Reas_03_101-172.indd Sec2:162 5/23/07 2:21:06 PM5/23/07 2:21:06 PM

163 Interviews 1: Print

Reas_03_101-172.indd Sec2:163Reas_03_101-172.indd Sec2:163 5/23/07 2:21:29 PM5/23/07 2:21:29 PM

164 Interviews 1: Print

D
et

ai
l o

f U
nt

itl
ed

 4
, 2

00
5.

Im
ag

e
co

ur
te

sy
 o

f t
he

 a
rt

is
t a

nd
 b

itf
or

m
s g

al
le

ry
, n

yc
.

Reas_03_101-172.indd Sec2:164Reas_03_101-172.indd Sec2:164 5/23/07 1:34:09 PM5/23/07 1:34:09 PM

165 Interviews 1: Print

The Objectivity Engine (Interview with James Paterson)

 Creator James Paterson
 Year 2000–present
 Medium Software, Prints
 Software Flash
 URL www.presstube.com

 What is The Objectivity Engine?
 The Objectivity Engine is a system that I developed to help me make composite images out
of my sketchbook drawings. The system has two parts: an ever-expanding library of sketchbook
drawings, and an arrangement program that pulls drawings from that library and manipulates
them to form the composite images. I have been working on the project since 2000.
 The process of drawing in a sketchbook is a lot like writing a diary for me: whatever is going
on in my life ends up in there one way or another. Sometimes I am creating work that I am
proud of and other times I might just be scratching down a reminder to buy more pita bread at
the supermarket or trying to figure out how much income tax I’m going to pay that year. The
drawing library includes all of it. I am not interested in only entering drawings that I like;
I include the good and the bad so that the contents reflect my life more naturally.
 The content library consists of about 4,000 sketchbook drawings right now but is always
growing as I continue to fill books. The drawings are entered chronologically, and looking at all
of them in this organized master library helps me to see where I am coming from and where
I am going. It is a bit like looking at the rings on a tree trunk. I can see how I was doing at one
point or another. I plan on continuing to expand this library as long as I can. Ideally I would like
to keep adding to it for the rest of my life.
 The arrangement program is a set of algorithms that are in charge of putting together
composites. It controls the amount of images used, the vintage of the images, the coloring
system, methods of distribution, the motion control system (when it is outputting animation),
the scale, rotation, speed, etc. It’s like casting a net into the history of my drawing over the past
five years. I never know what strange and potentially embarrassing combinations I will reel in.
Sometimes seeing the results gives me ideas for new drawings, sometimes I find a composition
that I may want to manipulate manually later, and occasionally the program will spit out a
composition that I am really happy with and can just save and use as is. A lot of the time it
produces complete crap!
 I am always adding new features to the arrangement program as I think of them, and
about once a year I rewrite the whole thing from scratch. I do this so that I remember how it all
works, and so that new components that I am adding as I go along can be properly integrated.
Just as I fancy the idea of continuing to add to the library of drawings for the rest of my life, I
also like the idea of adding to the capability of the arrangement system over a long period of
time and seeing where it leads me.

Reas_03_101-172.indd Sec2:165Reas_03_101-172.indd Sec2:165 5/23/07 1:34:11 PM5/23/07 1:34:11 PM

166 Interviews 1: Print

 Why did you create The Objectivity Engine?
 I have never been very good at putting disparate ideas and images together to form
larger, more coherent finished works, so I decided to create a system that would get me started
down this road. It is an assistant that helps me make decisions, and it does a lot of tedious and
repetitive work for me very quickly.
 What software tools were used?
 Photoshop was used to scan and clean up the sketchbook drawings. Streamline was then
used to convert the raster scans to vector format. The vector files were brought into Flash. Flash
was used to contain the drawing library, write the arrangement software, and export the results.
Director was used to export animated results. Photoshop, Illustrator, and After Effects were used
to put finishing touches on the raw exports and prep them for print and DVD.
 Why did you use these tools?
 They just seemed like the best tools I could find for each respective job. I used Flash/
ActionScript as my main platform because I have been using it for a long time and I use it to
create all of my other work. This way I can mix elements of this project with many other works
that have nothing to do with it and vice versa. Also, Flash is a vector-based environment, which
lends itself well to the aims of the project.
 Why do you choose to work with software?
 I just stumbled across Flash in 1997 and started playing with it and then never stopped. I
had been drawing for quite some time before that, and after a few years my drawing processes
merged with my software processes and the two have been pretty much inseparable ever since.

Untitled 3, 2005. Digital Lambda print. 40" * 60". Image courtesy of the artist and bitforms gallery, nyc.

Reas_03_101-172.indd Sec2:166Reas_03_101-172.indd Sec2:166 5/23/07 1:34:11 PM5/23/07 1:34:11 PM

167 Interviews 1: Print

Untitled 5, 2005. Digital Lambda print. 40" * 60". Image courtesy of the artist and bitforms gallery, nyc.

Untitled 10, 2005. Digital Lambda print. 40" * 60". Image courtesy of the artist and bitforms gallery, nyc.

Reas_03_101-172.indd Sec2:167Reas_03_101-172.indd Sec2:167 5/23/07 1:34:13 PM5/23/07 1:34:13 PM

Reas_03_101-172.indd Sec2:168Reas_03_101-172.indd Sec2:168 5/23/07 1:34:15 PM5/23/07 1:34:15 PM

169 Interviews 1: Print

RandomFont Beowolf (Interview with Erik van Blokland)

 Creators Just van Rossum and Erik van Blokland (LettError)
 Year 1990
 Medium Typeface
 Software PostScript Type 3 font
 URL www.letterror.com/foundry/beowolf

 What is RandomFont Beowolf?
 In 1989, after finishing the graphic and typographic design course at the Royal Academy of
Arts in The Hague, Netherlands, Just and I were both experimenting with PostScript, a powerful
programming language designed for graphics. The only machines we had access to that were
capable of executing PostScript programs were laser printers, so we went through a lot of paper.
We figured it should be possible to build a font with random functions applied to the letterforms
when it prints. We made a test font containing one randomizing square to prove the concept.
Later we used a typeface I had drawn in school, which after some iterations became Beowolf.
 A font in PostScript in its most basic form is a dictionary with some standard entries and
drawing instructions for each letter. Fonts like this were called “Type 3,” and as long as you
managed to get the file in the printer, the letters could use all the functionality of the PostScript
language. So that’s what we built. Another PostScript font format, “Type 1,” was more compact
and offered faster processing and hinting, but it was proprietary, encrypted and required
secret tools to generate. In the summer of 1990 Adobe published the specifications of Type 1 but
unfortunately the increased speed of printing with Type 1 fonts came at a price of a very limited
instruction set.
 Later we built “piggyback fonts,” which incorporated both Type 1 and Type 3 formats. Fonts
like this consisted of several Type 1 fonts and a special Type 3 font to contain logic to switch
glyphs and fonts while rendering a text. The fonts were all bundled together in a single file, then
the Macintosh printer driver would just download the whole thing, and all fonts would make it
to the printer. It was a wonderful hack.
 The demands of the graphic design workflow made it increasingly difficult to deploy Type
3 formats, and we stopped shipping them. We’ve always made a case for fonts with executable
code; typography is a complex field which can benefit from programming on a font level. But we
can’t expect the entire digital design industry to accommodate our whims.
 The current OpenType font format (developed by Adobe and Microsoft) actually contains
ways to define rules for contextual substitution1 and positioning of glyphs. Though nothing like
a fully featured programming language, it’s an improvement and fun to develop for. We have
an OpenType font with a decent simulation of a RandomFont, much like our piggyback fonts.
Visually it reconstructs the broken, edgy style Beowolf had, but conceptually these OpenType
Beowolves have very little to do with the original one.
 Why did you create RandomFont Beowolf?
 Curiosity. We were both trained as type designers, and we were interested in computers
and programming. At that time the fields of design and digital technology didn’t really
overlap. After the first versions we started thinking about the context and implications of Ra

nd
om

iz
ed

 B
eo

w
ol

f l
et

te
rs

 cr
ea

te
d

w
ith

 D
ra

w
Bo

t.
Im

ag
e

co
ur

te
sy

 o
f J

us
t v

an
 R

os
su

m
 a

nd
 E

ri
k

va
n

Bl
ok

la
nd

.

Reas_03_101-172.indd Sec2:169Reas_03_101-172.indd Sec2:169 5/23/07 1:34:25 PM5/23/07 1:34:25 PM

170 Interviews 1: Print

randomization. Beowolf became an example of what digital type could be: not that the random
aesthetic itself was so appealing, but it was proof that fonts were no longer physical objects
but instructions. It also showed us that code and design can merge into a single process, a
single object. Code has a major influence on design, and I think it is too important to leave it to
anonymous engineers.
 What software tools were used?
 The first PostScript tests were written in a text editor . Then we took simple PostScript Type
3 fonts generated by Ikarus M (the first version, written by Petr van Blokland) and edited those.
These fonts had simple, readable text instructions and absolute coordinates that were easy to
modify. Later on with some help from AltSys’s Jim Von Ehr we moved on to a more complex
variation of Type 3 PostScript, editing in ResEdit. The last incarnation of the RandomFonts was
piggybacking on a Type 1 font so that there would be some sort of (nonrandom) preview when
used in a layout program; then later in the printer the Type 3 randomizing version would kick in
and do the work. The piggyback fonts were also made with ResEdit.
 Why did you use these tools?
 Type design is a small field, so there aren’t many developers interested in writing tools.
AltSys wrote Fontographer, at the time the popular choice for editing fonts, but it didn’t allow
the things we had in mind. Petr van Blokland and David Berlow convinced Jim Von Ehr to give
them access to the Fontographer source code and Petr started experimenting with adding a
layer using awk, a programming language for processing text data. Just suggested using a new
programming language that his brother had invented called Python. Python and Fontographer
became RoboFog and gained a small but dedicated group of users. Python is fast to develop in,
which allows a regular iterative design process. After the first time you write a program you
know how it should have been done and you can afford to start over and do it again, improving
the understanding of the problem.
 When Mac OS X was released we couldn’t port RoboFog because the code base was so old.
The FontLab font development software had added Python scripting to their font editor, so we
started to work with that instead. We started reshaping their API into ours and this grew into
the RoboFab library, an object model and API built on top of FontLab’s font and glyph objects.
RoboFab now also has an implementation that works independently of FontLab.
 Why do you choose to work with software?
In any creative discipline, the tools influence the process and, indirectly, the results. We try to be
aware of this influence, and if it is something we don’t like we try to change it. Every application
makes certain things easy and others more difficult. This directs the average design project
towards the things that are easy, even though other ideas might be more relevant.
 Writing your own tools makes the ideas direct the development of software, rather than
the other way round. Writing code is also an attractive process in itself. Analyzing problems,
breaking them down into ideas that can be coded, and discovering alternative new ways to solve
known problems is more universal than just the original design task.

 Notes

1. Contextual substitution is the process by which letters are changed based on the letters around them. For

 instance, an f and i might be joined into a single glyph, a ligature that looks like fi.

Reas_03_101-172.indd Sec2:170Reas_03_101-172.indd Sec2:170 5/23/07 1:34:25 PM5/23/07 1:34:25 PM

171 Interviews 1: Print

Reas_03_101-172.indd Sec2:171Reas_03_101-172.indd Sec2:171 5/23/07 1:34:26 PM5/23/07 1:34:26 PM

Reas_03_101-172.indd Sec2:172Reas_03_101-172.indd Sec2:172 5/23/07 1:34:26 PM5/23/07 1:34:26 PM

173

Structure 2: Continuous
The unit introduces programs that run continuously and explains how to control
their speed.

Syntax introduced:
draw(), frameRate(), frameCount, setup(), noLoop()

All the programs in preceding units run their code once and the program stops.
Programs that animate or respond to live information must run continuously.
Continuously running programs can create animation or use the mouse and keyboard
for input.

Continuous evaluation

Programs that run continuously must include a draw() function. The code inside a
draw() block runs in a loop until the the stop button is pressed or the window is closed.
A program can have only one draw(). Each time the draw() function fi nishes, it draws
a new frame to the display window and then starts running the block again from the
fi rst line.
 By default, frames are drawn to the screen at 60 frames per second (fps). The
frameRate() function changes and controls the number of frames displayed each
second. The program will always attempt to run at the speed set by the parameter to the
frameRate() function, but sometimes the ambitions of the programmer exceed the
speed of the computer. The frameRate() function controls only the maximum frame
rate—it can not speed up a program that runs slowly because of equipment limitations.
 The frameCount variable always contains the number of frames displayed since
the program started. A program with draw() keeps displaying frames (1, 2, 3, 4, 5, . . .)
until it is stopped, the computer is shut down, or the power goes out.

// Prints each frame number to the console

void draw() {

 println(frameCount);

}

// Runs at around 4 fps, prints each frame number to the console

void draw() {

 frameRate(4);

 println(frameCount);

}

20-01

20-02

Reas_04_173-278.indd Sec3:173Reas_04_173-278.indd Sec3:173 5/23/07 2:23:28 PM5/23/07 2:23:28 PM

174 Structure 2: Continuous

Changing visual elements from frame to frame creates animation. For example,
changing the position of a line each frame will cause it to move:

 float y = 0.0;

 void draw() {

 frameRate(30);

 line(0, y, 100, y);

 y = y + 0.5;

 }

When this code runs, the variables are replaced with their current values and the
statements are run in this order:

 float y = 0.0

 frameRate(30)
Enter draw()

 line(0, 0.0, 100, 0.0)

 y = 0.5

 frameRate(30)
Enter draw() for the second time

 line(0, 0.5, 100, 0.5)

 y = 1.0

 frameRate(30)
Enter draw() for the third time

 line(0, 1.0, 100, 1.0)

 y = 1.5

 Etc...

The variable y must be declared outside draw() for this program to move the line each
frame. If the variable is declared inside draw(), it will be re-created each time the
draw() block is run and reassigned to the same value, placing the line in the same
position.
 The background of the display window does not refresh automatically, so lines will
simply accumulate. To clear the display window at each frame, insert a background()
function at the beginning of the draw() function. The background() function fi lls the
entire display window with the specifi ed color. It overwrites every pixel in the display
window each time it is run. If the background() is not placed at the top of draw(), it
will cover any element drawn earlier.

y=10

y=50

y=80

20-03

Reas_04_173-278.indd Sec3:174Reas_04_173-278.indd Sec3:174 5/23/07 2:23:29 PM5/23/07 2:23:29 PM

175 Structure 2: Continuous

 float y = 0.0;

 void draw() {

 frameRate(30);

 background(204);

 y = y + 0.5;

 line(0, y, 100, y);

 }

The variable that controls the line position can be used for other purposes. In the next
example, it’s also used to set the color of the background.

 float y = 0.0;

 void draw() {

 frameRate(30);

 background(y * 2.5);

 y = y + 0.5;

 line(0, y, 100, y);

 }

After a few seconds, the line moves off the bottom edge of the display window. An if
structure can reset the value of the variable so the line position is set back to the top:

 float y = 0.0;

 void draw() {

 frameRate(30);

 background(y * 2.5);

 y = y + 0.5;

 line(0, y, 100, y);

 if (y > 100) {

 y = 0;

 }

 }

20-04

20-05

20-06

y=10

y=46

y=84

y=20

y=49

y=88

y=30

y=88

y=19

Reas_04_173-278.indd Sec3:175Reas_04_173-278.indd Sec3:175 5/23/07 2:23:30 PM5/23/07 2:23:30 PM

176 Structure 2: Continuous

The area between { and }
is a block

Data type

Variable name

Assignment operator

Expression

Return value

Parameters

int y = 0;

void setup() {
 size(300, 300);
}

void draw() {
 line(0, y, 300, y);
 y = y + 4;
}

Statement terminator

Function

Anatomy of a program 2
Each program can have only one setup() and one draw(). When the program starts, the code
outside of setup() and draw() is run. Next, the code inside the setup() block is run once.
After that, the code inside the draw() block is run continuously until the program is stopped.
Because the variable y is declared outside of setup() and draw(), it’s a global variable and
can be accessed and assigned anywhere within the program.

Reas_04_173-278.indd Sec3:176Reas_04_173-278.indd Sec3:176 5/23/07 2:23:30 PM5/23/07 2:23:30 PM

177 Structure 2: Continuous

Controlling the flow

Some functions need to be run once, rather than every frame. The setup() function is
run before draw() so that functions like size() or loadImage() aren’t rerun on each
frame. When a program is run, the code outside setup() and draw() is handled fi rst,
then code inside setup() is run once, and fi nally the code inside draw() is run in a
continuous loop from top to bottom. In the following example, the size, antialiasing
setting, and fi ll value don’t change, so they are included in setup().

 float y = 0.0;

 void setup() {

 size(100, 100);

 smooth();

 fill(0);

 }

 void draw() {

 background(204);

 ellipse(50, y, 70, 70);

 y += 0.5;

 if (y > 150) {

 y = -50.0;

 }

 }

When this code runs, the variables are replaced with their current values and the
statements are run in this order:

 float y = 0.0

 size(100, 100)
Enter setup()

 smooth()

 fill(0)

 background(204)
Enter draw()

 ellipse(50, 0.0, 70, 70)

 y = 0.5

 background(204)
Enter draw() for the second time

 ellipse(50, 0.5, 70, 70)

 y = 1.0

 background(204)
Enter draw() for the third time

 ellipse(50, 1.0, 70, 70)

 y = 1.5

 Etc....

20-07y=67

y=108

y=12

Reas_04_173-278.indd Sec3:177Reas_04_173-278.indd Sec3:177 5/23/07 2:23:31 PM5/23/07 2:23:31 PM

178 Structure 2: Continuous

When the value of y becomes greater than 150, the code in the if structure block sets the
value to -50.
 Variables that change with each iteration of draw() must be declared outside of
both setup() and draw(). If the variable y in the preceding example were declared in
draw(), it would be reassigned to 0.0 each time. The only statements that should occur
outside setup() and draw() are variable declarations and assignments. Running
functions outside setup() and draw() will cause an error.
 If a program only draws one frame, it can be written entirely inside setup(). The
only difference between setup() and draw() is that setup() is run once before
draw() starts looping, therefore shapes drawn within setup() will appear in the
display window.

 void setup() {

 size(100, 100);

 smooth();

 fill(0);

 ellipse(50, 50, 66, 66);

 }

Using the noLoop() function stops draw() from looping and can be used as another
way to draw only one frame. This example is similar to the previous one, but runs the
code in setup() once and then runs the code in draw() only once because noLoop()
is called in setup().

 void setup() {

 size(100, 100);

 smooth();

 fill(0);

 noLoop();

 }

 void draw() {

 ellipse(50, 50, 66, 66);

 }

Variable scope

When setup() and draw() are added to a program, it becomes necessary to think
about where variables are declared and assigned. The location of a variable declaration
determines its scope—where it can be accessed within the program. The rule for
variable scope is stated simply: variables declared inside any block can be accessed only
inside their own block and inside any blocks enclosed within their block. Variables
declared at the base level of the program—the same level as setup() and draw()—

20-08

20-09

Reas_04_173-278.indd Sec3:178Reas_04_173-278.indd Sec3:178 5/23/07 2:23:32 PM5/23/07 2:23:32 PM

179 Structure 2: Continuous

can be accessed everywhere within the program. Variables declared within setup() can
be accessed only within the setup() block. Variables declared within draw() can be
accessed only within the draw() block. The scope of a variable declared within a block,
called a local variable, extends only to the end of the block.

int d = 51; // Variable d can be used everywhere

void setup() {

 size(100, 100);

 int val = d * 2; // Local variable val can only be used in setup()

 fill(val);

}

void draw() {

 int y = 60; // Local variable y can only be used in draw()

 line(0, y, d, y);

 y -= 25;

 line(0, y, d, y);

}

When a variable is created within a block, it is destroyed when the program leaves the
block. For example, if a new variable is created inside an if block, it can be used within
but cannot be accessed outside the block. If a new variable is used to iterate through a
for structure, it can be used within but cannot be accessed outside the block.

void draw() {

 int d = 80; // This variable can be used everywhere in draw()

 if (d > 50) {

 int x = 10; // This variable can be used only in this if block

 line(x, 40, x+d, 40);

 }

 line(0, 50, d, 50);

 line(x, 60, x+d, 60); // ERROR! x can't be read outside block

}

void draw() {

 for (int y = 20; y < 80; y += 6) { // The variable y can be used

 line(20, y, 50, y); // only within the for block

 }

 line(y, 0, y, 100); // ERROR! y can't be accessed outside for

}

20-10

20-11

20-12

Reas_04_173-278.indd Sec3:179Reas_04_173-278.indd Sec3:179 5/23/07 2:23:32 PM5/23/07 2:23:32 PM

180 Structure 2: Continuous

Variable scope makes it possible to have more than one variable in a program with the
same name. It’s common to use the same variable name for iterating over multiple for
structures in one program, but in general, having more than one variable with the same
name is not recommended. The following example demonstrates this potentially
confusing case.

 int d = 45; // Assign 45 to variable d

 void setup() {

 size(100, 100);

 int d = 90; // Assign 90 to local variable d

 rect(0, 0, 33, d); // Use local d with value 90

 }

 void draw() {

 rect(33, 0, 33, d); // Use d with value 45

 }

A variable inside a block with the same name as a variable outside the block is a
common mistake that can be confusing to debug.

 Exercises
1. Make a program run at four frames per second and display the current frame count to
 the console with println().
2. Move a shape from left to right across the screen. When it moves off the right edge,
 return it to the left.
3. Utilize noLoop() to make a program run its draw() only one time.

20-13

Reas_04_173-278.indd Sec3:180Reas_04_173-278.indd Sec3:180 5/23/07 2:23:33 PM5/23/07 2:23:33 PM

181

Structure 3: Functions
This unit introduces basic concepts and syntax for writing functions.

Syntax introduced:
void, return

A function is a self-contained programming module. You’ve been using the functions
included with Processing such as size(), line(), stroke(), and translate() to
write your programs, but it’s also possible to write your own functions that make a
program modular. Functions make redundant code more concise by extracting the
common elements and making them into code blocks that can be run many times
within the program. This makes the code easier to read and update and reduces the
chance of errors.
 Functions often have parameters to defi ne their actions. For example, the line()
function has four parameters that defi ne the position of the two points. Changing the
numbers used as parameters changes the position of the line. Functions can operate
differently depending on the number of parameters used. For example, a single
parameter to the fill() function defi nes a gray value, two parameters defi ne a gray
value with transparency, and three parameters defi ne an RGB color.
 A function can be imagined as a box with mechanisms inside that act on data.
There is typically an input into the box and code inside that utilizes the input to produce
an output:

For example, a function can be written to add 10 to any number or to multiply
two numbers:

2

12

-30

-20

1024

1034

Add 10

x

x+10

2 3 5 -4 -1 -1

6 -20 1

Multiply

x y

x*y

x f(x)?

Reas_04_173-278.indd Sec3:181Reas_04_173-278.indd Sec3:181 5/23/07 2:23:33 PM5/23/07 2:23:33 PM

182 Structure 3: Functions

The previous function examples are simple, but the concept can be extended to other
processes that may be less obvious:

The mathematics used inside functions can be daunting, but the beauty of using
functions is that it’s not necessary to understand how they work. It’s usually enough to
know how to use them—to know what the inputs are and how they affect the output.
This technique of ignoring the details of a process is called abstraction. It helps place the
focus on the overall design of the program rather than the details.

Abstraction

In the terminology of software, the word abstraction has a different meaning from how
it’s used to refer to drawings and paintings. It refers to hiding details in order to focus on
the result. The interface of the wheel and pedals in a car allows the driver to ignore
details of the car’s operation such as fi ring pistons and the fl ow of gasoline. The only
understanding required by the person driving is that the steering wheel turns the
vehicle left and right, the accelerator speeds it up, and the brake slows it down. Ignoring
the minute details of the engine allows the driver to maintain focus on the task at hand.
The mind need not be cluttered with thoughts about the details of execution.
 The idea of abstraction can also be discussed in relation to the human body. For
example, we can control our breathing, but we usually breathe involuntarily, without
conscious thought. Imagine if we had to directly control every aspect of our body. Having
to continually control the beating of the heart, the release of chemicals, and the fi ring of
neurons would make reading books and writing software impossible. The brain
abstracts the basic functions of maintaining the body so our conscious minds can
consider other aspects of life.
 The idea of abstraction is essential to writing software. In Processing, drawing
functions such as line(), ellipse(), and fill() obscure the complexity of their
actions so that the author can focus on results rather than implementation. If you want
to draw a line, you probably want to think only about its position, thickness, and color,
and you don’t want to think about the many lines of code that run behind the scenes to
convert the line into a sequence of pixels.

45°

Rotate

2

Scale Invert
image

Reas_04_173-278.indd Sec3:182Reas_04_173-278.indd Sec3:182 5/23/07 2:23:34 PM5/23/07 2:23:34 PM

183 Structure 3: Functions

Creating functions

Before explaining in detail how to write your own functions, we’ll fi rst look at an
example of why you might want to do so. The following examples show how to make a
program shorter and more modular by adding a function. This makes the code easier to
read, modify, and expand.
 It’s common to draw the same shape to the screen many times. We’ve created the
shape you see below on the left, and now we want to draw it to the screen in the pattern
on the right:

We start by drawing it once, to make sure our code is working.

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 noLoop();

 }

 void draw() {

 fill(255);

 ellipse(50, 50, 60, 60); // White circle

 fill(0);

 ellipse(50+10, 50, 30, 30); // Black circle

 fill(255);

 ellipse(50+16, 45, 6, 6); // Small, white circle

 }

The previous program presents a sensible way to draw the shape once, but when another
shape is added, we see a trend that continues for each additional shape. Adding a second
shape inside draw() doubles the amount of code. Because it takes 6 lines to draw each
shape, we now have 12 lines. Drawing our desired pattern that uses 6 shapes will require
36 lines of code. Imagine if we wanted to draw 30 eyes—the code inside draw() would
bloat to 180 lines.

21-01

Reas_04_173-278.indd Sec3:183Reas_04_173-278.indd Sec3:183 5/23/07 2:23:34 PM5/23/07 2:23:34 PM

184 Structure 3: Functions

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 noLoop();

 }

 void draw() {

 // Right shape

 fill(255);

 ellipse(65, 44, 60, 60);

 fill(0);

 ellipse(75, 44, 30, 30);

 fill(255);

 ellipse(81, 39, 6, 6);

 // Left shape

 fill(255);

 ellipse(20, 50, 60, 60);

 fill(0);

 ellipse(30, 50, 30, 30);

 fill(255);

 ellipse(36, 45, 6, 6);

 }

Because the shapes are identical, a function can be written for drawing them. The
function introduced in the next example has two inputs that set the x-coordinate and y-
coordinate. The lines of code inside the function render the elements for one shape.

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 noLoop();

 }

 void draw() {

 eye(65, 44);

 eye(20, 50);

 }

 void eye(int x, int y) {

 fill(255);

 ellipse(x, y, 60, 60);

 fill(0);

21-02

21-03

Reas_04_173-278.indd Sec3:184Reas_04_173-278.indd Sec3:184 5/23/07 2:23:35 PM5/23/07 2:23:35 PM

185 Structure 3: Functions

 ellipse(x+10, y, 30, 30);

 fill(255);

 ellipse(x+16, y-5, 6, 6);

 }

The function is 8 lines of code, but it only has to be written once. The code in the function
runs each time it is referenced in draw(). Using this strategy, it would be possible to
draw 30 eyes with only 38 lines of code.
 A closer look at the fl ow of this program reveals how functions work and affect the
program fl ow. Each time the function is used within draw(), the 6 lines of code inside
the function block are run. The normal fl ow of the program is diverted by the function
call, the code inside the function is run, and then the program returns to read the next
line in draw(). Because noLoop() is used inside setup(), the lines of code in draw()
only run once.

 size(100, 100)
Start with code in setup()

 noStroke()

 smooth()

 noLoop()

 fill(255)
Enter draw(), divert to the eye function

 ellipse(65, 44, 60, 60)

 fill(0)

 ellipse(75, 44, 30, 30)

 fill(255)

 ellipse(81, 39, 6, 6)

 fill(255)
Back to draw(), divert to the eye function a second time

 ellipse(20, 50, 60, 60)

 fill(0)

 ellipse(30, 50, 30, 30)

 fill(255)

 ellipse(36, 45, 6, 6)
Program ends

Now that the function is working, it can be used each time we want to draw that shape.
If we want to use the shape in another program, we can copy and paste the function. We
no longer need to think about how the shape is being drawn or what each line of code
inside the function does. We only need to remember how to control its position with the
two parameters.

21-03
cont.

Reas_04_173-278.indd Sec3:185Reas_04_173-278.indd Sec3:185 5/23/07 2:23:35 PM5/23/07 2:23:35 PM

186 Structure 3: Functions

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 noLoop();

 }

 void draw() {

 eye(65, 44);

 eye(20, 50);

 eye(65, 74);

 eye(20, 80);

 eye(65, 104);

 eye(20, 110);

 }

 void eye(int x, int y) {

 fill(255);

 ellipse(x, y, 60, 60);

 fill(0);

 ellipse(x+10, y, 30, 30);

 fill(255);

 ellipse(x+16, y-5, 6, 6);

 }

To write a function, start with a clear idea about what the function will do. Does it draw
a specifi c shape? Calculate a number? Filter an image? After you know what the function
will do, think about the parameters and the data type for each. Have a goal and break
the goal into small steps.
 In the following example, we fi rst put together a program to explore some of the
details of the function before writing it. Then, we start to build the function, adding one
parameter at a time and testing the code at each step.

 void setup() {

 size(100, 100);

 smooth();

 noLoop();

 }

 void draw() {

 // Draw thick, light gray X

 stroke(160);

 strokeWeight(20);

 line(0, 5, 60, 65);

21-04

21-05

Reas_04_173-278.indd Sec3:186Reas_04_173-278.indd Sec3:186 5/23/07 2:23:35 PM5/23/07 2:23:35 PM

187 Structure 3: Functions

 line(60, 5, 0, 65);

 // Draw medium, black X

 stroke(0);

 strokeWeight(10);

 line(30, 20, 90, 80);

 line(90, 20, 30, 80);

 // Draw thin, white X

 stroke(255);

 strokeWeight(2);

 line(20, 38, 80, 98);

 line(80, 38, 20, 98);

 }

To write a function to draw the three X’s in the previous example, fi rst write a function
to draw just one. We named the function drawX() to make its purpose clear. Inside, we
have written code that draws a light gray X in the upper-left corner. Because this
function has no parameters, it will always draw the same X each time its code is run. The
keyword void appears before the function’s name, which means the function does not
return a value.

 void setup() {

 size(100, 100);

 smooth();

 noLoop();

 }

 void draw() {

 drawX();

 }

 void drawX() {

 // Draw thick, light gray X

 stroke(160);

 strokeWeight(20);

 line(0, 5, 60, 65);

 line(60, 5, 0, 65);

 }

21-06

21-05
cont.

Reas_04_173-278.indd Sec3:187Reas_04_173-278.indd Sec3:187 5/23/07 2:23:36 PM5/23/07 2:23:36 PM

188 Structure 3: Functions

To draw the X differently, add a parameter. In the next example the gray parameter
variable has been added to the function to control the gray value of the X. The parameter
variable must include its type and its name. When the function is called from within
draw(), the value within the parentheses to the right of the function name is assigned
to gray. In this example, the value 0 is assigned to gray, so the stroke is set to black.

 void setup() {

 size(100, 100);

 smooth();

 noLoop();

 }

 void draw() {

 drawX(0); // Passes 0 to drawX(), runs drawX()

 }

 void drawX(int gray) { // Declares and assigns gray

 stroke(gray); // Uses gray to set the stroke

 strokeWeight(20);

 line(0, 5, 60, 65);

 line(60, 5, 0, 65);

 }

A function can have more than one parameter. Each parameter for the function must be
placed between the parentheses after the function name, each must state its data type,
and the parameters must be separated by commas. In this example, the additional
parameter weight is added to control the thickness of the line.

 void setup() {

 size(100, 100);

 smooth();

 noLoop();

 }

 void draw() {

 drawX(0, 30); // Passes values to drawX(), runs drawX()

 }

 void drawX(int gray, int weight) {

 stroke(gray);

 strokeWeight(weight);

 line(0, 5, 60, 65);

 line(60, 5, 0, 65);

 }

21-07

21-08

Reas_04_173-278.indd Sec3:188Reas_04_173-278.indd Sec3:188 5/23/07 2:23:36 PM5/23/07 2:23:36 PM

189 Structure 3: Functions

The next example extends drawX() to three additional parameters that control the
position and size of the X drawn with the function.

 void setup() {

 size(100, 100);

 smooth();

 noLoop();

 }

 void draw() {

 drawX(0, 30, 40, 30, 36);

 }

 void drawX(int gray, int weight, int x, int y, int size) {

 stroke(gray);

 strokeWeight(weight);

 line(x, y, x+size, y+size);

 line(x+size, y, x, y+size);

 }

By carefully building our function one step at a time, we have reached the original goal
of writing a general function for drawing the three X’s in code 21-05 (p. 186).

 void setup() {

 size(100, 100);

 smooth();

 noLoop();

 }

 void draw() {

 drawX(160, 20, 0, 5, 60); // Draw thick, light gray X

 drawX(0, 10, 30, 20, 60); // Draw medium, black X

 drawX(255, 2, 20, 38, 60); // Draw thin, white X

 }

 void drawX(int gray, int weight, int x, int y, int size) {

 stroke(gray);

 strokeWeight(weight);

 line(x, y, x+size, y+size);

 line(x+size, y, x, y+size);

 }

21-09

21-10

Reas_04_173-278.indd Sec3:189Reas_04_173-278.indd Sec3:189 5/23/07 2:23:37 PM5/23/07 2:23:37 PM

190 Structure 3: Functions

Now that we have the drawX() function, it’s possible to write programs that would not
be practical without it. For example, putting calls to drawX() inside a for structure
allows for many repetitions. Each X drawn can be different from those previously drawn.

 void setup() {

 size(100, 100);

 smooth();

 noLoop();

 }

 void draw() {

 for (int i = 0; i < 20; i++) {

 drawX(200- i*10, (20-i)*2, i, i/2, 70);

 }

 }

 void drawX(int gray, int weight, int x, int y, int size) {

 stroke(gray);

 strokeWeight(weight);

 line(x, y, x+size, y+size);

 line(x+size, y, x, y+size);

 }

 void setup() {

 size(100, 100);

 smooth();

 noLoop()

 }

 void draw() {

 for (int i = 0; i < 70; i++) { // Draw 70 X shapes

 drawX(int(random(255)), int(random(30)),

 int(random(width)), int(random(height)), 100);

 }

 }

 void drawX(int gray, int weight, int x, int y, int size) {

 stroke(gray);

 strokeWeight(weight);

 line(x, y, x+size, y+size);

 line(x+size, y, x, y+size);

 }

21-11

21-12

Reas_04_173-278.indd Sec3:190Reas_04_173-278.indd Sec3:190 5/23/07 2:23:37 PM5/23/07 2:23:37 PM

191 Structure 3: Functions

In the next series of examples, a leaf() function is created from code 7-17 (p. 77) to draw
a leaf shape, and a vine() function is created to arrange a group of leaves onto a line.
These examples demonstrate how functions can run inside other functions. The leaf()
function has four parameters that determine the position, size, and orientation:

 float x X-coordinate

 float y Y-coordinate

 float size Width of the leaf in pixels

 int dir Direction, either 1 (left) or -1 (right)

This simple program draws one leaf and shows how the parameters affect its attributes.

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 noLoop();

 }

 void draw() {

 leaf(26, 83, 60, 1);

 }

 void leaf(int x, int y, int size, int dir) {

 pushMatrix();

 translate(x, y); // Move to position

 scale(size); // Scale to size

 beginShape(); // Draw the shape

 vertex(1.0*dir, -0.7);

 bezierVertex(1.0*dir, -0.7, 0.4*dir, -1.0, 0.0, 0.0);

 bezierVertex(0.0, 0.0, 1.0*dir, 0.4, 1.0*dir, -0.7);

 endShape();

 popMatrix();

 }

The vine() function has parameters to set the position, the number of leaves, and the
size of each leaf:

 int x X-coordinate

 int numLeaves Total number of leaves on the vine

 float leafSize Width of the leaf in pixels

This function determines the form of the vine by applying a few rules to the parameter
values. The code inside vine() fi rst draws a white vertical line, then determines the

21-13

Reas_04_173-278.indd Sec3:191Reas_04_173-278.indd Sec3:191 5/23/07 2:23:38 PM5/23/07 2:23:38 PM

192 Structure 3: Functions

space between each leaf based on the height of the display window and the total
number of leaves. The fi rst leaf is set to draw to the right of the vine, and the for
structure draws the number of leaves specifi ed by the numLeaves parameter. The
x parameter determines the position, and leafSize sets the size of each leaf. The
y-coordinate of each leaf is slightly different each time the program is run because
of the random() function.

 void setup() {

 size(100, 100);

 smooth();

 noLoop();

 }

 void draw() {

 vine(33, 9, 16);

 }

 void vine(int x, int numLeaves, int leafSize) {

 stroke(255);

 line(x, 0, x, height);

 noStroke();

 int gap = height / numLeaves;

 int direction = 1;

 for (int i = 0; i < numLeaves; i++) {

 int r = int(random(gap));

 leaf(x, gap*i + r, leafSize, direction);

 direction = -direction;

 }

 }

 // Copy and paste the leaf() function here

The vine() function was written in steps and was gradually refi ned to its present code.
It could be extended with more parameters to control other aspects of the vine such as
the color, or to draw on a curve instead of a straight line. In these examples, the vine
function is called from draw() and the qualities of the vine are set by different
parameters.
 Shorter programs aren’t the only benefi t of using functions, but less code has
advantages beyond a reduction in typing. Shorter programs lead to fewer errors—the
more lines of code, the more chances for mistakes.
 Imagine a novel written as a continuous paragraph without indentations or line
breaks. Functions act as paragraphs that make your program easier to read. The practice
of reducing complex processes into smaller, easier-to-comprehend units helps structure

21-14

Reas_04_173-278.indd Sec3:192Reas_04_173-278.indd Sec3:192 5/23/07 2:23:38 PM5/23/07 2:23:38 PM

193 Structure 3: Functions

ideas. But it’s not simply a matter of making lots of functions. Each function should be
a unit of code that clearly expresses a single idea, calculation, or unit of form.
 In code 21-02, six lines of code are needed to draw each shape. If we wanted to
change one small detail—for example, the position of the small white circle in relation
to the black circle—the corresponding line would need to be changed several times. If
we were drawing nine shapes, nine lines of code would have to be changed. Once a
group of code is put into a function, the program is easy to modify because that line of
code need only be changed once.
 Functions can make programs easier to write because they encourage reusing code.
A custom function can be reused in another program. As you write more programs, you’ll
build a collection of functions that are useful across much of your work. In fact, parts of
Processing evolved from function collections that the authors used in their own work.

Function overloading

Multiple functions can have the same name, as long as they have different parameters.
Creating different functions with the same name is called function overloading, and it’s
what allows Processing to have more than one version of functions like fill(),
image(), and text(), each with different parameters. For example, the fill()
function can have one, two, three, or four parameters. Each version of fill() sets the fi ll
value for drawing shapes, but the number of parameters determines whether the fi ll
value is gray, color, or includes transparency.
 A program can also have two functions with the same number of parameters, but
only if the data type for one of the parameters is different. For example, there are three
versions of the fill() function with one parameter. The fi rst uses a parameter of type
int to set a gray value, the second uses a parameter of type float to set a gray value,
and the third uses a parameter of type color to set a color value. The Processing
language would be frustrating if a separate function name were used for each kind of fi ll.
 This example uses three different drawX() functions, but all with the same name.
The software knows which function to run by matching the number and type of the
parameters.

 void setup() {

 size(100, 100);

 smooth();

 noLoop();

 }

 void draw() {

 drawX(255); // Run first drawX()

 drawX(5.5); // Run second drawX()

 drawX(0, 2, 44, 48, 36); // Run third drawX()

 }

21-15

Reas_04_173-278.indd Sec3:193Reas_04_173-278.indd Sec3:193 5/23/07 2:23:38 PM5/23/07 2:23:38 PM

194 Structure 3: Functions

 // Draw an X with the gray value set by the parameter

 void drawX(int gray) {

 stroke(gray);

 strokeWeight(20);

 line(0, 5, 60, 65);

 line(60, 5, 0, 65);

 }

 // Draw a black X with the thickness set by the parameter

 void drawX(float weight) {

 stroke(0);

 strokeWeight(weight);

 line(0, 5, 60, 65);

 line(60, 5, 0, 65);

 }

 // Draws an X with the gray value, thickness,

 // position, and size set by the parameters

 void drawX(int gray, int weight, int x, int y, int s) {

 stroke(gray);

 strokeWeight(weight);

 line(x, y, x+s, y+s);

 line(x+s, y, x, y+s);

 }

Calculating and returning values

In the examples shown so far, the output of a function has been shapes drawn to the
screen. However, sometimes the preferred output is a number or other data. Data output
from a function is called the return value. All functions are expected to return a value,
such as an int or a float. If the function does not return a value, the special type void
is used. The type of data returned by a function is found at the left of the function name.
 The keyword return is used to exit a function and return to the location from
which it was called. When a function outputs a value, return is used to specify what
value should be returned. The return statement is typically the last line of a function
because functions exit immediately after a return. We’ve already been using functions
that return values. For example, random() returns a float, and the color() function
returns a value of the color data type.
 If a function returns a value, the function almost always appears to the right of an
assignment operator or as a part of a larger expression. A function that does not return a
value is often used as a complete statement. In the following example, notice how the
value returned from the random() function is assigned to a variable, but the

21-15
cont.

Reas_04_173-278.indd Sec3:194Reas_04_173-278.indd Sec3:194 5/23/07 2:23:39 PM5/23/07 2:23:39 PM

195 Structure 3: Functions

ellipse() function is not associated with a variable. If the random() function is not
assigned to a variable, the value will be lost .

float d = random(0, 100);

ellipse(50, 50, d, d);

When using functions that return values, it’s important to be aware of the data type that
is returned by each function. For example, the random() function returns fl oating-point
values. If the result of the random() function is assigned to an integer, an error will
occur.

int d = random(0, 100); // ERROR! random() returns floats

ellipse(50, 50, d, d);

The data-type conversion functions (p. 105) are useful for converting data into the format
needed within a program. The previous example can be modifi ed with the int()
conversion function to match the type of data returned from random() to the type of
data the result is assigned to:

int d = int(random(0, 100)); // int() converts the float value

ellipse(50, 50, d, d);

Consult the reference for each function to learn what data type is returned. Functions
are not limited to returning numbers: they can return a PImage, String, boolean, or
any other data type.
 To write your own functions that return values, replace void with the data type you
want to return. Include the return keyword inside your function to set the data to
output. The value of the expression following the return will be output from the
function. The following examples make useful calculations and return values, so they
can be used elsewhere in the program.

void setup() {

 size(100, 100);

 float f = average(12.0, 6.0); // Assign 9.0 to f

 println(f);

}

float average(float num1, float num2) {

 float av = (num1 + num2) / 2.0;

 return av;

}

21-16

21-17

21-18

21-19

Reas_04_173-278.indd Sec3:195Reas_04_173-278.indd Sec3:195 5/23/07 2:23:39 PM5/23/07 2:23:39 PM

196 Structure 3: Functions

void setup() {

 size(100, 100);

 float c = fahrenheitToCelsius(451.0); // Assign 232.77779 to c

 println(c);

}

float fahrenheitToCelsius(float t) {

 float f = (t-32.0) * (5.0/9.0);

 return f;

}

It’s also important to note that you can’t overload the return value of a function. Unlike
functions that behave differently when given float or int values, it’s not possible to
have two functions with the same name that differ only in the type of data they return.

 Exercises
1. Write a function to draw a shape to the screen multiple times, each at a
 different position.
2. Extend the function created for exercise 1 by creating more parameters to control
 additional aspects of its form.
3. Write a function to use with a for structure to create a pattern evoking a
 liquid substance.

21-20

Reas_04_173-278.indd Sec3:196Reas_04_173-278.indd Sec3:196 5/23/07 2:23:40 PM5/23/07 2:23:40 PM

197

Shape 3: Parameters, Recursion
This unit introduces the concept of parameterized and recursive form.

Software provides a medium for exploring form in a unique way, and writing custom
functions (p.181) enables such exploration. Using functions to generate shapes that vary
based on their parameters is called parameterized form. A function can also contain a
line of code that uses that same function—a technique called recursion that can be used
in many ways to produce form.

Parameterized form

The leaf shape introduced in code 21-13 (p. 191) is an example of parameterized form.
Different parameters passed into the leaf() function generate different forms:

Parameterized form can grow in complexity when several functions are combined.
This combination of functions allows one parameter to produce more diversity. Code 21-
14 (p. 192) defi nes how the vine() function places a series of leaves. Changing the
parameters to vine() produces a wide variety of shapes:

In the examples that use leaf(), the shape of the element remains the same, but the
size and orientation changes. In the examples that use vine(), the size and quantity of
elements change, but the leaf shapes remain constant. Parameterized form can also be
used to change the shape of an element.

Reas_04_173-278.indd Sec3:197Reas_04_173-278.indd Sec3:197 5/23/07 2:23:40 PM5/23/07 2:23:40 PM

198 Shape 3: Parameters, Recursion

The clever Ars Magna cards created by Tatsuya Saito are an example of a modular image
system. Nine images are each split into two cards:

Any front card can be used with any back card to produce unexpected results:

A program for producing random combinations of the cards follows.

size(120, 100);

int front = int(random(1, 10)); // Select the front card

int back = int(random(1, 10)); // Select the back card

PImage imgFront = loadImage(front + "f.jpg");

PImage imgBack = loadImage(back + "b.jpg");

image(imgFront, 0, 0);

image(imgBack, 60, 0);

The Ars Magna system can create many unexpected image juxtapositions, but it offers
only a fi nite number of possible options. Another way to create parameterized form uses
the values input to a function to create continuous changes in the shape of a visual
element. This is one of the greatest advantages of creating visual form with code.
 A simple arch() function created using bezierVertex(), for example, can be
continuously modulated by changes to a single parameter value. The parameter for
arch() is a fl oating-point number, so it can be varied at extremely small measurements.
A change in the parameter from 25.0001 to 25.0002 won’t look different on screen, but
will defi ne a slightly different shape. The differences in shapes formed by using larger
increments imply the possible shapes that lie between:

22-01

Reas_04_173-278.indd Sec3:198Reas_04_173-278.indd Sec3:198 5/23/07 2:23:41 PM5/23/07 2:23:41 PM

199 Shape 3: Parameters, Recursion

 float c = 25.0;

 void setup() {

 size(100, 100);

 smooth();

 noLoop();

 }

 void draw() {

 arch(c);

 }

 void arch(float curvature) {

 float y = 90.0;

 strokeWeight(6);

 noFill();

 beginShape();

 vertex(15.0, y);

 bezierVertex(15.0, y-curvature, 30.0, 55.0, 50.0, 55.0);

 bezierVertex(70.0, 55.0, 85.0, y-curvature, 85.0, y);

 endShape();

 }

Within a parameterized system such as the arch() function, the value of one variable
can affect the value of others. This is called coupling. If we change the code inside of the
arch() function, the input parameter curvature can control the stroke thickness as
well as the curvature.

 void arch(float curvature) {

 float y = 90.0;

 float sw = (65.0 - curvature) / 4.0;

 strokeWeight(sw);

 noFill();

 beginShape();

 vertex(15.0, y);

 bezierVertex(15.0, y-curvature, 30.0, 55.0, 50.0, 55.0);

 bezierVertex(70.0, 55.0, 85.0, y-curvature, 85.0, y);

 endShape();

 }

This is a modest example. The single input into arch() could be used to change every
aspect of its display, including its values, rotation, size, etc. The following programs
present more ideas related to the concept of parameterized form.

c=15.0

c=25.0

c=35.0

c=45.0

c=55.0

c=15.0

c=35.0

c=55.0

22-02

22-03

Reas_04_173-278.indd Sec3:199Reas_04_173-278.indd Sec3:199 5/23/07 2:23:41 PM5/23/07 2:23:41 PM

200 Shape 3: Parameters, Recursion

 int x = 20; // X-coordinate

 int u = 14; // Units

 float a = -0.12; // Angle

 void setup() {

 size(100, 100);

 stroke(0, 153);

 smooth();

 noLoop();

 }

 void draw() {

 background(204);

 tail(x, u, a);

 }

 void tail(int xpos, int units, float angle) {

 pushMatrix();

 translate(xpos, 0);

 for (int i = units; i > 0; i--) { // Count in reverse

 strokeWeight(i);

 line(0, 0, 0, 8);

 translate(0, 8);

 rotate(angle);

 }

 popMatrix();

 }

 int x = 40; // X-coordinate

 int y = 30; // Y-coordinate

 int g = 20; // Gap between eyes

 void setup() {

 size(100, 100);

 smooth();

 fill(0);

 noLoop();

 }

 void draw() {

 background(204);

 face(x, y, g);

 }

x=20

u=14

a=-0.12

x=40

u=9

a=-0.08

x=110

u=20

a=0.13

x=119

u=25

a=0.18

x=9

u=17

a=-0.18

x=20

y=80

g=26

x=40

y=80

g=12

x=70

y=40

g=15

22-04

22-05

Reas_04_173-278.indd Sec3:200Reas_04_173-278.indd Sec3:200 5/23/07 2:23:42 PM5/23/07 2:23:42 PM

201 Shape 3: Parameters, Recursion

 void face(int x, int y, int gap) {

 line(x, 0, x, y); // Nose Bridge

 line(x, y, x+gap, y); // Nose

 line(x+gap, y, x+gap, 100);

 int mouthY = height - (height-y)/2;

 line(x, mouthY, x+gap, mouthY); // Mouth

 noStroke();

 ellipse(x-gap/2, y/2, 5, 5); // Left eye

 ellipse(x+gap, y/2, 5, 5); // Right eye

 }

Recursion

A common example of recursion is standing between two mirrors to see infi nite
refl ections. In software, recursion means that a function can call itself within its own
block. To prevent this from continuing forever, it’s necessary to have some way for the
function to exit. The following two programs produce the same result by different
means, the fi rst using a for structure and the second using recursion.

 int x = 5;

 for (int num = 15; num >= 0; num -= 1) {

 line(x, 20, x, 80);

 x += 5;

 }

 void setup() {

 drawLines(5, 15);

 }

 void drawLines(int x, int num) {

 line(x, 20, x, 80);

 if (num > 0) {

 drawLines(x+5, num-1);

 }

 }

The recursive example uses more of the computer’s resources to complete the task. For
such a simple calculation, using the for structure is advised, but the recursive approach
opens other possibilities. The following two examples utilize the custom drawT()
function to show the effects of recursion.

22-06

22-07

22-05
cont.

Reas_04_173-278.indd Sec3:201Reas_04_173-278.indd Sec3:201 5/23/07 2:23:42 PM5/23/07 2:23:42 PM

202 Shape 3: Parameters, Recursion

 int x = 50; // X-coordinate of the center

 int y = 100; // Y-coordinate of the bottom

 int a = 35; // Half the width of the top bar

 void setup() {

 size(100, 100);

 noLoop();

 }

 void draw() {

 drawT(x, y, a);

 }

 void drawT(int xpos, int ypos, int apex) {

 line(xpos, ypos, xpos, ypos-apex);

 line(xpos-(apex/2), ypos-apex, xpos+(apex/2), ypos-apex);

 }

The drawT() function is made recursive by the inclusion of a call to itself within the
function block. A fourth parameter called num is added to set the number of recursions.
This value is decremented by 1 each time the function calls itself. When the value is no
longer greater than 0, the recursion stops and the image is drawn to the screen.

 int x = 50; // X-coordinate of the center

 int y = 100; // Y-coordinate of the bottom

 int a = 35; // Half the width of the top bar

 int n = 3; // Number of recursions

 void setup() {

 size(100, 100);

 noLoop();

 }

 void draw() {

 drawT(x, y, a, n);

 }

 void drawT(int x, int y, int apex, int num) {

 line(x, y, x, y-apex);

 line(x-apex, y-apex, x+apex, y-apex);

 // This relational expression must eventually be

 // false to stop the recursion and draw the lines

 if (num > 0) {

 drawT(x-apex, y-apex, apex/2, num-1);

22-08

22-09x=50

a=20

n=8

x=50

a=35

n=3

x=50

a=45

n=12

x=50

y=100

a=35

x=24

y=65

a=45

x=76

y=50

a=12

Reas_04_173-278.indd Sec3:202Reas_04_173-278.indd Sec3:202 5/23/07 2:23:43 PM5/23/07 2:23:43 PM

203 Shape 3: Parameters, Recursion

 drawT(x+apex, y-apex, apex/2, num-1);

 }

 }

A binary tree structure (one that has two branches from each node) like the one above
can be visualized in different ways. This program draws a circle at every node. The y-
coordinate for each node is the same, and the radius for each circle is halved at each
layer.

 int x = 63; // X-coordinate

 int r = 85; // Starting radius

 int n = 6; // Number of recursions

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 noLoop();

 }

 void draw() {

 drawCircle(63, 85, 6);

 }

 void drawCircle(int x, int radius, int num) {

 float tt = 126 * num/4.0;

 fill(tt);

 ellipse(x, 50, radius*2, radius*2);

 if (num > 1) {

 num = num - 1;

 drawCircle(x - radius/2, radius/2, num);

 drawCircle(x + radius/2, radius/2, num);

 }

 }

A slight modifi cation yields a radical alteration of the form. Circles in every subsequent
layer are given random positions relative to the previous position. The resulting images
have a balance between order and disorder. At each level of recursion, the size of the
circles decrease, their distance from the previous level decreases, and their values grow
darker. Change the number used as the parameter to randomSeed() (p. 129) to produce
a different composition.

22-10x=63

r=70

n=4

x=63

r=100

n=8

x=63

r=85

n=6

22-09
cont.

Reas_04_173-278.indd Sec3:203Reas_04_173-278.indd Sec3:203 5/23/07 2:23:43 PM5/23/07 2:23:43 PM

204 Shape 3: Parameters, Recursion

 int x = 63; // X-coordinate

 int y = 50; // Y-coordinate

 int r = 80; // Starting radius

 int n = 7; // Number of recursions

 int rs = 12; // Random seed value

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 noLoop();

 randomSeed(rs);

 }

 void draw() {

 drawCircle(x, y, r, n);

 }

 void drawCircle(float x, float y, int radius, int num) {

 float value = 126 * num / 6.0;

 fill(value, 153);

 ellipse(x, y, radius*2, radius*2);

 if (num > 1) {

 num = num - 1;

 int branches = int(random(2, 6));

 for (int i = 0; i < branches; i++) {

 float a = random(0, TWO_PI);

 float newx = x + cos(a) * 6.0 * num;

 float newy = y + sin(a) * 6.0 * num;

 drawCircle(newx, newy, radius/2, num);

 }

 }

 }

 Exercises
1. Write your own function to draw a parameterized arch.
2. Create a function for drawing a chair. Use two parameters to change its position
 and two more to change the shape. Using your function, draw 9 chairs in the
 display window in a regular 3 * 3 matrix. Use different parameters to give
 each chair drawn a unique shape.
3. Modify code 22-04 to create a sequence of different compositions.

22-11r=55

n=6

rs=18

r=65

n=6

rs=22

r=65

n=7

rs=22

r=90

n=6

rs=24

r=80

n=7

rs=12

r=90

n=6

rs=26

Reas_04_173-278.indd Sec3:204Reas_04_173-278.indd Sec3:204 5/23/07 2:23:44 PM5/23/07 2:23:44 PM

205

Input 1: Mouse I
This unit introduces mouse input as a way to control the position and attributes of shapes
on screen. It also explains how to change the cursor icon.

Syntax introduced:
mouseX, mouseY, pmouseX, pmouseY, mousePressed, mouseButton

cursor(), noCursor()

The screen forms a bridge between our bodies and the realm of circuits and electricity
inside computers. We control elements on screen through a variety of devices such as
touch pads, trackballs, and joysticks, but—aside from the keyboard—the most common
input device is the mouse. The computer mouse dates back to the late 1960s when
Douglas Engelbart presented the device as an element of the oN-Line System (NLS), one
of the fi rst computer systems with a video display. The mouse concept was further
developed at the Xerox Palo Alto Research Center (PARC), but its introduction with the
Apple Macintosh in 1984 was the catalyst for its current ubiquity. The design of the
mouse has gone through many revisions in the last thirty years, but its function has
remained the same. In Engelbart’s original patent application in 1970 he referred to the
mouse as an “X-Y position indicator,” and this still accurately, but dryly, defi nes its
contemporary use.
 The physical mouse object is used to control the position of the cursor on screen and
to select interface elements. The cursor position is read by computer programs as two
numbers, the x-coordinate and the y-coordinate. These numbers can be used to control
attributes of elements on screen. If these coordinates are collected and analyzed, they
can be used to extract higher-level information such as the speed and direction of the
mouse. This data can in turn be used for gesture and pattern recognition.

Mouse data

The Processing variables mouseX and mouseY (note the capital X and Y) store the
x-coordinate and y-coordinate of the cursor relative to the origin in the upper-left corner
of the display window. To see the actual values produced while moving the mouse, run
this program to print the values to the console:

void draw() {

 frameRate(12);

 println(mouseX + " : " + mouseY);

}

23-01

Reas_04_173-278.indd Sec3:205Reas_04_173-278.indd Sec3:205 5/23/07 2:23:44 PM5/23/07 2:23:44 PM

206 Input 1: Mouse I

When a program starts, mouseX and mouseY values are 0. If the cursor moves into the
display window, the values are set to the current position of the cursor. If the cursor is
at the left, the mouseX value is 0 and the value increases as the cursor moves to the right.
If the cursor is at the top, the mouseY value is 0 and the value increases as the cursor
moves down. If mouseX and mouseY are used in programs without a draw() or if
noLoop() is run in setup(), the values will always be 0.
 The mouse position is most commonly used to control the location of visual
elements on screen. More interesting relations are created when the visual elements
relate differently to the mouse values, rather than simply mimicking the current
position. Adding and subtracting values from the mouse position creates relationships
that remain constant, while multiplying and dividing these values creates changing
visual relationships between the mouse position and the elements on the screen. To
invert the value of the mouse, simply subtract the mouseX value from the width of the
window and subtract the mouseY value from the height of the screen.

 // Circle follows the cursor (the cursor position is

 // implied by the crosshairs around the illustration)

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 }

 void draw() {

 background(126);

 ellipse(mouseX, mouseY, 33, 33);

 }

 // Add and subtract to create offsets

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 }

 void draw() {

 background(126);

 ellipse(mouseX, 16, 33, 33); // Top circle

 ellipse(mouseX+20, 50, 33, 33); // Middle circle

 ellipse(mouseX-20, 84, 33, 33); // Bottom circle

 }

23-02

23-03

Reas_04_173-278.indd Sec3:206Reas_04_173-278.indd Sec3:206 5/23/07 2:23:45 PM5/23/07 2:23:45 PM

207 Input 1: Mouse I

 // Multiply and divide to creates scaling offsets

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 }

 void draw() {

 background(126);

 ellipse(mouseX, 16, 33, 33); // Top circle

 ellipse(mouseX/2, 50, 33, 33); // Middle circle

 ellipse(mouseX*2, 84, 33, 33); // Bottom circle

 }

 // Invert cursor position to create a secondary response

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 }

 void draw() {

 float x = mouseX;

 float y = mouseY;

 float ix = width - mouseX; // Inverse X

 float iy = mouseY - height; // Inverse Y

 background(126);

 fill(255, 150);

 ellipse(x, height/2, y, y);

 fill(0, 159);

 ellipse(ix, height/2, iy, iy);

 }

23-04

23-05

Reas_04_173-278.indd Sec3:207Reas_04_173-278.indd Sec3:207 5/23/07 2:23:45 PM5/23/07 2:23:45 PM

208 Input 1: Mouse I

 // Exponential functions can create nonlinear relations

 // between the mouse and shapes affected by the mouse

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 }

 void draw() {

 background(126);

 float normX = mouseX / float(width);

 ellipse(mouseX, 16, 33, 33); // Top

 ellipse(pow(normX, 4) * width, 50, 33, 33); // Middle

 ellipse(pow(normX, 8) * width, 84, 33, 33); // Bottom

 }

The Processing variables pmouseX and pmouseY store the mouse values from the
previous frame. If the mouse does not move, the values will be the same, but if the
mouse is moving quickly there can be large differences between the values. To see the
difference, run the following program and alternate moving the mouse slowly and
quickly. Watch the values print to the console.

void draw() {

 frameRate(12);

 println(pmouseX - mouseX);

}

Drawing a line from the previous mouse position to the current position shows the
changing position in one frame, revealing the speed and direction of the mouse. When the
mouse is not moving, a point is drawn, but quick mouse movements create long lines.

 // Draw a line between the current and previous positions

 void setup() {

 size(100, 100);

 strokeWeight(8);

 smooth();

 }

 void draw() {

 background(204);

 line(mouseX, mouseY, pmouseX, pmouseY);

 }

23-06

23-08

23-07

Reas_04_173-278.indd Sec3:208Reas_04_173-278.indd Sec3:208 5/23/07 2:23:46 PM5/23/07 2:23:46 PM

209 Input 1: Mouse I

The mouseX and mouseY values can control translation, rotation, and scale by using
them as parameters in the transformation functions. You can move a circle around the
screen by changing the parameters to translate() rather than by changing the x and
y parameters of ellipse().

 // Use translate() to move a shape

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 }

 void draw() {

 background(126);

 translate(mouseX, mouseY);

 ellipse(0, 0, 33, 33);

 }

Before using mouseX and mouseY as parameters to transformation functions, it’s
important to think fi rst about how they relate to the expected parameters. For example,
the rotate() function expects its parameters in units of radians (p. 117). To make a
shape rotate 360 degrees as the cursor moves from the left edge to the right edge of the
window, the values of mouseX must be converted to values from 0.0 to 2π. In the
following example, the map() function is used to make this conversion. The resulting
value is used as the parameter to rotate() to turn the line as the mouse moves back
and forth between the left and right edge of the display window.

 // Use rotate() to move a shape

 void setup() {

 size(100, 100);

 strokeWeight(8);

 smooth();

 }

 void draw() {

 background(204);

 float angle = map(mouseX, 0, width, 0, TWO_PI);

 translate(50, 50);

 rotate(angle);

 line(0, 0, 40, 0);

 }

23-09

23-10

Reas_04_173-278.indd Sec3:209Reas_04_173-278.indd Sec3:209 5/23/07 2:23:46 PM5/23/07 2:23:46 PM

210 Input 1: Mouse I

Using the mouseX and mouseY variables with an if structure allows the cursor to
select regions of the screen. The following examples demonstrate the cursor making
a selection between different areas of the display window.

 // Cursor position selects the left or right half

 // of the display window

 void setup() {

 size(100, 100);

 noStroke();

 fill(0);

 }

 void draw() {

 background(204);

 if (mouseX < 50) {

 rect(0, 0, 50, 100); // Left

 } else {

 rect(50, 0, 50, 100); // Right

 }

 }

 // Cursor position selects the left, middle,

 // or right third of the display window

 void setup() {

 size(100, 100);

 noStroke();

 fill(0);

 }

 void draw() {

 background(204);

 if (mouseX < 33) {

 rect(0, 0, 33, 100); // Left

 } else if ((mouseX >= 33) && (mouseX <= 66)) {

 rect(33, 0, 33, 100); // Middle

 } else {

 rect(66, 0, 33, 100); // Right

 }

 }

23-11

23-12

Reas_04_173-278.indd Sec3:210Reas_04_173-278.indd Sec3:210 5/23/07 2:23:47 PM5/23/07 2:23:47 PM

211 Input 1: Mouse I

 // Cursor position selects a quadrant of

 // the display window

 void setup() {

 size(100, 100);

 noStroke();

 fill(0);

 }

 void draw() {

 background(204);

 if ((mouseX <= 50) && (mouseY <= 50)) {

 rect(0, 0, 50, 50); // Upper-left

 } else if ((mouseX <= 50) && (mouseY > 50)) {

 rect(0, 50, 50, 50); // Lower-left

 } else if ((mouseX > 50) && (mouseY < 50)) {

 rect(50, 0, 50, 50); // Upper-right

 } else {

 rect(50, 50, 50, 50); // Lower-right

 }

 }

 // Cursor position selects a rectangular area to

 // change the fill color

 void setup() {

 size(100, 100);

 noStroke();

 fill(0);

 }

 void draw() {

 background(204);

 if ((mouseX > 40) && (mouseX < 80) &&

 (mouseY > 20) && (mouseY < 80)) {

 fill(255);

 } else {

 fill(0);

 }

 rect(40, 20, 40, 60);

 }

23-13

23-14

Reas_04_173-278.indd Sec3:211Reas_04_173-278.indd Sec3:211 5/23/07 2:23:47 PM5/23/07 2:23:47 PM

212 Input 1: Mouse I

Mouse buttons

Computer mice and other similar input devices typically have between one and three
buttons, and Processing can detect when these buttons are pressed. The button status
and the cursor position together allow the mouse to perform different actions. For
example, pressing a button when the mouse is over an icon can select it, so the icon can
be moved to a different location on screen. The mousePressed variable is true if any
mouse button is pressed and false if no mouse button is pressed. The variable
mouseButton is LEFT, CENTER, or RIGHT depending on the mouse button most recently
pressed. The mousePressed variable reverts to false as soon as the button is released,
but the mouseButton variable retains its value until a different button is pressed. These
variables can be used independently or in combination to control your software. Run
these programs to see how the software responds to your fi ngers.

 // Set the square to white when a mouse button is pressed

 void setup() {

 size(100, 100);

 }

 void draw() {

 background(204);

 if (mousePressed == true) {

 fill(255); // White

 } else {

 fill(0); // Black

 }

 rect(25, 25, 50, 50);

 }

 // Set the square to black when the left mouse button

 // is pressed and white when the right button is pressed

 void setup() {

 size(100, 100);

 }

 void draw() {

 if (mouseButton == LEFT) {

 fill(0); // Black

 } else if (mouseButton == RIGHT) {

 fill(255); // White

 } else {

23-15

23-16

Reas_04_173-278.indd Sec3:212Reas_04_173-278.indd Sec3:212 5/23/07 2:23:47 PM5/23/07 2:23:47 PM

213 Input 1: Mouse I

 fill(126); // Gray

 }

 rect(25, 25, 50, 50);

 }

 // Set the square to black when the left mouse button

 // is pressed, white when the right button is pressed,

 // and gray when a button is not pressed

 void setup() {

 size(100, 100);

 }

 void draw() {

 if (mousePressed == true) {

 if (mouseButton == LEFT) {

 fill(0); // Black

 } else if (mouseButton == RIGHT) {

 fill(255); // White

 }

 } else {

 fill(126); // Gray

 }

 rect(25, 25, 50, 50);

 }

Not all mice have multiple buttons, and if software is distributed widely, the interaction
should not rely on detecting which button is pressed. For example, if you are posting
your work on the Web, don’t rely on the middle or right button for using the software
because many users won’t have a two- or three-button mouse.

Cursor icon

The cursor can be hidden with the noCursor() function and can be set to appear as a
different icon with the cursor() function. When the noCursor() function is run, the
cursor icon disappears as it moves into the display window. To give feedback about the
location of the cursor within the software, a custom cursor can be drawn and controlled
with the mouseX and mouseY variables.

23-17

23-16
cont.

Reas_04_173-278.indd Sec3:213Reas_04_173-278.indd Sec3:213 5/23/07 2:23:48 PM5/23/07 2:23:48 PM

214 Input 1: Mouse I

// Draw an ellipse to show the position of the hidden cursor

void setup() {

 size(100, 100);

 strokeWeight(7);

 smooth();

 noCursor();

}

void draw() {

 background(204);

 ellipse(mouseX, mouseY, 10, 10);

}

If noCursor() is run, the cursor will be hidden while the program is running until the
cursor() function is run to reveal it.

// Hides the cursor until a mouse button is pressed

void setup() {

 size(100, 100);

 noCursor();

}

void draw() {

 background(204);

 if (mousePressed == true) {

 cursor();

 }

}

Adding a parameter to the cursor() function allows it to be changed to another icon.
The self-descriptive options for the MODE parameter are ARROW, CROSS, HAND, MOVE,
TEXT, and WAIT.

// Draws the cursor as a hand when a mouse button is pressed

void setup() {

 size(100, 100);

 smooth();

}

void draw() {

 background(204);

23-18

23-19

23-20

Reas_04_173-278.indd Sec3:214Reas_04_173-278.indd Sec3:214 5/23/07 2:23:48 PM5/23/07 2:23:48 PM

215 Input 1: Mouse I

 if (mousePressed == true) {

 cursor(HAND);

 } else {

 cursor(MOVE);

 }

 line(mouseX, 0, mouseX, height);

 line(0, mouseY, height, mouseY);

}

These cursor images are part of your computer’s operating system and will appear
differently on different machines.

 Exercises
1. Control the position of a shape with the mouse. Strive to create a more interesting
 relation than one directly mimicking the position of the cursor.
2. Invent three unique shapes that behave differently in relation to the mouse. Each
 shape’s behavior should change when the mouse is pressed. Relate the form of
 each shape to its behavior.
3. Create a custom cursor that changes as the mouse moves through the
 display window.

23-20
cont.

Reas_04_173-278.indd Sec3:215Reas_04_173-278.indd Sec3:215 5/23/07 2:23:49 PM5/23/07 2:23:49 PM

Reas_04_173-278.indd Sec3:216Reas_04_173-278.indd Sec3:216 5/23/07 2:23:49 PM5/23/07 2:23:49 PM

217

Drawing 1: Static Forms
This unit discusses drawing in relation to software and presents code for basic
drawing programs.

The activity of drawing translates an individual’s perception and imagination into visual
form. The differences between the drawings of different people demonstrates the fact
that every hand and mind is unique. Drawings range from the mechanical grids of Sol
LeWitt to the playful lines of Paul Klee to the expressionist fi gures of Egon Schiele and
far beyond. Each surface and instrument offers a different tactile experience. Ink,
charcoal, crayon, vellum, and cloth all enable unique sorts of drawing. Less conventional
materials, such as chocolate, dirt, glue, and light, have been used with signifi cant results.
Materials can be applied with fi ngers, toes, or elbows or with utensils like pencils,
brushes, and sticks. Every choice of material and application infl uences the viewer’s
perception of what the composition communicates.
 The idea of drawing with computers dates back to the 1960s. Ivan Sutherland
created the remarkable Sketchpad software for his PhD dissertation in 1963. Sketchpad,
the progenitor of computer-aided drawing software (CAD) such as Autodesk’s AutoCAD
and Adobe Illustrator, used the newly invented light pen input device that made it
possible to draw directly to the screen. The software had features to convert imprecise
marks into perfect straight lines, arcs, and circles. It could also constrain marks to make
them identical, parallel, or perpendicular. Most example drawings demonstrated the
features and accuracy of the system for making technical drawings, but Sutherland also
discussed the use of his software for other purposes and created an example of an
animated portrait.
 Logo is another innovative software drawing system with origins in the 1960s.
Seymour Papert developed Logo’s turtle graphics as a way to get children thinking about
geometry. Logo uses text commands to control a turtle on the screen that leaves a trail as
it travels. The command RT 90 turns the turtle 90° to the right, and FD 100 moves the
turtle forward 100 units. One early Logo implementation employed a robotic turtle
named Irving that moved around the room according to the children’s instructions.
 In contrast to the interactive approach of Sketchpad and Logo, most early software
drawing systems translated input directly from code to paper. Software drawing
pioneers of the early 1960s included A. Michael Noll, Frieder Nake, Georg Nees, and
Charles Csuri. Their images were realized with computer-driven plotters, a common
output device of that time. A plotter is a pen attached to a moving mechanical arm
controlled by motors through a computer. Many drawings from this period utilized the
technology in a way that showcased the precision of the tools. Another wave of
individuals utilizing software plotters emerged in the 1970s and 1980s. These artists
included Manfred Mohr, Jean-Pierre Hébert, and Mark Wilson.

Reas_04_173-278.indd Sec3:217Reas_04_173-278.indd Sec3:217 5/23/07 2:23:49 PM5/23/07 2:23:49 PM

218 Drawing 1: Static Forms

 Bridging the era of plotters to present-day technologies, Harold Cohen’s AARON is
arguably the most sophisticated drawing software ever written. The software has
undergone continuous development since it was fi rst created in 1973. AARON’s drawings
have been featured in some of the world’s most prominent museums, including the Tate
Gallery in London and the Stedelijk Museum in Amsterdam. AARON initially created
abstract drawings and over the years has been refi ned to add rocks, then plants, and
fi nally people. Cohen has encoded his ideas about drawing as a set of rules that comprise
the AARON software. The program operates autonomously and makes a unique drawing
each time it is run. The software makes every composition decision and produces
drawings that often surprise Cohen.
 Contemporary artists continue to write innovative software to enable unique
approaches to drawing. Input tools can severely limit drawing with software. The quality
of drawing with a device such as the mouse is constrained by the small amount of
information transferred from the hand into the software. The hand, with its strength
and fl exibility, is capable of gestures of the smallest nuance in pressure and direction,
but the mouse receives only position information. Such limitations were diminished
with the introduction of drawing tablets and stylus devices capable of reading pressure
and direction, but no matter how much these devices improve, they will only
approximate the quality of using physical instruments and media.
 Rather than applying a “traditional” model of drawing to the software medium,
another approach is to address the possibilities tangential to the constraints. When
using a new medium, why constrain oneself to imitating other media? In the context of
this book, we consider the potential of software in contrast to physical media and
address drawing methods that are unique to software.

Simple tools

The easiest way to draw with Processing is to not include the background() function
inside draw(). This omission allows the display window to accumulate pixels from
frame to frame.

 // Draw dots at the position of the cursor

 void setup() {

 size(100, 100);

 }

 void draw() {

 point(mouseX, mouseY);

 }

24-01

Reas_04_173-278.indd Sec3:218Reas_04_173-278.indd Sec3:218 5/23/07 2:23:50 PM5/23/07 2:23:50 PM

219 Drawing 1: Static Forms

 // Draw from the previous mouse location to the current

 // mouse location to create a continuous line

 void setup() {

 size(100, 100);

 }

 void draw() {

 line(mouseX, mouseY, pmouseX, pmouseY);

 }

 // Draw a line only when a mouse button is pressed

 void setup() {

 size(100, 100);

 }

 void draw() {

 if (mousePressed == true) {

 line(mouseX, mouseY, pmouseX, pmouseY);

 }

 }

 // Draw lines with different gray values when a mouse

 // button is pressed or not pressed

 void setup() {

 size(100, 100);

 }

 void draw() {

 if (mousePressed == true) { // If mouse is pressed,

 stroke(255); // set the stroke to white

 } else { // Otherwise,

 stroke(0); // set to black

 }

 line(mouseX, mouseY, pmouseX, pmouseY);

 }

24-02

24-03

24-04

Reas_04_173-278.indd Sec3:219Reas_04_173-278.indd Sec3:219 5/23/07 2:23:50 PM5/23/07 2:23:50 PM

220 Drawing 1: Static Forms

Drawing with software is not restricted to making a single mark that follows the cursor.
A for structure makes it possible to create more complex drawings with just a few lines
of code. The following examples use a for structure to draw many elements to the
screen at each frame.

 void setup() {

 size(100, 100);

 }

 void draw() {

 for (int i = 0; i < 50; i += 2) {

 point(mouseX+i, mouseY+i);

 }

 }

 void setup() {

 size(100, 100);

 }

 void draw() {

 for (int i = -14; i <= 14; i += 2) {

 point(mouseX+i, mouseY);

 }

 }

 void setup() {

 size(100, 100);

 noStroke();

 fill(255, 40);

 background(0);

 }

 void draw() {

 if (mousePressed == true) {

 fill(0, 26);

 } else {

 fill(255, 26);

 }

 for (int i = 0; i < 6; i++) {

 ellipse(mouseX + i*i, mouseY, i, i);

 }

 }

24-05

24-06

24-07

Reas_04_173-278.indd Sec3:220Reas_04_173-278.indd Sec3:220 5/23/07 2:23:51 PM5/23/07 2:23:51 PM

221 Drawing 1: Static Forms

Drawing with images

Images can also be used as drawing tools. If an image is positioned in relation to the
cursor at each frame, its pixels can be used to create visually complex compositions.
In the following examples, the image follows the position of the cursor.

 // Draw with an image sliver

 PImage lineImage;

 void setup() {

 size(100, 100);

 // This image is 100 pixels wide, but one pixel tall

 lineImage = loadImage("imageline.jpg");

 }

 void draw() {

 image(lineImage, mouseX-lineImage.width/2, mouseY);

 }

 // Draw with an image that has transparency

 PImage alphaImg;

 void setup() {

 size(100, 100);

 // This image is partially transparent

 alphaImg = loadImage("alphaArch.png");

 }

 void draw() {

 int ix = mouseX - alphaImg.width/2;

 int iy = mouseY - alphaImg.height/2;

 image(alphaImg, ix, iy);

 }

 Exercises
1. Make a custom drawing tool that changes its color when a mouse button is pressed.
2. Make a custom drawing tool that changes its form when a mouse button is pressed.
3. Load an image and use it as a drawing tool.

24-08

24-09

Reas_04_173-278.indd Sec3:221Reas_04_173-278.indd Sec3:221 5/23/07 2:23:51 PM5/23/07 2:23:51 PM

1 2 3 4 5 6
Q W E R T Y
A S D F G H
Z X C V B

Reas_04_173-278.indd Sec3:222Reas_04_173-278.indd Sec3:222 5/23/07 2:30:55 PM5/23/07 2:30:55 PM

223

Input 2: Keyboard
This unit introduces keyboard input.

Syntax introduced:
keyPressed, key, keyCode

Keyboards are typically used to input characters for composing documents, Email, and
instant messages, but the keyboard has potential for use beyond its original intent. The
migration of the keyboard from typewriter to computer expanded its function to enable
launching software, moving through the menus of software applications, and
navigating 3D environments in games. When writing your own software, you have the
freedom to use the keyboard data any way you wish. For example, basic information
such as the speed and rhythm of the fi ngers can be determined by the rate at which keys
are pressed. This information could control the speed of an event or the quality of
motion. It’s also possible to ignore the characters printed on the keyboard itself and use
the location of each key relative to the keyboard grid as a numeric position.
 The modern computer keyboard is a direct descendant of the typewriter. The
position of the keys on an English-language keyboard is inherited from early
typewriters. This layout is called QWERTY because of the order of the top row of letter
keys. It was developed for typewriters to put physical distance between frequently typed
letter pairs, helping reduce the likelihood of the typebars colliding and jamming as they
hit the ribbon. There are variations on this layout for different languages including the
AWERTY layout for the French language and the QWERTZ layout for German. The
alphabetic differences are small, but the symbol placement on these keyboard variations
can be extreme. For example, commonly used programming symbols such as { and } are
not printed on French keyboards, but can be accessed through the Alt Gr key. Keyboards
for languages with different alphabets often keep the same physical key arrangement
but replace the characters with, for example, Greek, Arabic, or Thai characters. Keyboards
for alphabets with thousands of characters, such as Chinese, don’t have a direct mapping
between key and character—they use a system where a series of key presses is
interpreted by the operating system to build each symbol.
 In recent years we’ve seen the dominance of keyboards challenged by alternate
input methods on small, handheld devices such as the Palm Pilot. Although the Palm’s
Graffi ti software makes it simple to translate hand gestures into characters, the mini-
keyboards on mobile phones and other personal digital assistants have reconfi rmed
many people’s preference for inputting data with a keyboard. Some users have become
adept at typing characters with a mobile-phone keypad, while others opt for phones
with miniature QWERTY keyboards. On the other hand, speech recognition is always
improving and provides an alternative to the keyboard for certain kinds of tasks.

Reas_04_173-278.indd Sec3:223Reas_04_173-278.indd Sec3:223 5/23/07 2:30:27 PM5/23/07 2:30:27 PM

224 Input 2: Keyboard

Keyboard data

Processing registers the most recently pressed key and whether a key is currently
pressed. The boolean variable keyPressed is true if a key is pressed and is false
if not. Including this variable in an if structure allows lines of code to run only if a key is
pressed. The keyPressed variable remains true while the key is held down and
becomes false only when the key is released.

 // Draw a rectangle while any key is pressed

 void setup() {

 size(100, 100);

 smooth();

 strokeWeight(4);

 }

 void draw() {

 background(204);

 if (keyPressed == true) { // If the key is pressed,

 line(20, 20, 80, 80); // draw a line

 } else { // Otherwise,

 rect(40, 40, 20, 20); // draw a rectangle

 }

 }

 // Move a line while any key is pressed

 int x = 20;

 void setup() {

 size(100, 100);

 smooth();

 strokeWeight(4);

 }

 void draw() {

 background(204);

 if (keyPressed == true) { // If the key is pressed

 x++; // add 1 to x

 }

 line(x, 20, x-60, 80);

 }

25-01

25-02

Reas_04_173-278.indd Sec3:224Reas_04_173-278.indd Sec3:224 5/23/07 2:23:53 PM5/23/07 2:23:53 PM

225 Input 2: Keyboard

The key variable is of the char data type and stores the most recently pressed key. The
key variable can store only one value at a time. The most recent key pressed will be the
only value stored in the variable. A key can be displayed on screen by loading a font and
using the text() function (p. 112).

 PFont font;

 void setup() {

 size(100, 100);

 font = loadFont("ThesisMonoLight-72.vlw");

 textFont(font);

 }

 void draw() {

 background(0);

 text(key, 28, 75);

 }

The key variable may be used to determine whether a specifi c key is pressed. The
following example uses the expression key == 'A' to test if the A key is pressed. The
single quotes signify A as the data type char. The expression key == "A" will cause an
error because the double quotes signify the A as a String, and it’s not possible to
compare a String with a char. The logical AND symbol, the && operator, is used to
connect the expression with the keyPressed variable to ascertain that the key pressed
is the uppercase A.

 void setup() {

 size(100, 100);

 smooth();

 strokeWeight(4);

 }

 void draw() {

 background(204);

 // If the 'A' key is pressed draw a line

 if ((keyPressed == true) && (key == 'A')) {

 line(50, 25, 50, 75);

 } else { // Otherwise, draw an ellipse

 ellipse(50, 50, 50, 50);

 }

 }

25-03

25-04

Reas_04_173-278.indd Sec3:225Reas_04_173-278.indd Sec3:225 5/23/07 2:23:53 PM5/23/07 2:23:53 PM

226 Input 2: Keyboard

If you want to check for both uppercase and lowercase letters, you have to extend the
relational expression with a logical OR, the || relational operator. Line 10 in the previous
program would be changed to

 if ((keyPressed == true) && ((key == 'a') || (key == 'A'))) {

Because each character has a numeric value as defi ned by the ASCII table (p. 665), the
value of the key variable can be used to control visual attributes such as the position
and color of shape elements.

 int x = 0;

 void setup() {

 size(100, 100);

 }

 void draw() {

 if (keyPressed == true) {

 x = key - 32;

 rect(x, -1, 20, 101);

 }

 }

 float angle = 0;

 void setup() {

 size(100, 100);

 smooth();

 strokeWeight(8);

 }

 void draw() {

 background(204);

 if (keyPressed == true) {

 if ((key >= 32) && (key <= 126)) {

 // If the key is alphanumeric,

 // convert its value into an angle

 angle = map(key, 32, 126, 0, TWO_PI);

 }

 }

 arc(50, 50, 66, 66, angle-PI/6, angle+PI/6);

 }

25-05

25-06

Reas_04_173-278.indd Sec3:226Reas_04_173-278.indd Sec3:226 5/23/07 2:23:54 PM5/23/07 2:23:54 PM

227 Input 2: Keyboard

Coded keys

In addition to reading key values for numbers, letters, and symbols, Processing can also
read the values from other keys including the arrow keys and the Alt, Control, Shift,
Backspace, Tab, Enter, Return, Escape, and Delete keys. The variable keyCode stores the
ALT, CONTROL, SHIFT, UP, DOWN, LEFT, and RIGHT keys as constants. Before determining
which coded key is pressed, it’s necessary to check fi rst to see if the key is coded. The
expression key == CODED is true if the key is coded and false otherwise. Even though
not alphanumeric, the keys included in the ASCII (p. 664) specifi cation (BACKSPACE, TAB,
ENTER, RETURN, ESC, and DELETE) will not be identifi ed as a coded key. If you’re making
cross-platform projects, note that the Enter key is commonly used on PCs and UNIX and
the Return key is used on Macintosh. Check for both Enter and Return to make sure your
program will work for all platforms (see code 26-08).

 int y = 35;

 void setup() {

 size(100, 100);

 }

 void draw() {

 background(204);

 line(10, 50, 90, 50);

 if (key == CODED) {

 if (keyCode == UP) {

 y = 20;

 } else if (keyCode == DOWN) {

 y = 50;

 }

 } else {

 y = 35;

 }

 rect(25, y, 50, 30);

 }

 Exercises
1. Use the number keys on the keyboard to modify the movement of a line.
2. Create a typing program to display a different image for each letter on the keyboard.
3. Use the arrow keys to change the position of a shape within the display window.

25-07

Reas_04_173-278.indd Sec3:227Reas_04_173-278.indd Sec3:227 5/23/07 2:23:54 PM5/23/07 2:23:54 PM

Reas_04_173-278.indd Sec3:228Reas_04_173-278.indd Sec3:228 5/23/07 2:23:54 PM5/23/07 2:23:54 PM

229

Input 3: Events
This unit introduces mouse and keyboard events for detecting actions and receiving data.

Syntax introduced:
mousePressed(), mouseReleased(), mouseMoved(), mouseDragged()

keyPressed(), keyReleased()

loop(), redraw()

Functions called events alter the normal fl ow of a program when an action such as a key
press or mouse movement takes place. An event is a polite interruption of the normal
fl ow of a program. Key presses and mouse movements are stored until the end of
draw(), where they can take action that won’t disturb drawing that’s currently in
progress. The code inside an event function is run once each time the corresponding
event occurs. For example, if a mouse button is pressed, the code inside the
mousePressed() function will run once and will not run again until the button has
been released and is pressed again. This allows data produced by the mouse and
keyboard to be read independently from what is happening in the rest of the program. It
is also more accurate, because even if the mouse moves several times before draw() is
fi nished, the value for mouseX and mouseY will be the same throughout the method
(again, this avoids interruption of a composition in the middle of drawing).

Mouse events

The mouse event functions are mousePressed(), mouseReleased(), mouseMoved(),
and mouseDragged():

 mousePressed() Code inside this block is run one time when a mouse button is pressed

 mouseReleased() Code inside this block is run one time when a mouse button is released

 mouseMoved() Code inside this block is run one time when the mouse is moved

 mouseDragged() Code inside this block is run one time when the mouse is moved

 while a mouse button is pressed

The mousePressed() function works differently than the mousePressed variable
discussed in Input 1 (p. 205). The value of the mousePressed variable is true until the
mouse button is released. It can therefore be used within draw() to have a line of code
run while the mouse is pressed. In contrast, the code inside the mousePressed()
function only runs once when a button is pressed. This makes it useful when a mouse
click is used to trigger an action, such as clearing the screen. In the following example,
the background value becomes lighter each time a mouse button is pressed. Run the
example on your computer to see the change in response to your fi nger.

Reas_04_173-278.indd Sec3:229Reas_04_173-278.indd Sec3:229 5/23/07 2:23:55 PM5/23/07 2:23:55 PM

230 Input 3: Events

 float gray = 0;

 void setup() {

 size(100, 100);

 }

 void draw() {

 background(gray);

 }

 void mousePressed() {

 gray += 20;

 }

The following example is the same as the one above, but the gray variable is set in the
mouseReleased() event function, which is called once every time a key is released.
This difference can be seen only by running the program and clicking the mouse button.
Keep the mouse button pressed for a long time and notice that the background value
changes only when the button is released.

 float gray = 0;

 void setup() {

 size(100, 100);

 }

 void draw() {

 background(gray);

 }

 void mouseReleased() {

 gray += 20;

 }

Before drawing inside these functions, it’s important to think about the fl ow of the
program. In this example, circles are drawn inside mousePressed() and they remain
on screen because there is no background() inside draw(). But if background() is
used, visual elements drawn within one of the mouse event functions will appear on
screen for only a single frame. In fact, you’ll notice this example has nothing at all inside
draw(), but it needs to be there to force Processing to keep listening for the events. If a
background() function were run inside draw(), the rectangles would fl ash onto the
screen and disappear.

26-01

26-02

Reas_04_173-278.indd Sec3:230Reas_04_173-278.indd Sec3:230 5/23/07 2:23:55 PM5/23/07 2:23:55 PM

231 Input 3: Events

 void setup() {

 size(100, 100);

 fill(0, 102);

 }

 void draw() { } // Empty draw() keeps the program running

 void mousePressed() {

 rect(mouseX, mouseY, 33, 33);

 }

The code inside the mouseMoved() and mouseDragged() event functions is run when
there is a change in the mouse position. The code in the mouseMoved() block is run at
the end of each frame when the mouse moves and no button is pressed. The code in the
mouseDragged() block does the same when the mouse button is pressed. If the mouse
stays in the same position from frame to frame, the code inside these functions does not
run. In this example, the gray circle follows the mouse when the button is not pressed
and the white circle follows the mouse when a mouse button is pressed.

 int dragX, dragY, moveX, moveY;

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 }

 void draw() {

 background(204);

 fill(0);

 ellipse(dragX, dragY, 33, 33); // Black circle

 fill(153);

 ellipse(moveX, moveY, 33, 33); // Gray circle

 }

 void mouseMoved() { // Move gray circle

 moveX = mouseX;

 moveY = mouseY;

 }

 void mouseDragged() { // Move black circle

 dragX = mouseX;

 dragY = mouseY;

 }

26-03

26-04

Reas_04_173-278.indd Sec3:231Reas_04_173-278.indd Sec3:231 5/23/07 2:23:56 PM5/23/07 2:23:56 PM

232 Input 3: Events

Key events

Each key press is registered through the keyboard event functions keyPressed() and
keyReleased():

 keyPressed() Code inside this block is run one time when any key is pressed

 keyReleased() Code inside this block is run one time when any key is released

Each time a key is pressed, the code inside the keyPressed() block is run once.1 Within
this block, it’s possible to test which key has been pressed and to use this value for any
purpose. In this example, the numeric value of the key is used to position a white
rectangle on the screen.

 void setup() {

 size(100, 100);

 noStroke();

 fill(255, 51);

 }

 void draw() { } // Empty draw() keeps the program running

 void keyPressed() {

 int y = key - 32;

 rect(0, y, 100, 4);

 }

Each time a key is released, the code inside the keyReleased() block is run once. In the
following example, each time the T key is pressed, a boolean variable is set to true that
allows a T shape to display within draw(). When the key is released, this boolean is set
to false and the shape is no longer displayed.

 boolean drawT = false;

 void setup() {

 size(100, 100);

 noStroke();

 }

 void draw() {

 background(204);

 if (drawT == true) {

 rect(20, 20, 60, 20);

 rect(39, 40, 22, 45);

 }

 }

26-05

26-06

Reas_04_173-278.indd Sec3:232Reas_04_173-278.indd Sec3:232 5/23/07 2:23:56 PM5/23/07 2:23:56 PM

233 Input 3: Events

 void keyPressed() {

 if ((key == 'T') || (key == 't')) {

 drawT = true;

 }

 }

 void keyReleased() {

 drawT = false;

 }

The following two examples use keyPressed() to read and analyze input from the
keyboard. Each utilizes the String methods introduced in Data 3 (p. 105).

 // An extremely minimal text editor, it can only insert

 // and remove characters from a single line

 PFont font;

 String letters = "";

 void setup() {

 size(100, 100);

 font = loadFont("Eureka-24.vlw");

 textFont(font);

 stroke(255);

 fill(0);

 }

 void draw() {

 background(204);

 float cursorPosition = textWidth(letters);

 line(cursorPosition, 0, cursorPosition, 100);

 text(letters, 0, 50);

 }

 void keyPressed() {

 if (key == BACKSPACE) { // Backspace

 if (letters.length() > 0) {

 letters = letters.substring(0, letters.length()-1);

 }

 } else if (textWidth(letters+key) < width){

 letters = letters+key;

 }

 }

26-06
cont.

26-07

Reas_04_173-278.indd Sec3:233Reas_04_173-278.indd Sec3:233 5/23/07 2:23:57 PM5/23/07 2:23:57 PM

234 Input 3: Events

 // Compare the input from the keyboard to see if it's

 // either "black" or "gray" and set the background

 // value accordingly. Press Enter or Return to input

 // the data

 PFont font;

 String letters = "";

 int back = 102;

 void setup() {

 size(100, 100);

 font = loadFont("Eureka-24.vlw");

 textFont(font);

 textAlign(CENTER);

 }

 void draw() {

 background(back);

 text(letters, 50, 50);

 }

 void keyPressed() {

 if ((key == ENTER) || (key == RETURN)) {

 letters = letters.toLowerCase();

 println(letters); // Print to console to see input

 if (letters.equals("black")) {

 back = 0;

 } else if (letters.equals("gray")) {

 back = 204;

 }

 letters = ""; // Clear the variable

 } else if ((key > 31) && (key != CODED)) {

 // If the key is alphanumeric, add it to the String

 letters = letters + key;

 }

 }

26-08

Reas_04_173-278.indd Sec3:234Reas_04_173-278.indd Sec3:234 5/23/07 2:23:57 PM5/23/07 2:23:57 PM

235 Input 3: Events

Controlling the flow

Programs written with draw() display frames to the screen as quickly as possible. The
frameRate() function is used to set a limit on the number of frames that will display
each second, and the noLoop() function can be used to stop draw() from looping. The
additional functions loop() and redraw() provide more options when used in
combination with the mouse and keyboard event functions.
 If a program has been paused with noLoop(), running loop() resumes its action.
Because the event functions are the only elements that continue to run when a program
is paused with noLoop(), the loop() function can be used within these events to
continue running the code in draw(). The following example runs the draw() function
for two seconds each time a mouse button is pressed and then pauses the program after
that time has elapsed.

int frame = 0;

void setup() {

 size(100, 100);

 frameRate(30);

}

void draw() {

 if (frame > 60) { // If 60 frames since the mouse

 noLoop(); // was pressed, stop the program

 background(0); // and turn the background black.

 } else { // Otherwise, set the background

 background(204); // to light gray and draw lines

 line(mouseX, 0, mouseX, 100); // at the mouse position

 line(0, mouseY, 100, mouseY);

 frame++;

 }

}

void mousePressed() {

 loop();

 frame = 0;

}

The redraw() function runs the code in draw() one time and then halts the execution.
It’s helpful when the display needn’t be updated continuously. The following example
runs the code in draw() once each time a mouse button is pressed.

26-09

Reas_04_173-278.indd Sec3:235Reas_04_173-278.indd Sec3:235 5/23/07 2:23:57 PM5/23/07 2:23:57 PM

236 Input 3: Events

void setup() {

 size(100, 100);

 noLoop();

}

void draw() {

 background(204);

 line(mouseX, 0, mouseX, 100);

}

void mousePressed() {

 redraw(); // Run the code in draw one time

}

 Exercises
1. Animate a shape to react when the mouse is pressed and when it is released.
2. Create two shapes and give each a different relation to the mouse. Design the
 behaviors of each shape so that it has one behavior when the mouse is moved
 and has another behavior when the mouse is dragged.
3. Write a program to update the display window only when a key is pressed.

 Notes

1. If a key is held down for an extended time, the code inside the keyPressed() block will run many times in a

 rapid succession. Most operating systems will take over and repeatedly call the keyPressed() function.

 The amount of time it takes to start repeating and the rate of repetitions will be different from computer to

 computer, depending on the keyboard perference settings.

26-10

Reas_04_173-278.indd Sec3:236Reas_04_173-278.indd Sec3:236 5/23/07 2:23:58 PM5/23/07 2:23:58 PM

237

Input 4: Mouse II
This unit introduces techniques for constraining and augmenting mouse data.

Syntax introduced:
constrain(), dist(), abs(), atan2()

The position of the cursor is a point within the display window that is updated every
frame. This point can be modifi ed and analyzed in relation to other elements to calculate
new values. It’s possible to constrain the mouse values to a specifi c range, calculate the
distance between the mouse and another position, interpolate between two values,
determine the speed of the mouse movement, and calculate the angle of the mouse in
relation to another position. The code presented below enables each of these operations.

Constrain

The constrain() function limits a number to a range. It has three parameters:

 constrain(value, min, max)

The value parameter is the number to limit, the min parameter is the minimum
possible value, and the max parameter is the maximum possible value. This function
returns the min number if the value parameter is less than or equivalent to min, returns
the max number if the value parameter is more than or equivalent to max, and returns
value without change if it’s between the min and the max.

int x = constrain(35, 10, 90); // Assign 35 to x

int y = constrain(5, 10, 90); // Assign 10 to y

int z = constrain(91, 10, 90); // Assign 90 to z

When used with the mouseX or mouseY variables, this function can set maximum and
minimum values for the mouse coordinate data.

 // Constrains the position of the ellipse to a region

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 }

27-01

27-02

Reas_04_173-278.indd Sec3:237Reas_04_173-278.indd Sec3:237 5/23/07 2:23:58 PM5/23/07 2:23:58 PM

238 Input 4: Mouse II

 void draw() {

 background(0);

 // Limits mx between 35 and 65

 float mx = constrain(mouseX, 35, 65);

 // Limits my between 40 and 60

 float my = constrain(mouseY, 40, 60);

 fill(102);

 rect(20, 25, 60, 50);

 fill(255);

 ellipse(mx, my, 30, 30);

 }

Distance

The dist() function calculates the distance between two coordinates. This value can be
used to determine the cursor’s distance from a point on screen in addition to its current
position. The dist() function has four parameters:

 dist(x1, y1, x2, y2)

The x1 and y1 parameters set the coordinate of the fi rst point, and the x2 and y2
parameters set the coordinate of the second point. The distance between the two points
is calculated as a fl oating-point number and is returned:

float x = dist(0, 0, 50, 0); // Assign 50.0 to x

float y = dist(50, 0, 50, 90); // Assign 90.0 to y

float z = dist(30, 20, 80, 90); // Assign 86.023254 to z

The value returned from dist() can be used to set the properties of shapes:

 // The distance between the center of the display

 // window and the cursor sets the diameter of the circle

 void setup() {

 size(100, 100);

 smooth();

 }

 void draw() {

 background(0);

 float d = dist(width/2, height/2, mouseX, mouseY);

 ellipse(width/2, height/2, d*2, d*2);

 }

27-02
cont.

27-03

27-04

Reas_04_173-278.indd Sec3:238Reas_04_173-278.indd Sec3:238 5/23/07 2:23:59 PM5/23/07 2:23:59 PM

239 Input 4: Mouse II

 // Draw a grid of circles and calculate the

 // distance to each to set the size

 float maxDistance;

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 fill(0);

 maxDistance = dist(0, 0, width, height);

 }

 void draw() {

 background(204);

 for (int i = 0; i <= width; i += 20) {

 for (int j = 0; j <= height; j += 20) {

 float mouseDist = dist(mouseX, mouseY, i, j);

 float diameter = (mouseDist / maxDistance) * 66.0;

 ellipse(i, j, diameter, diameter);

 }

 }

 }

Easing

Easing, also called interpolation, is a technique for moving between two points. By
moving a fraction of the total distance each frame, a shape can decelerate (or accelerate)
as it approaches a target location. This diagram shows what happens when a point
always moves half of the way between its current position and the destination:

As the shape approaches the target position, the distance moved each frame decreases;
therefore, the shape slows down. In the following example the x variable is the current
horizontal position of the circle and the targetX variable is the destination position.

Start Target

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

27-05

Reas_04_173-278.indd Sec3:239Reas_04_173-278.indd Sec3:239 5/23/07 2:23:59 PM5/23/07 2:23:59 PM

240 Input 4: Mouse II

The easing variable sets the fraction of the distance between the circle’s current
position and the position of the mouse that the circle moves each frame. The value of
this variable changes how quickly the circle will reach the target. The value must always
be between 0.0 and 1.0, and numbers closer to 0.0 cause the easing to take more time. An
easing value of 0.5 means the circle will move half the distance each frame and an
easing value of 0.01 means the circle will move one hundredth of the distance each
frame. The top ellipse is drawn at the targetX position and the bottom ellipse is drawn
at the interpolated position.

 float x = 0.0;

 float easing = 0.05; // Numbers 0.0 to 1.0

 void setup() {

 size(100, 100);

 smooth();

 }

 void draw() {

 background(0);

 float targetX = mouseX;

 x += (targetX - x) * easing;

 ellipse(mouseX, 30, 40, 40);

 ellipse(x, 70, 40, 40);

 }

To apply the same principle simultaneously to the x- and y-coordinate values, add an
additional set of variables and test for the distance for both. In this example the small
circle is always at the target position controlled by the cursor, and the large circle is
positioned with the easing equation.

 float x = 0;

 float y = 0;

 float easing = 0.05; // Numbers 0.0 to 1.0

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 }

 void draw() {

 background(0);

 float targetX = mouseX;

 float targetY = mouseY;

27-06

27-07

Reas_04_173-278.indd Sec3:240Reas_04_173-278.indd Sec3:240 5/23/07 2:24:00 PM5/23/07 2:24:00 PM

241 Input 4: Mouse II

 x += (targetX - x) * easing;

 y += (targetY - y) * easing;

 fill(153);

 ellipse(mouseX, mouseY, 20, 20);

 fill(255);

 ellipse(x, y, 40, 40);

 }

The previous two examples continue to make the calculation for the circle position even
after it has reached the destination. This is ineffi cient, and if there were thousands of
circles all easing between positions, it would slow down the program. To stop the
calculations when they are no longer necessary, test to see if the target position and
destination position are the same and stop the calculation if they are.
 The following example introduces the abs() function for taking the absolute value
of a number. This is necessary because the values used in easing are either negative or
positive depending on whether the position is to the left or to the right of the target. An
if structure is used to update position only if it is not at the same pixel as the target.

 float x = 0.0;

 float easing = 0.05; // Numbers 0.0 to 1.0

 void setup() {

 size(100, 100);

 smooth();

 }

 void draw() {

 background(0);

 float targetX = mouseX;

 // Distance from position and target

 float dx = targetX - x;

 // If the distance between the current position and the

 // destination is greater than 1.0, update the position

 if (abs(dx) > 1.0) {

 x += dx * easing;

 }

 ellipse(mouseX, 30, 40, 40);

 ellipse(x, 70, 40, 40);

 }

27-07
cont.

27-08

Reas_04_173-278.indd Sec3:241Reas_04_173-278.indd Sec3:241 5/23/07 2:24:00 PM5/23/07 2:24:00 PM

242 Input 4: Mouse II

Speed

Calculate the mouse speed by comparing the current position with the previous position.
This is done by using the dist() function with the mouseX, mouseY, pmouseX, and
pmouseY values as the parameters. The following example calculates the speed of the
mouse and converts this value into the size of an ellipse.

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 }

 void draw() {

 background(0);

 float speed = dist(mouseX, mouseY, pmouseX, pmouseY);

 float diameter = speed * 3.0;

 ellipse(50, 50, diameter, diameter);

 }

The previous examples show the instantaneous speed of the mouse. The numbers
produced are extreme—they jump between zero and large values from one frame to
the next. The easing equation from code 27-06 (p. 240) can be used to increase and
decrease speed smoothly. The following example demonstrates how to apply the easing
equation to this context. The top bar is the instantaneous speed and the bottom bar is
the eased speed.

 float speed = 0.0;

 float easing = 0.05; // Numbers 0.0 to 1.0

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 }

 void draw() {

 background(0);

 float target = dist(mouseX, mouseY, pmouseX, pmouseY);

 speed += (target - speed) * easing;

 rect(0, 33, target, 17);

 rect(0, 50, speed, 17);

 }

27-09

27-10

Reas_04_173-278.indd Sec3:242Reas_04_173-278.indd Sec3:242 5/23/07 2:24:00 PM5/23/07 2:24:00 PM

243 Input 4: Mouse II

Orientation

The atan2() function is used to calculate the angle from any point to the coordinate
(0,0). It has two parameters:

 atan2(y, x)

The y parameter is the y-coordinate of the point from which to fi nd the angle, and the x
parameter is the x-coordinate of the point. Angle values are returned in radians in the
range of π to -π . Note that the order of the y and x parameters are reversed from other
functions we’ve seen.

// The angles increase as the mouse moves from the upper-right

// corner of the screen to the lower-left corner

void setup() {

 size(100, 100);

 frameRate(15);

 fill(0);

}

void draw() {

 float angle = atan2(mouseY, mouseX);

 float deg = degrees(angle);

 println(deg);

 background(204);

 ellipse(mouseX, mouseY, 8, 8);

 rotate(angle);

 line(0, 0, 150, 0);

}

The code is explained with these images:

To calculate atan2() relative to another point instead of (0,0), subtract the coordinates
of that point from the y and x parameters. Use the translate() function to position
the elements on screen, rotate or orient them using the result of atan2(), and use

 90°

 0°

 29°

(0,0)

(40,22)

 90°

 0°

 76°

(0,0)

(30,80)

27-11

Reas_04_173-278.indd Sec3:243Reas_04_173-278.indd Sec3:243 5/23/07 2:24:01 PM5/23/07 2:24:01 PM

244 Input 4: Mouse II

pushMatrix() and popMatrix() to isolate the transformations. This procedure is
discussed in depth in Transform 1 (p. 133) and Transform 2 (p. 137).

 // Rotate the triangles so they always point

 // to the cursor

 float x = 50;

 float y1 = 33;

 float y2 = 66;

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 }

 void draw() {

 background(0);

 // Top triangle

 float angle = atan2(mouseY-y1, mouseX-x);

 pushMatrix();

 translate(x, y1);

 rotate(angle);

 triangle(-20, -8, 20, 0, -20, 8);

 popMatrix();

 pushMatrix();

 // Bottom triangle

 float angle2 = atan2(mouseY-(y2), mouseX-x);

 translate(x, y2);

 rotate(angle2);

 triangle(-20, -8, 20, 0, -20, 8);

 popMatrix();

 }

 Exercises
1. Change the properties of a shape based on the cursor’s distance to its center.
2. Use the easing equation to create a shape that acts lazy.
3. Using the techniques introduced in this unit, create three shapes that each follow
 the mouse in a different way.

27-12

Reas_04_173-278.indd Sec3:244Reas_04_173-278.indd Sec3:244 5/23/07 2:24:01 PM5/23/07 2:24:01 PM

245

Input 5: Time, Date
This unit introduces using the current time and date as inputs.

Syntax introduced:
second(), minute(), hour(), millis(), day(), month(), year()

Humans have a relative perception of time, but machines attempt to keep precise,
regular time. Previous civilizations used sundials and water clocks to visualize the
passage of time; today, most people use the digital numeric clock and the twelve-hour
circular clock with a minute, second, and hour hand. Each of these representations
refl ects their technology. A numeric digital readout is appropriate for a digital
timekeeping mechanism in need of an inexpensive display. A timekeeping mechanism
built from circular gears lends itself to a circular presentation of time. The tower-sized
clocks of the past with enormous gears and weights have evolved and shrunk into
devices so inexpensive and abundant that digital devices such as microwave ovens,
mobile phones, and computers all display the time and date.
 Reading the current time and date into a program opens an interesting area of
exploration. Knowledge of the current time makes it possible to write a program that
changes its colors every day depending on the date, or a digital clock that plays an
animation every hour. The ability to input time and date information enables software
tools for remembering, reminding, and informing and creates the potential for
whimsical time-based events.

Seconds, Minutes, Hours

Processing programs can read the value of the computer’s clock. The current second is
read with the second() function, which returns values from 0 to 59. The current
minute is read with the minute() function, which also returns values from 0 to 59.
The current hour is read with the hour() function, which returns values in the 24-hour
time notation from 0 to 23. In this system midnight is 0, noon is 12, 9:00 a.m. is 9, and
5:00 p.m. is 17. Run this program to see the current time:

int s = second(); // Returns values from 0 to 59

int m = minute(); // Returns values from 0 to 59

int h = hour(); // Returns values from 0 to 23

println(h + ":" + m + ":" + s); // Prints the time to the console

Placing these functions inside draw() allows the time to be read continuously.
This example reads the current time and updates the text area with the passage of
each second:

28-01

Reas_04_173-278.indd Sec3:245Reas_04_173-278.indd Sec3:245 5/23/07 2:24:02 PM5/23/07 2:24:02 PM

246 Input 5: Time, Date

int lastSecond = 0;

void setup() {

 size(100, 100);

}

void draw() {

 int s = second();

 int m = minute();

 int h = hour();

 // Only prints once when the second changes

 if (s != lastSecond) {

 println(h + ":" + m + ":" + s);

 lastSecond = s;

 }

}

You can create a clock with a numerical display by using the text() function to draw
the numbers to the display window. The nf() function (p. 422) is used to space the
numbers equally from left to right. Single digit numbers are padded on their left with
a zero so all numbers occupy a two-digit space at all times.

 PFont font;

 void setup() {

 size(100, 100);

 font = loadFont("Pro-20.vlw");

 textFont(font);

 }

 void draw() {

 background(0);

 int s = second();

 int m = minute();

 int h = hour();

 // The nf() function spaces the numbers nicely

 String t = nf(h,2) + ":" + nf(m,2) + ":" + nf(s,2);

 text(t, 10, 55);

 }

There are many different ways to express the passage of time. In the next example,
horizontal lines mark the current second, hour, and minute. The left edge of the display
window is 0 and the right edge is the maximum for each time component. Because the
values from the time functions range from 0 to 59 and from 0 to 23, they are modifi ed to

28-02

28-03

Reas_04_173-278.indd Sec3:246Reas_04_173-278.indd Sec3:246 5/23/07 2:24:02 PM5/23/07 2:24:02 PM

247 Input 5: Time, Date

all have the range of 0 to 99. Each time value is divided by its maximum value and then
multiplied by 100.0.

 void setup() {

 size(100, 100);

 stroke(255);

 }

 void draw() {

 background(0);

 float s = map(second(), 0, 60, 0, 100);

 float m = map(minute(), 0, 60, 0, 100);

 float h = map(hour(), 0, 24, 0, 100);

 line(s, 0, s, 33);

 line(m, 34, m, 66);

 line(h, 67, h, 100);

 }

These normalized time values can also be used to simulate the second, minute, and hour
hands on a traditional clock face. In this case, the values are multiplied by 2π to display
the time as points around a circle. Because the hour() function returns values in 24-
hour time, the program converts the hour value to 12-hour time scale by calculating the
hour % 12 (the % symbol is introduced on p. 45).

 void setup() {

 size(100, 100);

 stroke(255);

 }

 void draw() {

 background(0);

 fill(80);

 noStroke();

 // Angles for sin() and cos() start at 3 o'clock;

 // subtract HALF_PI to make them start at the top

 ellipse(50, 50, 80, 80);

 float s = map(second(), 0, 60, 0, TWO_PI) - HALF_PI;

 float m = map(minute(), 0, 60, 0, TWO_PI) - HALF_PI;

 float h = map(hour() % 12, 0, 12, 0, TWO_PI) - HALF_PI;

 stroke(255);

 line(50, 50, cos(s) * 38 + 50, sin(s) * 38 + 50);

 line(50, 50, cos(m) * 30 + 50, sin(m) * 30 + 50);

 line(50, 50, cos(h) * 25 + 50, sin(h) * 25 + 50);

 }

28-04

28-05

Reas_04_173-278.indd Sec3:247Reas_04_173-278.indd Sec3:247 5/23/07 2:24:03 PM5/23/07 2:24:03 PM

248 Input 5: Time, Date

In addition to reading the current time, each Processing program counts the time passed
since the program started. This time is stored in milliseconds (thousandths of a second).
Two thousand milliseconds is 2 seconds, and 200 milliseconds is 0.2 seconds. This
number is obtained with the millis() function and can be used to trigger events and
calculate the passage of time:

// Uses millis() to start a line in motion three seconds

// after the program starts

int x = 0;

void setup() {

 size(100, 100);

}

void draw() {

 if (millis() > 3000) {

 x++;

 }

 line(x, 0, x, 100);

}

The millis() function returns an int, but it is sometimes useful to convert it to a
float that represents the number of seconds elapsed since the program started. The
resulting number can be used to control the sequence of events in an animation.

int x = 0;

void setup() {

 size(100, 100);

}

void draw() {

 float sec = millis() / 1000.0;

 if (sec > 3.0) {

 x++;

 }

 line(x, 0, x, 100);

}

28-06

28-07

Reas_04_173-278.indd Sec3:248Reas_04_173-278.indd Sec3:248 5/23/07 2:24:03 PM5/23/07 2:24:03 PM

249 Input 5: Time, Date

Date

Date information is read in a similar way as the time. The current day is read with the
day() function, which returns values from 1 to 31. The current month is read with the
month() function, which returns values from 1 to 12 where 1 is January, 6 is June, and
12 is December. The current year is read with the year() function, which returns the
four-digit integer value of the present year. Run this program to see the current date
in the console:

int d = day(); // Returns values from 1 to 31

int m = month(); // Returns values from 1 to 12

int y = year(); // Returns four-digit year (2007, 2008, etc.)

println(d + " " + m + " " + y);

The following example checks to see if it is the fi rst day of the month and prints the
message “Welcome to a new month.” to the console if it is the fi rst day of the month.

void draw() {

 int d = day(); // Values from 1 to 31

 if (d == 1) {

 println("Welcome to a new month.");

 }

}

The following example runs continuously and checks to see if it is New Year’s Day. If so,
the message “Today is the fi rst day of the year!” is printed to the console.

void draw() {

 int d = day(); // Values from 1 to 31

 int m = month(); // Values from 1 to 12

 if ((d == 1) && (m == 1)) {

 println("Today is the first day of the year!");

 }

}

 Exercises
1. Make a simple clock to run an animation for two seconds at the beginning of
 each minute.
2. Create an abstract clock that communicates the passage of time through graphical
 quantity rather than numerical symbols.
3. Write a program to draw images to the display window corresponding to specifi c
 dates (e.g., display a pumpkin on Halloween).

28-08

28-09

28-10

Reas_04_173-278.indd Sec3:249Reas_04_173-278.indd Sec3:249 5/23/07 2:24:04 PM5/23/07 2:24:04 PM

void Draw() (

background(126)

ellipse(mouseX. mousey, 33

}

v o i d d r a w () {

background(126);

ellipse(mouseX, mouseY, 33

}

Reas_04_173-278.indd Sec3:250Reas_04_173-278.indd Sec3:250 5/23/07 2:24:04 PM5/23/07 2:24:04 PM

251

Development 2: Iteration, Debugging
This unit discusses the iterative software development process and the activity of
debugging code.

The programs included up to this point in the book have been short. Programs of this
length can be written without much forethought, but planning becomes important
when writing longer programs. The extent of the planning will be up to the
programmer, but one aspect of programming is always the same: large, complex
programs must be divided into series of short, simpler programs. Learning how to divide
programs into manageable parts takes time and experience. As the scope of a program
grows, the number of decisions involved in writing it multiplies. Making changes to a
program, evaluating the result, and then making additional changes is an iterative
process. Like a project in any medium, software improves through many cycles of
changes and evaluations.
 Longer programs also present a higher likelihood of mistakes. The fl ow of logic and
data becomes less obvious in a larger program, and the errors—known as bugs—
introduced are more subtle. Learning to track down and fi x errors is an important skill in
writing software.

Iteration

There are many different models for software development, but they all contain
elements of analysis, synthesis, and evaluation. A continuous cycle of synthesis and
evaluation is the core of the iterative process. Every project demands variations on each
of these stages, but the purpose of each remains consistent. A more detailed description
of each stage illuminates how they interact:

Analysis
Analysis leads to an understanding of the software—its function, audience, and
purpose. This stage can involve months of research or mere seconds of consideration,
resulting in a proposal, project description, or other means of communicating the project
to others.

Synthesis
The goals and concepts that emerge from the analysis are realized through synthesis.
Early steps in synthesis often include paper sketches, followed by software sketches, and
then refi nement of the fi nished software. The results of this stage are evaluated, edited,
and augmented with additional synthesis until the software is fi nished.

3

3

Reas_04_173-278.indd Sec3:251Reas_04_173-278.indd Sec3:251 5/23/07 2:24:04 PM5/23/07 2:24:04 PM

252 Development 2: Iteration, Debugging

Evaluation
The results of the synthesis phase are evaluated in relation to the analysis to determine
what remains to be done. Is the project complete or is another round of synthesis
needed? What improvements can be made? What is working and what needs to be fi xed?
Depending on the nature of the project, the evaluation sometimes returns to analysis
and the goals of the project are modifi ed.

Programs change quickly, and sometimes the programmer prefers an earlier version.
Save multiple versions of the sketch while working so it’s always possible to return to a
previous iteration of the code. Simply select “Save As” from the File menu to save a new
version of the program with a different name. The “Archive Sketch” option from the Tools
menu saves the code and all additional media for the current sketch inside a ZIP archive
with the name of the current sketch and the date. Saving multiple versions of a sketch
ensures that older, working examples of the code remain intact.

Debugging

When a person fi rst starts programming, errors (bugs) occur frequently; learning how to
fi nd and fi x (debug) them is an important part of learning to program. In The Practice of
Programming, the authors explain: “Good programmers know that they spend as much
time debugging as writing so they try to learn from their mistakes. Every bug you fi nd
can teach you how to prevent a similar bug from happening again or to recognize it if
it does.” 1

 Some bugs reveal themselves when the Run button is pressed, as they prevent the
program from starting. Other bugs appear while the program is running, causing the
program to stop. The message area (p. 8) turns red and reveals a summary of the
problem. Sometimes the bug message text is too long to fi t in this area, but the full
message always appears in the console. The Processing environment always tries to
highlight the line where the bug occurs, but since the bug may be the result of
something that happened earlier in the program, the error does not always appear on
the highlighted line. The highlighted line is usually related to the error, but perhaps not
in an obvious way.
 Not all bugs stop a program from running. Errors in logic or problems with
equations are sometimes more diffi cult to fi nd because they don’t stop the program.
 Fixing bugs is one of the more diffi cult and less satisfying aspects of programming.
Sometimes they are obvious and quick to fi x, but sometimes it can take hours. Finding a
bug is like solving a mystery. It’s necessary to search through the code to fi nd clues in
pursuit of the culprit. Try the following:

Scrutinize the newest code
If the program is constructed step by step, the bug is often in the newest code or is linked
to it. Check these areas for bugs fi rst.

Reas_04_173-278.indd Sec3:252Reas_04_173-278.indd Sec3:252 5/23/07 2:24:05 PM5/23/07 2:24:05 PM

253 Development 2: Iteration, Debugging

Check related code
Sometimes a bug may linger within a program for a long time because the line
containing the bug is not run. When code is introduced that runs a line with a bug, or
when the value of a variable changes so that code within a previously unused if or for
structure is run, the bug will reveal itself.

Display output
Displaying the data produced by a program while it’s running can expose problems and
lead to a better understanding of the code in general. The println() function can be
used to display data as text to the console. This technique can answer questions about
the status of a variable and can be used to check whether a specifi c line or block of code
is running. The data can also be represented as positions or colors in the program’s
display.

Isolate the problem
It’s often diffi cult to fi nd a bug within a large program. If possible, try to reduce the
problem to its essence. Is it possible to reproduce the bug by running only a few lines
of code or a much simpler program?

Learn from previous bugs
All programmers—new and experienced—inadvertently introduce bugs into their code.
The hardest time to fi nd a particular bug is usually during its fi rst occurrence. Learn from
previous mistakes to avoid the same bug in the future.

Take a break
Sometimes the best way to fi x a bug is to take a break. After hours of programming, the
perspective gained from a diversion or rest can bring clarity.

As with all software, there are bugs in Processing, and some are added and removed
with each release of the software. For the most current information about bugs in the
Processing software, read the Frequently Asked Questions (FAQ), accessible from the
Help menu. A complete list can be found at http://dev.processing.org/bugs. This website
can be searched for known bugs and used to report new ones.

 Notes

1. Brian W. Kernighan and Bob Pike, The Practice of Programming (Addison-Wesley, 1999), p. 117.

Reas_04_173-278.indd Sec3:253Reas_04_173-278.indd Sec3:253 5/23/07 2:24:05 PM5/23/07 2:24:05 PM

Reas_04_173-278.indd Sec3:254Reas_04_173-278.indd Sec3:254 5/23/07 2:24:06 PM5/23/07 2:24:06 PM

255

Synthesis 2: Input and Response
This unit presents examples of synthesizing concepts from Structure 2 to Development 2.

The previous units introduced programs that run continuously, functions, parameterized
form, mouse input, keyboard input, events, and reading the time. This synthesis unit
emphasizes the concept of response. Within the domain of these programs, response is
an action that corresponds to an input, a stimulus. For example, if a key is pressed, how
does the program react? If the mouse is moved, how does the program respond?
 The artist Myron Krueger coined the phrase “Response is the medium!” 1 He was
primarily interested in how his work responded to people. He focused on the aesthetics
of response, rather than the aesthetics of the image or motion. Kruger pointed out a
number of ways people can relate to a responsive system such as a work of software. An
individual can have a dialog with the system or can be a protagonist in an open-ended
narrative or a participant in a game. The system can be an amplifi er, a space to explore,
or an instrument.
 The act of creating responsive software consists of relating an input to possible
outputs. Unexpected juxtapositions between the stimulus and response can engage the
mind of the participant. Predictable and repetitive relationships between an action and
the reaction can be tedious. In soccer or chess, not being sure of the opponent’s fi rst move
keeps the activity engaging. This uncertainty creates a tension and the potential that no
game will be played the same way as another.
 The four programs introduced in this unit each offer a different perspective on the
concept of response. The fi rst is a simulation of a classic video game, the second
questions the assumptions we make about how a mouse works, the third uses the time
as its input to create an abstract clock, and the fourth presents a new way to think about
typing and organizing lines of text.

The four programs presented here were written by different programmers. Unlike most of the other examples in the
book, which have been written in a similar style, each of these programs refl ects the personal programming style of
its author. Learning how to read programs written by other people is an important skill.
The software featured in this unit is longer than the brief examples that fi ll this book. It’s not practical to print it on
these pages, but the code is included in the Processing code download at www.processing.org/learning.

 Notes

1. Myron Krueger, Artifi cial Reality II (Addison-Wesley, 1991), p.85.

Reas_04_173-278.indd Sec3:255Reas_04_173-278.indd Sec3:255 5/23/07 2:24:06 PM5/23/07 2:24:06 PM

256 Synthesis 2: Input and Response

Tennis. Video games began to appear more than thirty years ago. Pong, a table tennis
game developed in the early 1970s, was the fi rst game to catch the attention of the
public. The square “ball” moves across the screen, and the objective is to keep the ball on
the screen by hitting it with the paddle. This simulated version of the game was written
for one player. The paddle on the right is positioned at the y-coordinate of the mouse and
the one on the left is set to the inverse position. The player changes the angle of the ball
by moving the paddle up or down as it strikes the ball. Video games like Pong were
successful because they were highly responsive, despite extremely minimal imagery.

Reas_04_173-278.indd Sec3:256Reas_04_173-278.indd Sec3:256 5/23/07 2:32:18 PM5/23/07 2:32:18 PM

257 Synthesis 2: Input and Response

Cursor. After using computers for years, a programmer can take for granted the way the
cursor and mouse are linked. Custom software, however, can change this relationship.
This program presents the relation between the mouse and cursor in four different ways.
In the fi rst mode, the cursor behaves as we expect. Select an alternative mode by clicking
on one of the boxes. In the second mode, the size and orientation of the cursor is
determined by its speed and direction. In the third mode, the cursor is lazy and responds
to the mouse slowly. The fourth mode multiplies the cursor into a matrix, and each
individual element points to the actual position determined by the mouse.

Program written by Peter Cho (www.typotopo.com)

Reas_04_173-278.indd Sec3:257Reas_04_173-278.indd Sec3:257 5/23/07 2:32:47 PM5/23/07 2:32:47 PM

258 Synthesis 2: Input and Response

Typing. Unlike those produced by a word processor, the lines of text in this program
can be positioned anywhere on the screen. Clicking and dragging the mouse changes the
size and the angle. The program allows a maximum of fi ve lines to be edited at once.
Press the Enter or Return key to switch between lines and press the Backspace key to
remove a letter from the end of the line. Move the mouse across the screen to change
the position of the current lines.

Reas_04_173-278.indd Sec3:258Reas_04_173-278.indd Sec3:258 5/23/07 2:33:34 PM5/23/07 2:33:34 PM

259 Synthesis 2: Input and Response

Banded Clock. The images on this page tell the time with visual patterns, rather than
with numbers. The sin() function generates bands based on the values read from the
computer’s clock. Count the number of bands on each line to determine each time
component. Like code 28-04 (p. 247), the top row is seconds, the middle is minutes, and
the bottom is hours.

Program written by Golan Levin (www.fl ong.com)

04:18:22 05:56:01 07:48:39 09:10:44

Reas_04_173-278.indd Sec3:259Reas_04_173-278.indd Sec3:259 5/23/07 2:35:10 PM5/23/07 2:35:10 PM

Hektor (far right) paints the William Morris “Compton” design from 1896 onto a wall.
Image courtesy of Jürg Lehni and Uli Franke. Realized in collaboration with Goodwill.

Reas_04_173-278.indd Sec3:260Reas_04_173-278.indd Sec3:260 5/23/07 2:36:20 PM5/23/07 2:36:20 PM

261

Interviews 2: Software, Web

 Ed Burton. Sodaconstructor
 Josh On. They Rule
 Jürg Lehni. Hektor and Scriptographer
 Auriea Harvey and Michaël Samyn. The Endless Forest

Reas_04_173-278.indd Sec3:261Reas_04_173-278.indd Sec3:261 5/23/07 2:35:48 PM5/23/07 2:35:48 PM

Reas_04_173-278.indd Sec3:262Reas_04_173-278.indd Sec3:262 5/23/07 2:40:18 PM5/23/07 2:40:18 PM

263 Interviews 2: Software, Web

Sodaconstructor (Interview with Ed Burton)

 Creators Ed Burton and Soda Creative Ltd.
 Year 1998
 Medium Software
 Software Java
 URL www.sodaplay.com/constructor, www.sodaplay.com/zoo

 What is Sodaconstructor?
 Sodaconstructor is a virtual two-dimensional construction kit equipped with point masses
and springs. It contains a very simple simulation of Hooke’s law, which stipulates that the force
applied by a spring is proportional to its extension. Structures can be drawn, simulated, and
manipulated in a surprisingly tactile manner. Usually springs have a fixed rest length; however,
in Sodaconstructor selected springs can be transformed into “muscles” whose rest length
oscillates over time in response to an on-screen sine wave. By modifying variables such as
gravity and friction and carefully arranging masses, springs, and muscles (typically through a
playful iterative process of trial and error) all manner of perambulating automata, animated
drawings, or pulsating abstract compositions can be constructed.
 An online community has been exploring Sodaconstructor for over seven years,
contributing their creations to the Sodazoo where we witness an amazing menagerie of
hundreds of thousands of creations that far surpass my own ability to use my software and
that continue to delight and surprise.
 Why did you create Sodaconstructor?
 Sodaconstructor was an invented programming exercise to teach myself the Java
programming language. I thought of a toy that I wanted to play with and set myself the hurdle
of having to learn enough Java to build it before I could play with it. I was also interested in
dynamical systems, viewing behavior as something that emerges over time through a process
of feedback. Sodaconstructor was an attempt to make a simple toy based on this principle.
 I neither intended nor anticipated that anyone else would want to play with
Sodaconstructor; it was a piece of pure personal play for the purpose of my own learning. My
immediate reward was to enjoy making a dozen or so crude creatures such as “daintywalker”
and “amoeba” while developing Sodaconstructor and playing with it for a relatively short time
after its initial completion.
 Two years later, in the summer of 2000, there was a huge, seemingly spontaneous explosion
in Sodaconstructor traffic. Frustrated that we couldn’t preserve the results of this surprising and
sustained surge, Soda developed the Sodazoo, a database-driven gallery where visitors could
save and share their creations. As our database steadily filled with over half a million creations,
many of which are exquisite in their union of engineering sophistication and graceful beauty,
my interest shifted from creating creatures with my own software to facilitating creativity in
others. The Sodazoo now sustains a creative ecology that evolves through an iterative process of
peer inspiration to achieve ever-greater feats of quality and diversity.
 Sodaplay also has a sister project, Sodarace.net, in which Sodaconstructor models can be
raced over two-dimensional terrains. However it’s not only humans who get to design the So

da
co

ns
tr

uc
to

r,
19

98
. I

m
ag

es
 co

ur
te

sy
 o

f S
od

a
Cr

ea
tiv

e
Lt

d.

Reas_04_173-278.indd Sec3:263Reas_04_173-278.indd Sec3:263 5/23/07 2:39:03 PM5/23/07 2:39:03 PM

264 Interviews 2: Software, Web

contenders. It is also possible for automated optimization software such as genetic algorithms
to be plugged into the race, iteratively submitting machine-generated models and receiving race
results in order to breed race winners. The intention of Sodarace is not only to have fun but also
to expose a wider audience to some of the principles and practice of engineering and artificial
intelligence research.
 Soda is now hard at work developing the next major evolution of Sodaplay. While the
Sodaplay community continues to reward me with surprising new Sodaconstructor creations,
I have become increasingly concerned that they are constrained by the software frame that I
have given them. They can create original content within my application but they cannot
modify or extend its user interface or behavior in any way. To respond radically to this we are
rebuilding Sodaconstructor within an entirely new Sodaplay that not only exposes application
source code, but also makes application user interfaces and behaviors both malleable and
extensible. Sodaplay used to be the home of a single creative tool, Sodaconstructor. In the future
it will be a tool for creating many creative tools. Our aspiration is to enable the Sodaplay
community to expand its creative ecology to encompass not only the content, but also the
software and context that creates the content.
 What software tools were used?
 Sodaconstructor is a Java applet, an interactive application that runs in a Web browser. For
two years that’s all Sodaconstructor was—people could play and construct, but their creations
were lost when they closed their browsers. Two years later we built the Sodazoo to give a home to
our users’ creations using a Java servlet to connect to an Oracle database. Now Sodaplay is
growing into a full-fledged web application using the Spring Framework (that’s Spring as in
www.springframework.org, a layered Java/J2EE application framework and nothing to do with
the bouncy simulated springs inside Sodaconstructor!).
 Why did you use these tools?
 I’d been playing with programming since my early teens. After first learning BASIC on a
48K Sinclair Spectrum and BBC Acorn Archimedes, then C and later C++. I chose to learn Java
because it was flexible enough to realize anything I could imagine in the previous languages I’d
worked with but promised one distinctive advantage: it was easy to distribute to users on
multiple platforms (Mac OS, Windows, etc.) over the Internet.
 Why do you choose to work with software?
 I tend to be more interested in process than product. Rather than create singular static
forms I want to create processes that may result in countless potential forms emerging over
time. My motivation is to be happily surprised by the process of emergence. It may sound
counterintuitive that programming can be surprising. Computer programs are constructed from
deterministic logical operations, after all. However, even the simplest operations can have
unexpected consequences, especially when executed with feedback and interactivity. By using
programming to harness feedback and interactivity it is possible to be repeatedly rewarded with
emergent phenomena and happy surprises.

M
od

el
s f

ro
m

 th
e

So
da

Zo
o.

 Im
ag

es
 co

ur
te

sy
 o

f S
od

a
Cr

ea
tiv

e
Lt

d.

Reas_04_173-278.indd Sec3:264Reas_04_173-278.indd Sec3:264 5/23/07 2:41:15 PM5/23/07 2:41:15 PM

265 Interviews 2: Software, Web

Reas_04_173-278.indd Sec3:265Reas_04_173-278.indd Sec3:265 5/23/07 2:41:50 PM5/23/07 2:41:50 PM

Reas_04_173-278.indd Sec3:266Reas_04_173-278.indd Sec3:266 5/23/07 2:42:47 PM5/23/07 2:42:47 PM

267 Interviews 2: Software, Web

They Rule (Interview with Josh On)

 Creators Josh On, Amy Balkin, and Amy Franceschini
 Year 2001, 2004
 Medium Web
 Software Flash, PHP, MySQL
 URL www.theyrule.net

 What is They Rule?
 They Rule aims to provide a glimpse of some of the relationships of the U.S. ruling class. It
takes as its focus the boards of some of the most powerful U.S. companies, which share many of
the same directors. Some individuals sit on 5, 6, or 7 of the top 500 companies. It allows users to
browse through these interlocking directories and run searches on the boards and companies. A
user can save a map of connections complete with their annotations and Email links to these
maps to others. They Rule is a starting point for research into these powerful individuals and
corporations.
 Why did you create They Rule?
 America is a class-divided society. There is no greater contradiction in our society than the
fact that the majority of the people who do the work are not the ones who reap the benefit. In
1998 the top 1 percent of the population owned 38 percent of the wealth; the top 5 percent owned
over 60 percent.1 That was the situation in the “boom years.” This inequality might be
overlooked as long as the people at the bottom end of the scale have what they need. They don’t.
According to the CIA World Fact Book, 12.5 percent of Americans live below the poverty line.
There is enough to go around; we just have a system that doesn’t let it flow.
 A few companies control much of the economy, and oligopolies exert control in nearly every
sector of the economy. The people who head up these companies swap on and off the boards
from one company to another, and in and out of government committees and positions. These
people run the most powerful institutions on the planet, and we have almost no say in who they
are. This is not a conspiracy. They are proud to rule, yet these connections of power are not
always visible to the public eye.
 Karl Marx once called this ruling class a “band of hostile brothers.” They stand against each
other in the competitive struggle for the continued accumulation of their capital, but they stand
together as a family supporting their interests in perpetuating the profit system as a whole.
Protecting this system can require the cover of a “legitimate” force—and this is the role that is
played by the state. An understanding of this system cannot be gleaned from looking at the
interpersonal relations of this class alone, but rather how they stand in relation to other classes
in society. Hopefully They Rule will raise larger questions about the structure of our society and
in whose benefit it is run.
 I wanted They Rule to provide a starting point for getting some facts. They Rule graphically
reveals this one surface reality of an interconnected ruling class, but it also encourages visitors
to dig deeper. It is easy to run a search on companies and individuals straight from the site.
It is not uncommon for the first result in an Internet search engine query on a board member to
come up with their name in connection with a government committee or advisory board, or M

ap
 o

f t
he

 C
le

ar
 C

ha
nn

el
 b

oa
rd

 o
f d

ir
ec

to
rs

 a
nd

 th
e

co
nn

ec
tio

ns
. C

re
at

ed
 w

ith
 T

he
y

Ru
le

. I
m

ag
e

co
ur

te
sy

 o
f J

os
h

O
n.

Reas_04_173-278.indd Sec3:267Reas_04_173-278.indd Sec3:267 5/23/07 2:42:25 PM5/23/07 2:42:25 PM

268 Interviews 2: Software, Web

even to reveal that they were in government for a time. The people in They Rule include an ex-
president, an ex-secretary of the Treasury, and many ex-members of Congress. The ongoing
Enron scandal, which sparked much activity on the site, revealed just how closely tied the state is
to the corporate world. As Marx put it, the state is “the executive committee of the ruling class.”
Hopefully They Rule can help us confirm (or deny) this.
 Far from being an exhaustive exposé of the ruling class, They Rule shows only the smallest
section of the relationships of control. It does not show the patterns of ownership or wealth, the
cultural ties, the institutional and social connections that these people have with each other and
others in their class that do not enter the map. Neither does it show the source of their power,
the exploitation of labor and nature. It is a challenge that stands before us to illustrate some of
these relations in a way that is compelling and revealing.
 What software tools were used?
 I used a variety of tools, the main one being Flash, which I used for the client side. I used
PHP, MySQL, and PHPMyAdmin to build the back end and the databases. I used 3d Studio Max to
make the little people. I used Photoshop to export them for use in Flash. I used Textpad to do lots
of data formatting.
 Why did you use these tools?
 The main question was what to use for the front end. It may have been possible to build
They Rule with HTML and JavaScript—but it would have been a nightmare to make it cross-
browser compatible. Of all the other options available at the time, Flash had the biggest
adoption and smallest download. I already had a copy of 3d Studio Max—so that was an
obvious choice. Software for three-dimensional graphics is expensive and there still doesn’t seem
to be a good consumer-level option. PHP is a great and very well documented scripting
language. I am not the best programmer so it is great to use a program with so many online
examples to draw from. PHPMyAdmin is the only software I have ever really used for creating
databases. I stumbled into this with no knowledge, read minimal documentation—and created
a clunky database (I would structure it differently now) that works just fine. Of course PHP and
MySQL and PHPMyAdmin are all open source projects that can be downloaded for free, which is
how it should be!
 Why do you choose to work with software?
 No other medium allows the same combination of massive persistent social collaboration
and interaction—particularly software on the Internet where so many people (by no means all)
can connect through software and create meaningful relationships with each other. We have
only just begun to see the potential of the Internet for aiding social change. Unfortunately, the
NSA has also discovered its potential for social control. It is a contested arena, and it is
important that artists are amongst those in the fight!

 Notes

1. http://www.demos.org/inequality

Reas_04_173-278.indd Sec3:268Reas_04_173-278.indd Sec3:268 5/23/07 2:24:15 PM5/23/07 2:24:15 PM

269 Interviews 2: Software, Web

Browse the list
of companies
and select one.

Reveal the board
of directors.

Select one board
member and show
the other boards on
which he sits.

Search for and then
display a path
between two
companies.

Reas_04_173-278.indd Sec3:269Reas_04_173-278.indd Sec3:269 5/23/07 2:24:16 PM5/23/07 2:24:16 PM

Hektor in its case (left) and undergoing testing (right).
Images courtesy of Jürg Lehni and Uli Franke.

Reas_04_173-278.indd Sec3:270Reas_04_173-278.indd Sec3:270 5/23/07 3:36:20 PM5/23/07 3:36:20 PM

271 Interviews 2: Software, Web

Hektor and Scriptographer (Interview with Jürg Lehni)

 Creators Jürg Lehni and Uli Franke
 Year 2001–2002
 Medium Custom Hardware, Plugin Software for Illustrator
 Software Scriptographer (C++, Java, JavaScript), PIC-Assembler
 URL www.hektor.ch, www.scriptographer.com, www.scratchdisk.com

 What are Hektor and Scriptographer?
 Hektor is a portable spray-paint output device for laptop computers. It was created in close
collaboration with the engineer Uli Franke for my diploma project at écal (école cantonale d’art
de Lausanne) in 2002. Hektor’s light and fragile installation consists only of two motors, toothed
belts, and a can holder that handles regular spray cans. The can is moved along drawing paths,
and during operation the mechanism sometimes trembles and wobbles and the paint often
drips. The contrasts between these low-tech aspects and the high-tech touch of the construction
hold ambiguous and poetic qualities and make Hektor enjoyable to watch in action. Hektor has
been used for many projects in different contexts, often in collaboration with other designers
and artists.
 Hektor works with vector drawings and is controlled directly from Adobe Illustrator
through the use of Scriptographer. Scriptographer is a scripting plug-in for Illustrator that is
developed as open source software and is available under the GPL license. It is written in C++
and Java and exposes Illustrator’s functionality to a Java virtual machine that is embedded in
the application itself. It uses the Rhino JavaScript engine to execute scripts. This allows users
with some knowledge of the JavaScript language to extend the functionality of Illustrator with
their own definition of tools: mouse handlers, generative scripts, automated repeating tasks, etc.
More advanced tools can also be written directly in Java, and Rhino’s Java bridge can be used to
interface with any Java library and the Java Core API directly from scripts. This leads to a great
amount of possibilities, from serial port or network communication to database connections
and advanced image manipulation, just to name a few.
 Why did you create Hektor and Scriptographer?
 Hektor was created with a certain attitude toward design and the use of tools. In the
beginning there was an urge to go beyond the limitations of today’s clean computer, screen, and
vector graphic–based design. Intuition played an important role in the search for a new output
device that would convey the abstract geometries contained in vector graphics in a different
way than normal printers.
 The aim was to make a statement about design by providing a new tool for other designers
and artists to experiment with, a tool with an inherently particular and distinctive aesthetic.
Making the technology available to others and not only using it for my own purposes was an
important step in the project. It was very interesting to see what people from different
backgrounds were seeing in this machine and how they were working with the technical
limitations and using them in the results rather than trying to hide them.
 Today’s desktop publishing design chain with all its standards and softwares has a strong
influence on the aesthetics of the products. The tools offer predefined ways of working, and

“W
e

Tr
y

H
ar

de
r”

, 2
00

2.
 C

or
ne

l W
in

dl
in

 a
nd

 H
ek

to
r f

or
 th

e “
Pu

bl
ic

 A
ff

ai
rs

” e
xh

ib
iti

on
 a

t t
he

 K
un

st
ha

us
 Z

ur
ic

h,
 S

w
itz

er
la

nd
.

 I
m

ag
es

 co
ur

te
sy

 o
f J

ür
g

Le
hn

i a
nd

 U
li

Fr
an

ke
.

Reas_04_173-278.indd Sec3:271Reas_04_173-278.indd Sec3:271 5/23/07 3:35:40 PM5/23/07 3:35:40 PM

272 Interviews 2: Software, Web

escaping these is not easy; it requires the user to be conscious of the limitations. Current
software is mostly based on commonly known metaphors and simulation of real tools, but
software is inherently different. It is modular and programmable and offers much more
flexibility. Unfortunately the applications from most of the big companies still work the
other way around—they are often predefined, inflexible, and monolithic.
 The motivation for creating Scriptographer and making it freely available was to
provide a way to open up one of the main applications for graphic designers and to create
a community around it that finds different approaches to graphic design by integrating
programming in the workflow and the tools they already use.
 What software tools were used?
 The circuit board for Hektor was designed with Eagle. The controller software
was written in PIC Assembler. Scriptographer was used to develop the algorithm for
Hektor’s damping movements to make sure the can does not start to tremble too much.
A geometrical solution was found that adds tangential circles and tangents between
them at places where too harsh movements would happen in the vector drawings.
 Scriptographer also directly controls the stepper motors through the serial port
interface and the PIC controller, to which it sends the movements for the drawings. In order
for it to do so, the geometries must be converted from a Cartesian coordinate system into
one based on triangulation.
 Why did you write your own software tools?
 As already stated, there were certain ideological motivations for creating Hektor and
Scriptographer. But both projects are tools that are actually used, and both the ideological
and the pragmatical parts of the projects are equally important. A year later I would have
probably used Processing for the same task, but when work on Scriptographer started I was
not aware of it, and the fact that Scriptographer nests itself in an existing application that
plays an important role in graphic design helped underline the motivations of both
projects.
 Why do you choose to work with software?
 Computers fascinated me at an early age, when I started to tinker around with the
Commodore VC-20 and later with my brother’s C-64. This fascination was mostly based on
the optical and audible outputs of these machines and has never really left me since. Over
the years this led to learning many languages and concepts around computers.
Programming is still my main tool of choice, which I constantly try to exploit and question
in my work. I consider the ability to write programs (or better, formulate processes) as a
freedom in the way computers are used, and I hope that it will become more and more
common to work in such ways. Computers are the abstraction of tools that can simulate
virtually any other tool. I believe that beyond the step of simulation there are many other
possibilities to be discovered.

Reas_04_173-278.indd Sec3:272Reas_04_173-278.indd Sec3:272 5/23/07 2:24:19 PM5/23/07 2:24:19 PM

273 Interviews 2: Software, Web

The Scriptographer plug-in for Adobe Illustrator by Jürg Lehni, running the Hektor
software that computes motion paths and directly communicates with the hardware.
Image courtesy of Jürg Lehni.

Reas_04_173-278.indd Sec3:273Reas_04_173-278.indd Sec3:273 5/23/07 2:24:20 PM5/23/07 2:24:20 PM

Reas_04_173-278.indd Sec3:274Reas_04_173-278.indd Sec3:274 5/23/07 3:37:32 PM5/23/07 3:37:32 PM

275 Interviews 2: Software, Web

The Endless Forest (Interview with Auriea Harvey & Michaël Samyn)

 Creators Tale of Tales; Auriea Harvey and Michaël Samyn with Lina Kusaite,
 Ringtail Studios, Laura Smith, Jan Verschoren, Gerry De Mol, Ronald Jones
 Year 2005+
 Medium Multiplayer Online Game
 Software Quest3D
 URL www.tale-of-tales.com/TheEndlessForest

 What is The Endless Forest?
 We call it a social screensaver—an online multiplayer game that runs as a screensaver on a
computer. Every participant plays a deer in an eternal forest. The game does not contain
violence, competition, or any chat functionality. It’s all about playing a deer and interacting
with other people in (gentle) deer ways. Additionally, The Endless Forest is a stage for virtual
performances in which the authors can create spectacles in real time. The total project is quite
big. We are developing it step by step, in part inspired by the input of players. The first phase is
relatively minimal in terms of size and interaction, but is nonetheless a pleasant experience.
 Why did you create The Endless Forest?
 We think our contemporary world is a horrible place. Our cultures are being swallowed by
the economic machine, politics have degraded into cheap television propaganda, and violence is
condoned, if not encouraged, as the way of choice for dealing with any conflict. All of this is
against a backdrop of ever-increasing poverty and the diluting of humanistic democratic ideals
into free markets and globalization. Direct political action has been perverted by fashion and
media and only contributes to the overwhelming climate of antagonism and violence. People
are becoming increasingly sour, mean, and cynical—which throws us into a vicious circle that
can only be broken by extreme events.
 Rather than sitting around and waiting for this cataclysm, we are trying to break the spiral
with our work. The Endless Forest allows you to shake off all these worries momentarily and
connect to something that you may have thought was lost. This something is partly inside of
yourself, the place where you feel joy. But with its rich reference to cultural ideas (the forest,
deer, religion, myth, etc.), The Endless Forest also connects you to more noble and beautiful
aspects of our society that often get drowned in the “outside world.” And last but not least, it is a
social place: every other deer in the forest represents another human. You can interact with
them in ways that other environments (virtual or otherwise) often don’t allow.
 The Endless Forest is a successor to an older project of ours, Wirefire. This was a real-time
online performance tool made with Flash. For over three years, every Thursday night, the two of
us would mix images, animations, and sounds in an improvised spectacle that anyone with a
browser and an Internet connection could attend. While we kept getting better at creating
spectacular shows, we began to feel the limitations of this system. First of all, for the
environment to be truly alive, our presence was required. And second, the public had too little
means to participate. The latter was a conscious choice. We do not believe that everyone can be
creative at all times, and we believe that limiting the requirements for action from others allows
us, the authors, to have more control and make better experiences.St

ill
 im

ag
es

 fr
om

 T
he

 E
nd

le
ss

 F
or

es
t.

Im
ag

es
 co

ur
te

sy
 o

f t
he

 a
rt

is
ts

.

Reas_04_173-278.indd Sec3:275Reas_04_173-278.indd Sec3:275 5/23/07 3:37:05 PM5/23/07 3:37:05 PM

276 Interviews 2: Software, Web

 In multiuser environments, (some) people often end up ruining the experience of all. In The
Endless Forest, we take away the means by which they might be able to do such a thing. We limit
communication to body language. The stories that get told are the ones you make up yourself
based on the atmospheres we provide and interactions you have with others. The only things
that you can do are nice things. So it gives you a vision of a perfectly harmonious society—an
idea that players will, hopefully, take away from the game and perhaps (subconsciously) apply
in their real lives.
 What software tools were used?
 The game was programmed in Quest3D. The 3D modeling and animation was done in
Blender and 3D Studio Max. The textures were made mostly with Photoshop.
 Why did you use these tools?
 Quest3D is a visual programming environment for real-time 3D. As such, it puts the power
of programming into the hands of people who can use it in artistic ways. We think that one of
the reasons why our interactions with computers can be so horrible and annoying is that
software is made by one certain type of human, an engineer. An engineer is beyond any doubt a
very creative person, but he (seldom she) tends to be more interested in systems and machines
than in the humans that use them. Humans are the thing for which artists and designers know
how to create. There are, however, very few tools that allow these artists and designers to create
sophisticated interactive pieces. Quest3D is one of those rare tools.
 Also, as computers become more and more powerful, the range of things that you can make
them do increases tremendously. If we continue to use the old tools (coding) to create computer
applications, the only way to create these innovative projects is to continuously increase the
number of engineers to work on it. New tools, like Quest3D, are required to deal with the ever-
increasing potential of computers. These tools allow you to work on a higher, more abstract
level, where you can have sufficient control over your content.
 Why do you choose to work with software?
 We have always been convinced that it is not required for new media art to have new
media as its subject matter. Our work seeks to connect to a tradition of art that deals with
humanity, cultures and symbols, myths and religions, emotions and aspirations, joy and
humanity’s tragedy. This does not, however, mean that our work is technophobic. On the
contrary! We believe that we should attempt to exploit what is unique about computers and use
it to our advantage. To simply create an image with a computer is wasteful when this machine
has the potential for multisensory experiences, real-time processing, and (most of all)
interaction. We see computer games as the most potent expression of the capabilities of these
new media. But they are still very much stuck in their roots of games. We seek to emancipate
game technology from these roots and use it to create forms of interactive art that are not
necessarily about the rules and goals and rewards of games. This mission is motivated in part by
our own frustrations with so many games. Sometimes they succeed so well in crafting believable
environments and endearing characters, and then they end up ruining everything by throwing
the game in your face and making you do things that you don’t want to do (and that are often
too hard to do, for us).
 We want to take this technology away from the engineers and the accountants and start
making interactive pieces that allow for a much more free-form experience where you can enjoy
the environment without pressure to “do the game.” Co

nc
ep

t d
ra

w
in

g
by

 L
in

a
Ku

sa
ite

 (b
ot

to
m

) a
nd

 h
ig

h-
re

so
lu

tio
n

re
nd

er
in

g
(t0

p)
. I

m
ag

es
 co

ur
te

sy
 o

f t
he

 a
rt

is
ts

.

Reas_04_173-278.indd Sec3:276Reas_04_173-278.indd Sec3:276 5/23/07 3:38:37 PM5/23/07 3:38:37 PM

277 Interviews 2: Software, Web

Reas_04_173-278.indd Sec3:277Reas_04_173-278.indd Sec3:277 5/23/07 3:39:21 PM5/23/07 3:39:21 PM

Reas_04_173-278.indd Sec3:278Reas_04_173-278.indd Sec3:278 5/23/07 2:24:26 PM5/23/07 2:24:26 PM

279

Motion 1: Lines, Curves
This unit introduces basic techniques for creating motion with code.

A deep understanding of motion and how to use it to communicate guides the art of the
animator, dancer, and fi lmmaker. Practitioners of the media arts can employ motion in
everything from dynamic websites to video games. The most fundamental component
of motion is time, or more precisely, how elements change over time. Static images can
communicate motion (think of Impressionist and Futurist paintings), and time-based
media such as video, fi lm, and software can express it directly. Defi ning motion through
code displays the power and fl exibility of the medium.

Controlling motion

To put a shape into motion, use a variable to change its attributes. We have already
presented a few simple programs that move a shape across the screen (pp. 174–177).
If clearing the screen before every frame is desired, remember to use the background()
function at the beginning of the draw(). As mentioned in Structure 2 (p. 173), the
frameRate() function may be used to control the number of frames drawn to the
screen each second.

 float y = 50.0;

 float speed = 1.0;

 float radius = 15.0;

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 ellipseMode(RADIUS);

 }

 void draw() {

 background(0);

 ellipse(33, y, radius, radius);

 y = y + speed;

 if (y > height+radius) {

 y = -radius;

 }

 }

31-01

Reas_05_279-336.indd Sec4:279Reas_05_279-336.indd Sec4:279 5/23/07 3:51:36 PM5/23/07 3:51:36 PM

280 Motion 1: Lines, Curves

You can create motion blur by drawing a transparent rectangle within draw(). This is
an alternative to running background() at the beginning of draw() and can produce
a subtle fade rather than a complete refresh. The effects of drawing this transparent
rectangle slowly build each, frame by frame, to erase the previously drawn elements.
The amount of blur is controlled by the transparency value used to draw the rectangle.
Numbers closer to 255 will refresh the screen quickly, and numbers closer to 0 will create
a longer fade.
 Moving the images from top to bottom and then back again requires a variable that
stores the direction of motion. In the following example, setting the direction variable
to 1 moves the circle down and changing it to -1 moves the circle up. As the circle reaches
the top and bottom of the screen, this variable changes by setting itself equal to its
opposite value. So if direction is 1, then -direction will be -1. When direction is -1,
the value of -direction is 1.

 float y = 50.0;

 float speed = 1.0;

 float radius = 15.0;

 int direction = 1;

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 ellipseMode(RADIUS);

 }

 void draw() {

 fill(0, 12);

 rect(0, 0, width, height);

 fill(255);

 ellipse(33, y, radius, radius);

 y += speed * direction;

 if ((y > height-radius) || (y < radius)) {

 direction = -direction;

 }

 }

To have the shape also change its position relative to the left and right edges of the
display window requires a second set of variables for the x-coordinate. The following
example uses the same principle as the previous one, but now defi nes the position of
the shape on both the x-axis and y-axis. The shape reverses its direction when it reaches
the edge.

31-02

Reas_05_279-336.indd Sec4:280Reas_05_279-336.indd Sec4:280 5/23/07 3:51:38 PM5/23/07 3:51:38 PM

281 Motion 1: Lines, Curves

 float x = 50.0; // X-coordinate

 float y = 50.0; // Y-coordinate

 float radius = 15.0; // Radius of the circle

 float speedX = 1.0; // Speed of motion on the x-axis

 float speedY = 0.4; // Speed of motion on the y-axis

 int directionX = 1; // Direction of motion on the x-axis

 int directionY = -1; // Direction of motion on the y-axis

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 ellipseMode(RADIUS);

 }

 void draw() {

 fill(0, 12);

 rect(0, 0, width, height);

 fill(255);

 ellipse(x, y, radius, radius);

 x += speedX * directionX;

 if ((x > width-radius) || (x < radius)) {

 directionX = -directionX; // Change direction

 }

 y += speedY * directionY;

 if ((y > height-radius) || (y < radius)) {

 directionY = -directionY; // Change direction

 }

 }

It’s possible to change not only the position of a shape but also its background value,
stroke and fi ll values, and size. This example changes the size of four ellipses using the
same technique for reversing direction explained in the previous two examples.

 float d = 20.0;

 float speed = 1.0;

 int direction = 1;

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 fill(255, 204);

 }

31-03

31-04

Reas_05_279-336.indd Sec4:281Reas_05_279-336.indd Sec4:281 5/23/07 3:51:39 PM5/23/07 3:51:39 PM

282 Motion 1: Lines, Curves

 void draw() {

 background(0);

 ellipse(0, 50, d, d);

 ellipse(100, 50, d, d);

 ellipse(50, 0, d, d);

 ellipse(50, 100, d, d);

 d += speed * direction;

 if ((d > width) || (d < width/10)) {

 direction = -direction;

 }

 }

In contrast to the implicit motion presented in the previous examples, shapes can
explicitly move from one position to another. This type of motion requires setting a start
position and a distance to travel, and then moving between them over a series of frames.
In the code below, the beginX and beginY variables represent the starting position. The
endX and endY variables denote the fi nal position. The x and y variables are the current
position. The step variable determines what percentage of the total distance to travel
each frame, and the pct variable keeps track of the total percentage of the distance
traveled. The values of the step and pct variables must always be between 0.0 and 1.0.
As the program runs, the step increases to change the position of the x and y variables,
and when the percentage is no longer less than 1.0, the motion stops.

 float beginX = 20.0; // Initial x-coordinate

 float beginY = 10.0; // Initial y-coordinate

 float endX = 70.0; // Final x-coordinate

 float endY = 80.0; // Final y-coordinate

 float distX; // X-axis distance to move

 float distY; // Y-axis distance to move

 float x = 0.0; // Current x-coordinate

 float y = 0.0; // Current y-coordinate

 float step = 0.02; // Size of each step (0.0 to 1.0)

 float pct = 0.0; // Percentage traveled (0.0 to 1.0)

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 distX = endX - beginX;

 distY = endY - beginY;

 }

 void draw() {

 fill(0, 12);

31-04
cont.

31-05

Reas_05_279-336.indd Sec4:282Reas_05_279-336.indd Sec4:282 5/23/07 3:51:40 PM5/23/07 3:51:40 PM

283 Motion 1: Lines, Curves

 rect(0, 0, width, height);

 pct += step;

 if (pct < 1.0) {

 x = beginX + (pct * distX);

 y = beginY + (pct * distY);

 }

 fill(255);

 ellipse(x, y, 20, 20);

 }

The easing technique introduced in Input 4 (p. 237) can be used to slow the shape
down as it reaches its target position. The following example adapts the code from the
previous example to make the shape decelerate as it approaches its destination.

 float x = 20.0; // Initial x-coordinate

 float y = 10.0; // Initial y-coordinate

 float targetX = 70.0; // Destination x-coordinate

 float targetY = 80.0; // Destination y-coordinate

 float easing = 0.05; // Size of each step along the path

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 }

 void draw() {

 fill(0, 12);

 rect(0, 0, width, height);

 float d = dist(x, y, targetX, targetY);

 if (d > 1.0) {

 x += (targetX - x) * easing;

 y += (targetY - y) * easing;

 }

 fill(255);

 ellipse(x, y, 20, 20);

 }

31-05
cont.

31-06

Reas_05_279-336.indd Sec4:283Reas_05_279-336.indd Sec4:283 5/23/07 3:51:41 PM5/23/07 3:51:41 PM

284 Motion 1: Lines, Curves

Moving along curves

The simple curves explained in Math 2 (p. 79) can provide paths for shapes in motion.
Instead of drawing the entire curve in one frame, it’s possible to calculate each step of
the curve on consecutive frames. The following example presents a very general way to
write this code. Changing the variables at the top of the code changes the start and stop
position, the curve shape, and the number of steps to take along the curve.

 float beginX = 20.0; // Initial x-coordinate

 float beginY = 10.0; // Initial y-coordinate

 float endX = 70.0; // Final x-coordinate

 float endY = 80.0; // Final y-coordinate

 float distX; // X-axis distance to move

 float distY; // Y-axis distance to move

 float exponent = 0.5; // Determines the curve

 float x = 0.0; // Current x-coordinate

 float y = 0.0; // Current y-coordinate

 float step = 0.01; // Size of each step along the path

 float pct = 0.0; // Percentage traveled (0.0 to 1.0)

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 distX = endX - beginX;

 distY = endY - beginY;

 }

 void draw() {

 fill(0, 2);

 rect(0, 0, width, height);

 pct += step;

 if (pct < 1.0) {

 x = beginX + (pct * distX);

 y = beginY + (pow(pct, exponent) * distY);

 }

 fill(255);

 ellipse(x, y, 20, 20);

 }

All of the basic curves presented on page 82 can be scaled and combined to generate
unique paths of motion. Once a step along one curve has been calculated, the program
can switch to calculating positions based on a different curve.

31-07

Reas_05_279-336.indd Sec4:284Reas_05_279-336.indd Sec4:284 5/23/07 3:51:42 PM5/23/07 3:51:42 PM

285 Motion 1: Lines, Curves

 float beginX = 20.0; // Initial x-coordinate

 float beginY = 10.0; // Initial y-coordinate

 float endX = 70.0; // Final x-coordinate

 float endY = 80.0; // Final y-coordinate

 float distX; // X-axis distance to move

 float distY; // Y-axis distance to move

 float exponent = 3.0; // Determines the curve

 float x = 0.0; // Current x-coordinate

 float y = 0.0; // Current y-coordinate

 float step = 0.01; // Size of each step along the path

 float pct = 0.0; // Percentage traveled (0.0 to 1.0)

 int direction = 1;

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 distX = endX - beginX;

 distY = endY - beginY;

 }

 void draw() {

 fill(0, 2);

 rect(0, 0, width, height);

 pct += step * direction;

 if ((pct > 1.0) || (pct < 0.0)) {

 direction = direction * -1;

 }

 if (direction == 1) {

 x = beginX + (pct * distX);

 float e = pow(pct, exponent);

 y = beginY + (e * distY);

 } else {

 x = beginX + (pct * distX);

 float e = pow(1.0-pct, exponent*2);

 y = beginY + (e * -distY) + distY;

 }

 fill(255);

 ellipse(x, y, 20, 20);

 }

31-08

Reas_05_279-336.indd Sec4:285Reas_05_279-336.indd Sec4:285 5/23/07 3:51:43 PM5/23/07 3:51:43 PM

286 Motion 1: Lines, Curves

As a shape moves along a curve, its speed changes. A curve can be used to control the
speed of a visual element that moves on a straight line. The distance between the points
can be plotted along each dimension to show the distance between each step. When the
curve is mostly horizontal (fl at), there is very little vertical distance, but as the curves
become more vertical (steep), the distance along the y-axis increases exponentially.
The images below show how when the x values in the equation y = x4 are increased at
a constant rate, the y values grow exponentially. The image on the left displays the y
values corresponding to x values from 0.0 to 1.0 at increments of 0.1. The image on the
right displays only the y value without the context of the x value to reveal the increasing
changes:

The following example shows changing the speed of a shape using the curve in the
above image. The circle begins very slowly, gradually accelerates, and then stops at the
bottom of the display window. The exponent variable defi nes the slope of the curve,
which changes the rate of motion. Click the mouse to select a new starting point.

 float beginX = 20.0; // Initial x-coordinate

 float beginY = 10.0; // Initial y-coordinate

 float endX = 70.0; // Final x-coordinate

 float endY = 80.0; // Final y-coordinate

 float distX; // X-axis distance to move

 float distY; // Y-axis distance to move

 float exponent = 3.0; // Determines the curve

 float x = 0.0; // Current x-coordinate

 float y = 0.0; // Current y-coordinate

 float step = 0.01; // Size of each step along the path

 float pct = 0.0; // Percentage traveled (0.0 to 1.0)

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 distX = endX - beginX;

 distY = endY - beginY;

 }

0.0 0.5 1.0

y = x4

0.2

0.4

0.6

0.8

0.0

1.0

X

Y

0.2

0.4

0.6

0.8

0.0

1.0

Y

31-09

Reas_05_279-336.indd Sec4:286Reas_05_279-336.indd Sec4:286 5/23/07 3:51:44 PM5/23/07 3:51:44 PM

287 Motion 1: Lines, Curves

 void draw() {

 fill(0, 2);

 rect(0, 0, width, height);

 if (pct < 1.0) {

 pct = pct + step;

 float rate = pow(pct, exponent);

 x = beginX + (rate * distX);

 y = beginY + (rate * distY);

 }

 fill(255);

 ellipse(x, y, 20, 20);

 }

 void mousePressed() {

 pct = 0.0;

 beginX = x;

 beginY = y;

 distX = mouseX - x;

 distY = mouseY - y;

 }

Motion through transformation

The transformation functions can also create motion by changing the parameters to
translate(), rotate(), and scale(). Before using transformations for motion, it’s
important to acknowledge that transformations reset at the beginning of each draw().
Therefore, running translate(5,0) will always move the coordinate system 5 pixels
to the right in each frame. It will not move the system 5 right on the fi rst frame, 10 on the
next, 15 on the next etc. In the same way, translations inside setup() have no effect on
the shapes rendered in draw().

 void setup() {

 size(100, 100);

 smooth();

 noLoop();

 translate(50, 0); // Has no effect

 }

 void draw() {

 background(0);

 ellipse(0, 50, 60, 60);

 }

31-09
cont.

31-10

Reas_05_279-336.indd Sec4:287Reas_05_279-336.indd Sec4:287 5/23/07 3:51:46 PM5/23/07 3:51:46 PM

288 Motion 1: Lines, Curves

 float y = 50.0;

 float speed = 1.0;

 float radius = 15.0;

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 ellipseMode(RADIUS);

 }

 void draw() {

 fill(0, 12);

 rect(0, 0, width, height);

 fill(255);

 translate(0, y); // Set the y-coordinate of the circle

 ellipse(33, 0, radius, radius);

 y += speed;

 if (y > height+radius) {

 y = -radius;

 }

 }

 float y = 50.0;

 float speed = 1.0;

 float radius = 15.0;

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 ellipseMode(RADIUS);

 }

 void draw() {

 fill(0, 12);

 rect(0, 0, width, height);

 fill(255);

 pushMatrix();

 translate(0, y);

 // Affected by first translate()

 ellipse(33, 0, radius, radius);

 translate(0, y);

31-11

31-12

Reas_05_279-336.indd Sec4:288Reas_05_279-336.indd Sec4:288 5/23/07 3:51:47 PM5/23/07 3:51:47 PM

289 Motion 1: Lines, Curves

 // Affected by first and second translate()

 ellipse(66, 0, radius, radius);

 popMatrix();

 // Not affected by either translate()

 ellipse(99, 50, radius, radius);

 y = y + speed;

 if (y > height+radius) {

 y = -radius;

 }

 }

 float angle = 0.0;

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 }

 void draw() {

 fill(0, 12);

 rect(0, 0, width, height);

 fill(255);

 angle = angle + 0.02;

 translate(70, 40);

 rotate(angle);

 rect(-30, -30, 60, 60);

 }

The transformation functions translate(), rotate(), and scale() can be used to
generate motion, but using them together can be tricky. This is discussed in detail in
Transform 2 (p. 137).

 Exercises
1. Move two shapes continuously, but constrain their positions to the display window.
2. Move three shapes on different curves to create a kinetic composition.
3. Use the transformation functions to animate a shape.

31-12
cont.

31-13

Reas_05_279-336.indd Sec4:289Reas_05_279-336.indd Sec4:289 5/23/07 3:51:48 PM5/23/07 3:51:48 PM

Reas_05_279-336.indd Sec4:290Reas_05_279-336.indd Sec4:290 5/23/07 4:14:58 PM5/23/07 4:14:58 PM

291

Motion 2: Machine, Organism
This unit introduces the communicative aspects of motion—how different qualities of
motion create diverse moods and meanings.

Programmers determine how elements in their programs will move. These decisions
infl uence how the forms are interpreted by viewers. Over the course of evolution,
humans have developed instincts and attitudes toward the motion in the world around
us. We classify and categorize elements in the world by how they move or do not move.
We make distinctions between animate and inanimate things. Motion in software can
take advantage of humans’ innate understanding of movement or ignore it. Software
makes possible countless types of motion, but two major categories of interest are
mechanical and organic motion. This unit focuses on the qualities that defi ne these
types of motion.

Mechanical motion

In the catalog for The Museum of Modern Art’s 1934 Machine Art exhibition, Alfred Barr
described characteristics of the machines of that time: “Machines are, visually speaking,
a practical application of geometry. Forces which act in straight lines are changed in
direction and degree by machines which are themselves formed of straight lines and
curves. The lever is geometrically a straight line resting on a point. The wheel and axle
is composed of concentric circles and radiating straight lines.” He further explained
that motion “increases their aesthetic interest, principally through the addition of
temporal rhythms.” While machines and society’s ideas about machines have changed
dramatically in the last seventy years, Barr’s insights remain relevant in defi ning
the characteristics of mechanical motion. Prototypical examples of machine motion
include the clock, the metronome, and the piston. These mechanisms’ movements are
all characterized by regular rhythm, repetition, and effi ciency. Writing code to produce
these qualities of motion communicates the essence of the machines through software.
 The sin() function is often used to produce elegant motion. It can generate an
accelerating and decelerating speed as a shape moves from one frame to another.
The images below show how the speed along a sine wave is consistent if the angle is
increased at a constant rate, but the speed along the y-axis increases and decreases at
the top and bottom of the curve. The image on the left displays the changing sine value
as the angle grows. The image on the right displays only the sine values but does not
draw the x-axis, to emphasize the changes in speed along the y-axis:

Reas_05_279-336.indd Sec4:291Reas_05_279-336.indd Sec4:291 5/23/07 4:14:01 PM5/23/07 4:14:01 PM

292 Motion 2: Machine, Organism

The values from sin() are used to create the motion for a shape in the following
example. The angle variable increases continually to produce changing values from
sin() in the range of -1 to 1. These values are multiplied by the radius variable to
magnify the values. The result is assigned to the yoffset variable and is then used to
determine the y-coordinate of the ellipse on the following line. Notice how the circle
slows down at the top and bottom of the screen and accelerates in the middle.

 float angle = 0.0; // Current angle

 float speed = 0.1; // Speed of motion

 float radius = 40.0; // Range of motion

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 }

 void draw() {

 fill(0, 12);

 rect(0, 0, width, height);

 fill(255);

 angle += speed;

 float sinval = sin(angle);

 float yoffset = sinval * radius;

 ellipse(50, 50 + yoffset, 80, 80);

 }

Adding values from sin() and cos() can produce more complex movement that
remains periodic. In this example, a small dot moves in a circular pattern using values
from sin() and cos(). A larger dot uses the same values for its base position but adds
additional sin() and cos() calculations to produce an offset. You can easily see the
difference between the two movements by looking at the positions of each point as the
program runs.

 0

s
i
n
(
a
n
g
l
e
)

90 180 270
-1

 1

 0

s
i
n
(
a
n
g
l
e
)

-1

 1

angle

32-01

Reas_05_279-336.indd Sec4:292Reas_05_279-336.indd Sec4:292 5/23/07 3:52:01 PM5/23/07 3:52:01 PM

293 Motion 2: Machine, Organism

 float angle = 0.0; // Current angle

 float speed = 0.05; // Speed of motion

 float radius = 30.0; // Range of motion

 float sx = 2.0;

 float sy = 2.0;

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 }

 void draw() {

 fill(0, 4);

 rect(0, 0, width, height);

 angle += speed; // Update the angle

 float sinval = sin(angle);

 float cosval = cos(angle);

 // Set the position of the small circle based on new

 // values from sine and cosine

 float x = 50 + (cosval * radius);

 float y = 50 + (sinval * radius);

 fill(255);

 ellipse(x, y, 2, 2); // Draw smaller circle

 // Set the position of the large circles based on the

 // new position of the small circle

 float x2 = x + cos(angle * sx) * radius/2;

 float y2 = y + sin(angle * sy) * radius/2;

 ellipse(x2, y2, 6, 6); // Draw larger circle

 }

The phase of a function is one iteration through its possible values—for example, a
single rise and fall sequence of a sine curve. Phase shifting occurs when the function is
offset to start at a different point within the phase, such as the downward part of a sine
curve rather than the top. Musical, visual, and numeric sequences all have phases, as
do physical phenomena such as light waves. In the sound domain, Steve Reich’s Piano
Phases is a composition in which two pianos play the same sequence of notes, but one
musician plays faster, creating a continuous phase shift as notes move in and out of
synchrony. The player with the faster tempo periodically moves back into phase with
the slower player, but is fi rst offset by one note, then two notes, then three, etc. The
performance ends when both pianos are back in phase and are playing the notes at the
same time. In the visual domain, phase shifting creates the complex moire patterns
that result when two identical patterns are superimposed and shifted. In trigonometry,
a cosine wave is a sine wave offset by 90° (p. 121). Shifting the angle used to generate

32-02sx=1.0

sy=0.5

sx=1.0

sy=1.5

sx=1.0

sy=2.0

sx=1.0

sy=3.0

sx=1.5

sy=1.0

sx=2.0

sy=1.0

sx=3.0

sy=1.0

Reas_05_279-336.indd Sec4:293Reas_05_279-336.indd Sec4:293 5/23/07 3:52:02 PM5/23/07 3:52:02 PM

294 Motion 2: Machine, Organism

values from sin() provides the same sequence of numbers, but shifted across frames of
animation:

The following two examples change the x-coordinate and diameter of circles to
demonstrate phase shifting. In the fi rst example, each circle has the same horizontal
motion, but the motion is offset in time. In the second example, each circle has the same
position and rate of growth cycle, but the growth cycle is offset.

 float angle = 0.0;

 float speed = 0.1;

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 }

 void draw() {

 background(0);

 angle = angle + speed;

 ellipse(50 + (sin(angle + PI) * 5), 25, 30, 30);

 ellipse(50 + (sin(angle + HALF_PI) * 5), 55, 30, 30);

 ellipse(50 + (sin(angle + QUARTER_PI) * 5), 85, 30, 30);

 }

 float angle = 0.0; // Changing angle

 float speed = 0.05; // Speed of growth

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 fill(255, 180);

 }

 void draw() {

 background(0);

32-03

32-04

Reas_05_279-336.indd Sec4:294Reas_05_279-336.indd Sec4:294 5/23/07 3:52:03 PM5/23/07 3:52:03 PM

295 Motion 2: Machine, Organism

 circlePhase(0.0);

 circlePhase(QUARTER_PI);

 circlePhase(HALF_PI);

 angle += speed;

 }

 void circlePhase(float phase) {

 float diameter = 65 + (sin(angle + phase) * 45);

 ellipse(50, 50, diameter, diameter);

 }

Organic motion

Examples of organic movement include a leaf falling, an insect walking, a bird fl ying,
a person breathing, a river fl owing, and smoke rising. This type of motion is often
considered idiosyncratic and stochastic.
 Explorations in photography have led to a new understanding of human and
animal motion. Étienne-Jules Marey and Eadweard Muybridge focused the lenses of
their cameras on bodies in motion. In the 1880s Marey famously captured birds in fl ight,
revealing the changing shapes of wings in image montages. Muybridge’s sensational
photographs of horses in motion used fi fty cameras in sequence along a track to capture
still images of a running horse. These photographs provided visual evidence regarding
the horse’s stride that had previously been impossible to collect. In the 1930s, Harold
Edgerton invented technologies for capturing unique movements such as the beating
of a hummingbird’s wings and the motion of a starfi sh across the sea fl oor. Such images
and fi lms have changed the way the world is understood and can inform the way
organic motion is approached using software.
 Software explorations within the last twenty years have also provided a new
understanding of organic motion. The Boids (pp. 473–475) software created by Craig
Reynolds in 1986 simulates the fl ocking behavior found in birds and fi sh and has led
to a new understanding of these emergent behaviors of animals. Karl Sims’s Evolved
Virtual Creatures from 1994 presents an artifi cial evolution, focusing on locomotion,
where virtual block creatures engage in walking, jumping, and swimming competitions.
The simple blocks demonstrate extraordinary emotive qualities as they twist and turn,
appearing to struggle in their pursuit of locomotion.
 Brownian motion, named in honor of the botanist Robert Brown, is jittery, stochastic
motion that was originally ascribed to the movements of minute particles within fl uids
or the air; it appears entirely random. This motion can be simulated in software by
setting a new position for a particle each frame, without preference as to the direction
of motion. Leaving a trail of the previous positions of an element is a good technique for
tracing its path through space.

32-04
cont.

Reas_05_279-336.indd Sec4:295Reas_05_279-336.indd Sec4:295 5/23/07 3:52:04 PM5/23/07 3:52:04 PM

296 Motion 2: Machine, Organism

 float x = 50.0; // X-coordinate

 float y = 80.0; // Y-coordinate

 void setup() {

 size(100, 100);

 randomSeed(0); // Force the same random values

 background(0);

 stroke(255);

 }

 void draw() {

 x += random(-2, 2); // Assign new x-coordinate

 y += random(-2, 2); // Assign new y-coordinate

 point(x, y);

 }

The sin() and cos() functions can be used to create unpredictable motion when
employed with the random() function. The following example presents a line with
a position and direction, and every frame the direction is changed by a small value
between -0.3 and 0.3. The position of the line at each frame is based on its current
position and the slight variation to its direction. The cos() function uses the angle to
calculate the next x-coordinate for the line, and the sin() function uses the same angle
to calculate the next y-coordinate.

 float x = 0.0; // X-coordinate

 float y = 50.0; // Y-coordinate

 float angle = 0.0; // Direction of motion

 float speed = 0.5; // Speed of motion

 void setup() {

 size(100, 100);

 background(0);

 stroke(255, 130);

 randomSeed(121); // Force the same random values

 }

 void draw() {

 angle += random(-0.3, 0.3);

 x += cos(angle) * speed; // Update x-coordinate

 y += sin(angle) * speed; // Update y-coordinate

 translate(x, y);

 rotate(angle);

 line(0, -10, 0, 10);

 }

32-05

32-06

Reas_05_279-336.indd Sec4:296Reas_05_279-336.indd Sec4:296 5/23/07 3:52:05 PM5/23/07 3:52:05 PM

297 Motion 2: Machine, Organism

The following example is an animated extension of code 22-04 (p. 200). Here the angle
variable for the tail() function is continually changing to produce a swaying motion.
Because the angles for each shape accumulate with each unit, the longest shapes with
the most units swing from side to side with a greater curvature.

 float inc = 0.0;

 void setup() {

 size(100, 100);

 stroke(255, 204);

 smooth();

 }

 void draw() {

 background(0);

 inc += 0.01;

 float angle = sin(inc)/10.0 + sin(inc*1.2)/20.0;

 tail(18, 9, angle/1.3);

 tail(33, 12, angle);

 tail(44, 10, angle/1.3);

 tail(62, 5, angle);

 tail(88, 7, angle*2);

 }

 void tail(int x, int units, float angle) {

 pushMatrix();

 translate(x, 100);

 for (int i = units; i > 0; i--) {

 strokeWeight(i);

 line(0, 0, 0, -8);

 translate(0, -8);

 rotate(angle);

 }

 popMatrix();

 }

The noise() function introduced in Math 4 (p. 127) is another resource for producing
organic motion. Because the numbers returned from noise() are easy to control, they
are a good way to add subtle irregularity to movement. The following example draws
two lines to the screen and sets their endpoints based on numbers returned from
noise().

32-07

Reas_05_279-336.indd Sec4:297Reas_05_279-336.indd Sec4:297 5/23/07 3:52:06 PM5/23/07 3:52:06 PM

298 Motion 2: Machine, Organism

 float inc1 = 0.1;

 float n1 = 0.0;

 float inc2 = 0.09;

 float n2 = 0.0;

 void setup() {

 size(100, 100);

 stroke(255);

 strokeWeight(20);

 smooth();

 }

 void draw() {

 background(0);

 float y1 = (noise(n1) - 0.5) * 30.0; // Values -15 to 15

 float y2 = (noise(n2) - 0.5) * 30.0; // Values -15 to 15

 line(0, 50, 40, 50 + y1);

 line(100, 50, 60, 50 + y2);

 n1 += inc1;

 n2 += inc2;

 }

The noise() function can also be used to generate dynamic textures. In the following
example, the fi rst two parameters are used to produce a two-dimensional texture and
the third parameter increases its value each frame to vary the texture. Changing the
density parameter increases the image resolution, and changing the inc parameter
changes the texture resolution.

 float inc = 0.06;

 int density = 4;

 float znoise = 0.0;

 void setup() {

 size(100, 100);

 noStroke();

 }

 void draw() {

 float xnoise = 0.0;

 float ynoise = 0.0;

 for (int y = 0; y < height; y += density) {

 for (int x = 0; x < width; x += density) {

 float n = noise(xnoise, ynoise, znoise) * 256;

 fill(n);

32-08

32-09

Reas_05_279-336.indd Sec4:298Reas_05_279-336.indd Sec4:298 5/23/07 3:52:06 PM5/23/07 3:52:06 PM

299 Motion 2: Machine, Organism

 rect(y, x, density, density);

 xnoise += inc;

 }

 xnoise = 0;

 ynoise += inc;

 }

 znoise += inc;

 }

 Exercises
1. Make a shape move with numbers returned from sin() and cos().
2. Develop a kinetic composition using the concept of phase shifting.
3. Use code 32-06 as a base for creating a more advanced organism.

32-09
cont.

Reas_05_279-336.indd Sec4:299Reas_05_279-336.indd Sec4:299 5/23/07 3:52:07 PM5/23/07 3:52:07 PM

Reas_05_279-336.indd Sec4:300Reas_05_279-336.indd Sec4:300 5/23/07 3:52:07 PM5/23/07 3:52:07 PM

301

Data 4: Arrays
This unit introduces arrays of data.

Syntax introduced:
Array, [] (array access), new, Array.length

append(), shorten(), expand(), arraycopy()

The term array refers to a structured grouping or an imposing number—“The dinner
buffet offers an array of choices,” “The city of Los Angeles faces an array of problems.” In
computer programming, an array is a set of data elements stored under the same name.
Arrays can be created to hold any type of data, and each element can be individually
assigned and read. There can be arrays of numbers, characters, sentences, boolean values,
etc. Arrays might store vertex data for complex shapes, recent keystrokes from the
keyboard, or data read from a fi le.
 Five integer variables (1919, 1940, 1975, 1976, 1990) can be stored in one integer array
rather than defi ning fi ve separate variables. For example, let’s call this array “dates” and
store the values in sequence:

Array elements are numbered starting with zero, which may seem confusing at fi rst
but is important for more advanced programming. The fi rst element is at position [0],
the second is at [1], and so on. The position of each element is determined by its offset
from the start of the array. The fi rst element is at position [0] because it has no offset;
the second element is at position [1] because it is offset one place from the beginning.
The last position in the array is calculated by subtracting 1 from the array length. In this
example, the last element is at position [4] because there are fi ve elements in the array.
 Arrays can make the task of programming much easier. While it’s not necessary to
use them, they can be valuable structures for managing data. Let’s begin with a set of
data points we want to add to our program in order to draw a star:

The following example to draw this shape demonstrates some of the benefi ts of
using arrays, like avoiding the cumbersome chore of storing data points in individual

[0] [1] [2] [3] [4]

1919 1940 1975 1976 1990dates

(50,18)

(61,37)

(69,60)

(71,82)(29,82)

(31,60)

(17,43) (83,43)

(39,37)

(50,73)

Reas_05_279-336.indd Sec4:301Reas_05_279-336.indd Sec4:301 5/23/07 3:52:08 PM5/23/07 3:52:08 PM

302 Data 4: Arrays

variables. The star has 10 vertex points, each with 2 values, for a total of 20 data
elements. Inputting this data into a program requires either creating 20 variables or
using an array. The code (below) on the left demonstrates using separate variables. The
code in the middle uses 10 arrays, one for each point of the shape. This use of arrays
improves the situation, but we can do better. The code on the right shows how the data
elements can be logically grouped together in two arrays, one for the x-coordinates and
one for the y-coordinates.

Separate variables One array for each point One array for each axis

int x0 = 50; int[] p0 = { 50, 18 }; int[] x = { 50, 61, 83, 69, 71,

int y0 = 18; int[] p1 = { 61, 37 }; 50, 29, 31, 17, 39 };

int x1 = 61; int[] p2 = { 83, 43 }; int[] y = { 18, 37, 43, 60, 82,

int y1 = 37; int[] p3 = { 69, 60 }; 73, 82, 60, 43, 37 };

int x2 = 83; int[] p4 = { 71, 82 };

int y2 = 43; int[] p5 = { 50, 73 };

int x3 = 69; int[] p6 = { 29, 82 };

int y3 = 60; int[] p7 = { 31, 60 };

int x4 = 71; int[] p8 = { 17, 43 };

int y4 = 82; int[] p9 = { 39, 37 };

int x5 = 50;

int y5 = 73;

int x6 = 29;

int y6 = 82;

int x7 = 31;

int y7 = 60;

int x8 = 17;

int y8 = 43;

int x9 = 39;

int y9 = 37;

This example shows how to use the arrays within a program. The data for each vertex is
accessed in sequence with a for structure. The syntax and usage of arrays is discussed
in more detail in the following pages.

 int[] x = { 50, 61, 83, 69, 71, 50, 29, 31, 17, 39 };

 int[] y = { 18, 37, 43, 60, 82, 73, 82, 60, 43, 37 };

 beginShape();

 // Reads one array element every time through the for()

 for (int i = 0; i < x.length; i++) {

 vertex(x[i], y[i]);

 }

 endShape(CLOSE);

33-01

Reas_05_279-336.indd Sec4:302Reas_05_279-336.indd Sec4:302 5/23/07 3:52:09 PM5/23/07 3:52:09 PM

303 Data 4: Arrays

Using arrays

Arrays are declared similarly to other data types, but they are distinguished with
brackets, [and]. When an array is declared, the type of data it stores must be specifi ed.
After the array is declared, the array must be created with the keyword “new.” This
additional step allocates space in the computer’s memory to store the array’s data. After
the array is created, the values can be assigned. There are different ways to declare,
create, and assign arrays. In the following examples explaining these differences, an
array with fi ve elements is created and fi lled with the values 19, 40, 75, 76, and 90. Note
the different way each method for creating and assigning elements of the array relates
to setup().

int[] data; // Declare

void setup() {

 size(100, 100);

 data = new int[5]; // Create

 data[0] = 19; // Assign

 data[1] = 40;

 data[2] = 75;

 data[3] = 76;

 data[4] = 90;

}

int[] data = new int[5]; // Declare, create

void setup() {

 size(100, 100);

 data[0] = 19; // Assign

 data[1] = 40;

 data[2] = 75;

 data[3] = 76;

 data[4] = 90;

}

int[] data = { 19, 40, 75, 76, 90 }; // Declare, create, assign

void setup() {

 size(100, 100);

}

The previous three examples assume the arrays are used in a sketch with setup() and
draw(). If arrays are not used with these functions, they can be created and assigned in
the simpler ways shown in the following examples.

33-02

33-03

33-04

Reas_05_279-336.indd Sec4:303Reas_05_279-336.indd Sec4:303 5/23/07 3:52:09 PM5/23/07 3:52:09 PM

304 Data 4: Arrays

int[] data; // Declare

data = new int[5]; // Create

data[0] = 19; // Assign

data[1] = 40;

data[2] = 75;

data[3] = 76;

data[4] = 90;

int[] data = new int[5]; // Declare, create

data[0] = 19; // Assign

data[1] = 40;

data[2] = 75;

data[3] = 76;

data[4] = 90;

int[] data = { 19, 40, 75, 76, 90 }; // Declare, create, assign

The declare, create, and assign steps allow an array’s values to be read. An array element
is accessed using the name of the variable followed by brackets around the position from
which you are trying to read.

 int[] data = { 19, 40, 75, 76, 90 };

 line(data[0], 0, data[0], 100);

 line(data[1], 0, data[1], 100);

 line(data[2], 0, data[2], 100);

 line(data[3], 0, data[3], 100);

 line(data[4], 0, data[4], 100);

Remember, the fi rst element in the array is in the 0 position. If you try to access a
member of the array that lies outside the array boundaries, your program will terminate
and give an ArrayIndexOutOfBoundsException.

int[] data = { 19, 40, 75, 76, 90 };

println(data[0]); // Prints 19 to the console

println(data[2]); // Prints 75 to the console

println(data[5]); // ERROR! The last element of the array is 4

The length fi eld stores the number of elements in an array. This fi eld is stored within
the array and can be accessed with the dot operator (p. 107–108). The following example
demonstrates how to utilize it.

33-05

33-06

33-07

33-08

33-09

Reas_05_279-336.indd Sec4:304Reas_05_279-336.indd Sec4:304 5/23/07 3:52:10 PM5/23/07 3:52:10 PM

305 Data 4: Arrays

int[] data1 = { 19, 40, 75, 76, 90 };

int[] data2 = { 19, 40 };

int[] data3 = new int[127];

println(data1.length); // Prints "5" to the console

println(data2.length); // Prints "2" to the console

println(data3.length); // Prints "127" to the console

Usually, a for structure is used to access array elements, especially with large arrays.
The following example draws the same lines as code 33-08 but uses a for structure to
iterate through every value in the array.

 int[] data = { 19, 40, 75, 76, 90 };

 for (int i = 0; i < data.length; i++) {

 line(data[i], 0, data[i], 100);

 }

A for structure can also be used to put data inside an array—for instance, it can
calculate a series of numbers and then assign each value to an array element. The
following example stores the values from the sin() function in an array within
setup() and then displays these values as the stroke values for lines within draw().

 float[] sineWave = new float[width];

 for (int i = 0; i < width; i++) {

 // Fill the array with values from sin()

 float r = map(i, 0, width, 0, TWO_PI);

 sineWave[i] = abs(sin(r));

 }

 for (int i = 0; i < sineWave.length; i++) {

 // Set the stroke values to numbers read from the array

 stroke(sineWave[i] * 255);

 line(i, 0, i, height);

 }

Storing the coordinates of many elements is another way to use arrays to make a
program easier to read and manage. In the following example, the x[] array stores the
x-coordinate for each of the 12 elements in the array, and the speed[] array stores a
rate corresponding to each. Writing this program without arrays would have required
24 separate variables. Instead, it’s written in a fl exible way; simply changing the value
assigned to numLines sets the number of elements drawn to the screen.

33-10

33-11

33-12

Reas_05_279-336.indd Sec4:305Reas_05_279-336.indd Sec4:305 5/23/07 3:52:11 PM5/23/07 3:52:11 PM

306 Data 4: Arrays

 int numLines = 12;

 float[] x = new float[numLines];

 float[] speed = new float[numLines];

 float offset = 8; // Set space between lines

 void setup() {

 size(100, 100);

 smooth();

 strokeWeight(10);

 for (int i = 0; i < numLines; i++) {

 x[i] = i; // Set initial position

 speed[i] = 0.1 + (i / offset); // Set initial speed

 }

 }

 void draw() {

 background(204);

 for (int i = 0; i < x.length; i++) {

 x[i] += speed[i]; // Update line position

 if (x[i] > (width + offset)) { // If off the right,

 x[i] = -offset * 2; // return to the left

 }

 float y = i * offset; // Set y-coordinate for line

 line(x[i], y, x[i]+offset, y+offset); // Draw line

 }

 }

Storing mouse data

Arrays are often used to store data from the mouse. The pmouseX and pmouseY
variables store the cursor coordinates from the previous frame, but there’s no built-in
way to access the cursor values from earlier frames. At every frame, the mouseX, mouseY,
pmouseX, and pmouseY variables are replaced with new numbers and their previous
numbers are discarded. Creating an array is the easiest way to store the history of these
values. In the following example, the most recent 100 values from mouseY are stored in
a array and displayed on screen as a line from the left to the right edge of the screen. At
each frame, the values in the array are shifted to the right and the newest value is added
to the beginning.

33-13

Reas_05_279-336.indd Sec4:306Reas_05_279-336.indd Sec4:306 5/23/07 3:52:11 PM5/23/07 3:52:11 PM

307 Data 4: Arrays

 int[] y;

 void setup() {

 size(100, 100);

 y = new int[width];

 }

 void draw() {

 background(204);

 // Shift the values to the right

 for (int i = y.length-1; i > 0; i--) {

 y[i] = y[i-1];

 }

 // Add new values to the beginning

 y[0] = constrain(mouseY, 0, height-1);

 // Display each pair of values as a line

 for (int i = 1; i < y.length; i++) {

 line(i, y[i], i-1, y[i-1]);

 }

 }

Apply the same code simultaneously to the mouseX and mouseY values to store the
position of the cursor. Displaying these values each frame creates a trail behind the
cursor.

 int num = 50;

 int[] x = new int[num];

 int[] y = new int[num];

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 fill(255, 102);

 }

 void draw() {

 background(0);

 // Shift the values to the right

 for (int i = num-1; i > 0; i--) {

 x[i] = x[i-1];

 y[i] = y[i-1];

 }

33-14

33-15

Reas_05_279-336.indd Sec4:307Reas_05_279-336.indd Sec4:307 5/23/07 3:52:12 PM5/23/07 3:52:12 PM

308 Data 4: Arrays

 // Add the new values to the beginning of the array

 x[0] = mouseX;

 y[0] = mouseY;

 // Draw the circles

 for (int i = 0; i < num; i++) {

 ellipse(x[i], y[i], i/2.0, i/2.0);

 }

 }

The following example produces the same result as the previous one but uses a more
effi cient technique. Instead of sorting the array elements in each frame, the program
writes the new data to the next available array position. The elements in the array
remain in the same position once they are written, but they are read in a different order
each frame. Reading begins at the location of the oldest data element and continues
to the end of the array. At the end of the array, the % operator (p. 45) is used to wrap
back to the beginning. This technique is especially useful with larger arrays, to avoid
unnecessary copying of data that can slow down a program.

int num = 50;

int[] x = new int[num];

int[] y = new int[num];

int indexPosition = 0;

void setup() {

 size(100, 100);

 noStroke();

 smooth();

 fill(255, 102);

}

void draw() {

 background(0);

 x[indexPosition] = mouseX;

 y[indexPosition] = mouseY;

 // Cycle between 0 and the number of elements

 indexPosition = (indexPosition + 1) % num;

 for (int i = 0; i < num; i++) {

 // Set the array position to read

 int pos = (indexPosition + i) % num;

 float radius = (num-i) / 2.0;

 ellipse(x[pos], y[pos], radius, radius);

 }

}

33-16

33-15
cont.

Reas_05_279-336.indd Sec4:308Reas_05_279-336.indd Sec4:308 5/23/07 3:52:13 PM5/23/07 3:52:13 PM

309 Data 4: Arrays

Array functions

Processing provides a group of functions that assist in managing array data. Only four
of these functions are introduced here, but more are explained in the Extended Reference
included with the software and available online at www.processing.org/reference.
 The append() function expands an array by one element, adds data to the new
position, and returns the new array:

String[] trees = { "ash", "oak" };

append(trees, "maple"); // INCORRECT! Does not change the array

print(trees); // Prints "ash oak"

println();

trees = append(trees, "maple"); // Add "maple" to the end

print(trees); // Prints "ash oak maple"

println();

// Add "beech" to the end of the trees array, and creates a new

// array to store the change

String[] moretrees = append(trees, "beech");

print(moretrees); // Prints "ash oak maple beech"

The shorten() function decreases an array by one element by removing the last
element and returns the shortened array:

String[] trees = { "lychee", "coconut", "fig"};

trees = shorten(trees); // Remove the last element from the array

print(trees); // Prints "lychee coconut"

println();

trees = shorten(trees); // Remove the last element from the array

print(trees); // Prints "lychee"

The expand() function increases the size of an array. It can expand to a specifi c size, or
if no size is specifi ed, the array’s length will be doubled. If an array needs to have many
additional elements, it’s faster to use expand() to double the size than to use append()
to continually add one value. The following example saves a new mouseX value to an
array every frame. When the array becomes full, the size of the array is doubled and new
mouseX values proceed to fi ll the enlarged array.

int[] x = new int[100]; // Array to store x-coordinates

int count; // Store the number of array positions

void setup() {

 size(100, 100);

}

33-17

33-18

33-19

Reas_05_279-336.indd Sec4:309Reas_05_279-336.indd Sec4:309 5/23/07 3:52:13 PM5/23/07 3:52:13 PM

310 Data 4: Arrays

void draw() {

 x[count] = mouseX; // Assign new x-coordinate to the array

 count++; // Increment the counter

 if (count == x.length) { // If the x array is full,

 x = expand(x); // double the size of x

 println(x.length); // Write the new size to the console

 }

}

Array values cannot be copied with the assignment operator because they are
objects. The most common way to copy elements from one array to another is to use
special functions or to copy each element individually within a for structure. The
arraycopy() function is the most effi cient way to copy the entire contents of one array
to another. The data is copied from the array used as the fi rst parameter to the array
used as the second parameter. Both arrays must be the same length for it to work in the
confi guration shown below.

String[] north = { "OH", "IN", "MI" };

String[] south = { "GA", "FL", "NC" };

arraycopy(north, south); // Copy from north array to south array

print(south); // Prints "OH IN MI"

println();

String[] east = { "MA", "NY", "RI" };

String[] west = new String[east.length]; // Create a new array

arraycopy(east, west); // Copy from east array to west array

print(west); // Prints "MA NY RI"

New functions can be written to perform operations on arrays, but arrays behave
differently than data types such as int and char. When an array is used as a parameter
to a function, the address (location in memory) of the array is transferred into the
function instead of the actual data. No new array is created, and changes made within
the function affect the array used as the parameter.
 In the following example, the data[] array is used as the parameter to halve().
The address of data[] is passed to the d[] array in the halve() function. Because the
address of d[] and data[] is the same, they both affect the same data. When changes
are made to d[] on line 14, these changes are made to the values in data[]. The
draw() function is not used because the calculation is made only once and nothing is
drawn to the diplay window.

33-19
cont.

33-20

Reas_05_279-336.indd Sec4:310Reas_05_279-336.indd Sec4:310 5/23/07 3:52:14 PM5/23/07 3:52:14 PM

311 Data 4: Arrays

float[] data = { 19.0, 40.0, 75.0, 76.0, 90.0 };

void setup() {

 halve(data);

 println(data[0]); // Prints "9.5"

 println(data[1]); // Prints "20.0"

 println(data[2]); // Prints "37.5"

 println(data[3]); // Prints "38.0"

 println(data[4]); // Prints "45.0"

}

void halve(float[] d) {

 for (int i = 0; i < d.length; i++) { // For each array element,

 d[i] = d[i] / 2.0; // divide the value by 2

 }

}

Changing array data within a function without modifying the original array requires
some additional lines of code. In the following example, the array is passed into the
function as a parameter, a new array is made, the values from the original array are
copied in the new array, changes are made to the new array, and fi nally the modifi ed
array is returned. Like the previous example, the draw() function is not used because
nothing is drawn to the display window and the calculation is made only once.

float[] data = { 19.0, 40.0, 75.0, 76.0, 90.0 };

float[] halfData;

void setup() {

 halfData = halve(data); // Run the halve() function

 println(data[0] + ", " + halfData[0]); // Prints "19.0, 9.5"

 println(data[1] + ", " + halfData[1]); // Prints "40.0, 20.0"

 println(data[2] + ", " + halfData[2]); // Prints "75.0, 37.5"

 println(data[3] + ", " + halfData[3]); // Prints "76.0, 38.0"

 println(data[4] + ", " + halfData[4]); // Prints "90.0, 45.0"

}

float[] halve(float[] d) {

 float[] numbers = new float[d.length]; // Create a new array

 arraycopy(d, numbers);

 for (int i = 0; i < numbers.length; i++) { // For each element,

 numbers[i] = numbers[i] / 2; // divide the value by 2

 }

 return numbers; // Return the new array

}

33-21

33-22

Reas_05_279-336.indd Sec4:311Reas_05_279-336.indd Sec4:311 5/23/07 3:52:14 PM5/23/07 3:52:14 PM

312 Data 4: Arrays

Two-dimensional arrays

Data can also be stored and retrieved from arrays with more than one dimension. Using
the example from the beginning of this unit, the data points for the star are put into a 2D
array instead of two 1D arrays:

A 2D array is essentially a list of 1D arrays. It must be declared, then created, and then the
values can be assigned just as in a 1D array. The following syntax converts this array to
code:

int[][] points = { {50,18}, {61,37}, {83,43}, {69,60}, {71,82},

 {50,73}, {29,82}, {31,60}, {17,43}, {39,37} };

println(points[4][0]); // Prints 71

println(points[4][1]); // Prints 82

println(points[4][2]); // ERROR! This element is outside the array

println(points[0][0]); // Prints 50

println(points[9][1]); // Prints 37

This program shows how it all fi ts together.

 int[][] points = { {50,18}, {61,37}, {83,43}, {69,60},

 {71,82}, {50,73}, {29,82}, {31,60},

 {17,43}, {39,37} };

 void setup() {

 size(100, 100);

 fill(0);

 smooth();

 }

 void draw() {

 background(204);

 translate(mouseX - 50, mouseY - 50);

 beginShape();

 for (int i = 0; i < points.length; i++) {

 vertex(points[i][0], points[i][1]);

 }

 endShape();

 }

0

50 61 83 69 71points
1 2 3 4 5

50 29 31 17 39

6 7 8 9

[0]

18 37 43 60 82

[1] [2] [3] [4] [5]

73 82 60 43 37

[6] [7] [8]

[0]

[1]

[9]

33-23

33-24

Reas_05_279-336.indd Sec4:312Reas_05_279-336.indd Sec4:312 5/23/07 3:52:15 PM5/23/07 3:52:15 PM

313 Data 4: Arrays

It’s possible to continue and make 3D and 4D arrays by extrapolating these techniques.
However, multidimensional arrays can be confusing, and it’s often a better idea to
maintain multiple 1D or 2D arrays.

 Exercises
1. Create an array to store the y-coordinates of a sequence of shapes. Draw each shape
 inside draw() and use the values from the array to set the y-coordinate of each.
2. Write a function to multiply the values from two arrays together and return the result
 as a new array. Print the results to the console.
3. Use a 2D array to store the coordinates for a shape of your own invention. Use a for
 structure to draw the shape to the display window.

Reas_05_279-336.indd Sec4:313Reas_05_279-336.indd Sec4:313 5/23/07 3:52:16 PM5/23/07 3:52:16 PM

Reas_05_279-336.indd Sec4:314Reas_05_279-336.indd Sec4:314 5/23/07 3:52:16 PM5/23/07 3:52:16 PM

315

Image 2: Animation
This unit introduces techniques for displaying sequences of images successively,
creating animation.

Animation occurs when a series of images, each slightly different, are presented in quick
succession. A diverse medium with a century of history, animation has progressed from
the initial experiments of Winsor McCay to the commercial and realistic innovations
of early Walt Disney studio productions, to the experimental fi lms by such animators
as Lotte Reiniger and James Whitney in the mid-twentieth century. The high volume of
animated special effects in live-action fi lm and the deluge of animated children’s fi lms
are changing the role of animation in popular culture.
 There’s a long history of using software to extend the boundaries of animation.
Some of the fi rst computer graphics were presented as animation on fi lm during the
1960s. Because of the cost and expertise required to make these fi lms, they emerged
from high-profi le research facilities such as Bell Laboratories and IBM’s Scientifi c Center.
Kenneth C. Knowlton, then a researcher at Bell Labs, is an important protagonist in the
story of early computer animation. He worked separately with artists Stan VanDerBeek
and Lillian Schwartz to produce some of the fi rst fi lms made using computer graphics.
VanDerBeek and Knowlton’s Poem Field fi lms, produced throughout the 1960s,
utilized Knowlton’s BEFLIX code and punch cards to produce permutations of visual
micropatterns. Schwartz and Knowlton’s Pixillation (1970) featured a wide range of
effects made by contrasting geometric forms with organic motion. John Whitney
worked in collaboration with Jack Citron at IBM to make a number of fi lms including
the innovative Permutations. This fi lm expresses Whitney’s ideas about relationships
to music and abstract form by permuting an array of dots into infi nite kinetic patterns.
Other artists working with computer animation around this time were Larry Cuba, Peter
Foldes, and John Stehura.
 The paths of contemporary animation and software development often overlap.
The 3D visualization of the Death Star in Star Wars (1977) was one of the fi rst uses of
computer-generated animation in a feature fi lm. Custom software was written to
produce a wire-frame fl y-through of the massive ship. Interest in computer animation
briefl y peaked with Disney’s Tron in 1982, but soon receded due to the fi lm’s commercial
failure. The industry gradually rebuilt itself into its current role as a major force in
contemporary fi lm. Pixar, the hugely successful animation studio that produced Toy
Story and The Incredibles, operated for many years as a software development company.
Pixar’s RenderMan software (1989) enabled the rendering of 3D computer graphics as
photorealistic images. RenderMan became an industry standard and Pixar continues to
develop custom software for each fi lm. The success of the company’s fi lms refl ects its
successful marriage of technical virtuosity and masterful storytelling.
 Creating unique and experimental animation with software is no longer restricted

Reas_05_279-336.indd Sec4:315Reas_05_279-336.indd Sec4:315 5/23/07 3:52:17 PM5/23/07 3:52:17 PM

316 Image 2: Animation

to research labs and fi lm studios. The Internet has become a vast repository for
experimental software animation. In the late 1990s, Turux was created by Lia and
Dextro. This online collection of intricate animated images and sounds synthesizes a
digital glitch aesthetic with organic qualities. The drawings continually change and
sometimes respond to viewer input.
 James Paterson (p. 165), a Canadian animator, develops Presstube.com, where he
produces thousands of drawings, typically organizing tight loops of elements that
materialize and dissipate. This technique allows him to arrange these loops in nearly
any order while maintaining a fl uid progression of growth and decay. The sequences
of David Crawford’s Stop Motion Studies are series of photographs—typically of people
in subways in different cities around the world. These photographs are taken in quick
succession; presented again in a nonlinear sequence of animated frames, they reveal
an incredibly complex and subtle range of human gesture.

Sequential images

Before a series of images can be presented sequentially in a program, all the images
must fi rst be loaded. The image variables should be declared outside of setup() and
draw() and then assigned within setup(). The following program loads these twelve
images from James Paterson . . .

. . . and then draws them to the display window in numeric order.

 int numFrames = 12; // The number of animation frames

 int frame = 0; // The frame to display

 PImage[] images = new PImage[numFrames]; // Image array

 void setup() {

 size(100, 100);

 frameRate(30); // Maximum 30 frames per second

 images[0] = loadImage("ani-000.gif");

 images[1] = loadImage("ani-001.gif");

 images[2] = loadImage("ani-002.gif");

 images[3] = loadImage("ani-003.gif");

 images[4] = loadImage("ani-004.gif");

 images[5] = loadImage("ani-005.gif");

 images[6] = loadImage("ani-006.gif");

 images[7] = loadImage("ani-007.gif");

 images[8] = loadImage("ani-008.gif");

 images[9] = loadImage("ani-009.gif");

frame=0

frame=3

frame=11

34-01

Reas_05_279-336.indd Sec4:316Reas_05_279-336.indd Sec4:316 5/23/07 3:52:18 PM5/23/07 3:52:18 PM

317 Image 2: Animation

 images[10] = loadImage("ani-010.gif");

 images[11] = loadImage("ani-011.gif");

 }

 void draw() {

 frame++;

 if (frame == numFrames) {

 frame = 0;

 }

 image(images[frame], 0, 0);

 }

The next example shows an alternative way of loading images by utilizing a for
structure. These lines of code can load between 1 and 999 images by changing the value
of the numFrames variable. This shortens the code that fl ips through each image and
returns to the fi rst image at the end of the animation. The nf() function (p. 422) on line
11 is used to format the name of the image to be loaded. The names of frames with small
numbers are prefaced with zeros so that the images remain in the correct sequence
in their folder. For example, instead of ani-1.gif, the fi le is named ani-001.gif. The nf()
function pads the small numbers created in a for structure with zeros on the left of the
number, so 1 becomes 001, 2 becomes 002, etc. The % operator (p. 45) on line 18 uses the
frameCount variable to make the frame variable increase by 1 each frame and return
to 0 once it exceeds 11.

int numFrames = 12; // The number of animation frames

PImage[] images = new PImage[numFrames]; // Image array

void setup() {

 size(100, 100);

 frameRate(30); // Maximum 30 frames per second

 // Automate the image loading procedure. Numbers less than 100

 // need an extra zero added to fit the names of the files.

 for (int i = 0; i < images.length; i++) {

 // Construct the name of the image to load

 String imageName = "ani-" + nf(i, 3) + ".gif";

 images[i] = loadImage(imageName);

 }

}

void draw() {

 // Calculate the frame to display, use % to cycle through frames

 int frame = frameCount % numFrames;

 image(images[frame], 0, 0);

}

34-02

34-01
cont.

Reas_05_279-336.indd Sec4:317Reas_05_279-336.indd Sec4:317 5/23/07 3:52:18 PM5/23/07 3:52:18 PM

318 Image 2: Animation

Displaying the images in random order and for different amounts of time enhances the
visual interest of a few frames of animation. Replaying a sequence at irregular intervals,
in a random order with random timing, can give the appearance of more different
frames than actually exist.

int numFrames = 5; // The number of animation frames

PImage[] images = new PImage[numFrames];

void setup() {

 size(100, 100);

 for (int i = 0; i < images.length; i++) {

 String imageName = "ani-" + nf(i, 3) + ".gif";

 images[i] = loadImage(imageName);

 }

}

void draw() {

 int frame = int(random(0, numFrames)); // The frame to display

 image(images[frame], 0, 0);

 frameRate(random(1, 60.0));

}

There are many ways to control the speed at which an animation plays. The
frameRate() function provides the simplest way. Place the frameRate() function in
setup() as seen in the previous example. Use this function to ensure that the software
will run at the same speed on other machines.
 If you want other elements to move independently of the sequential images,
set up a timer and advance the frame only when the timer value grows larger than
a predefi ned value. In the following example, the animation playing in the top of
the window is updated each frame and the speed is controlled by the parameter to
frameRate(). The animation in the bottom frame is updated only twice a second; the
timer checks the milliseconds since the last update and changes the frame only if 500
milliseconds (half a second) have elapsed.

 int numFrames = 12; // The number of animation frames

 int topFrame = 0; // The top frame to display

 int bottomFrame = 0; // The bottom frame to display

 PImage[] images = new PImage[numFrames];

 int lastTime = 0;

 void setup() {

 size(100, 100);

 frameRate(30);

 for (int i = 0; i < images.length; i++) {

34-03

34-04

Reas_05_279-336.indd Sec4:318Reas_05_279-336.indd Sec4:318 5/23/07 3:52:19 PM5/23/07 3:52:19 PM

319 Image 2: Animation

 String imageName = "ani-" + nf(i, 3) + ".gif";

 images[i] = loadImage(imageName);

 }

 }

 void draw() {

 topFrame = (topFrame + 1) % numFrames;

 image(images[topFrame], 0, 0);

 if ((millis() - lastTime) > 500) {

 bottomFrame = (bottomFrame + 1) % numFrames;

 lastTime = millis();

 }

 image(images[bottomFrame], 0, 50);

 }

Images in motion

Moving one image, rather than presenting a sequence, is another approach to animating
images. The same techniques for creating movement presented in Motion 1 (p. 279) apply
to images. The following example moves an image from left to right, returning it to the
left when it disappears off the edge of the screen.

 PImage img;

 float x;

 void setup() {

 size(100, 100);

 img = loadImage("PT-Shifty-0020.gif");

 }

 void draw() {

 background(204);

 x += 0.5;

 if (x > width) {

 x = -width;

 }

 image(img, x, 0);

 }

The transformation functions also apply to images. They can be translated, rotated, and
scaled over time to produce motion. In this example, an image is drawn to the center of
the display window and rotated slowly around its center.

34-04
cont.

34-05

Reas_05_279-336.indd Sec4:319Reas_05_279-336.indd Sec4:319 5/23/07 3:52:19 PM5/23/07 3:52:19 PM

320 Image 2: Animation

 PImage img;

 float angle;

 void setup() {

 size(100, 100);

 img = loadImage("PT-Shifty-0023.gif");

 }

 void draw() {

 background(204);

 angle += 0.01;

 translate(50, 50);

 rotate(angle);

 image(img, -100, -100);

 }

Images can also be animated by changing their drawing attributes. In this example, the
opacity of an image is increased so that it is brought into view over the background.

 PImage img;

 float opacity = 0; // Set opacity to the minimum

 void setup() {

 size(100, 100);

 img = loadImage("PT-Teddy-0017.gif");

 }

 void draw() {

 background(0);

 if (opacity < 255) { // When less than the maximum,

 opacity += 0.5; // increase opacity

 }

 tint(255, opacity);

 image(img, -25, -75);

 }

 Exercises
1. Load a sequence of related images into an array and use them to create a
 linear animation.
2. Modify the program for exercise 1 to present each frame of animation at a different
 rate and in a different sequence.
3. Animate an image by changing more than one of its attributes
 (e.g., size, position, tint).

34-06

34-07

Reas_05_279-336.indd Sec4:320Reas_05_279-336.indd Sec4:320 5/23/07 3:52:20 PM5/23/07 3:52:20 PM

321

Image 3: Pixels
This unit introduces techniques for getting and setting the values for single pixels and
groups of pixels.

Syntax introduced:
get(), set()

Image 1 (p. 95) defi ned an image as a rectangular grid of pixels in which each element
is a number specifying a color. Because the screen itself is an image, its individual pixels
are also defi ned as numbers. The color values of individual pixels can be read
and changed.

Reading pixels

When a Processing program starts, the display window opens at the dimension
requested in size(). The program gains control over that area of the screen and sets
the color value for each pixel. The display window communicates with the operating
system, so when the window moves, it takes control of its new area of the screen and
gives control of its previous space to the operating system.
 The get() function can read the color of any pixel in the display window. It can
also grab the whole display window or a section of it. There are three versions of this
function, one for each use.

 get()

 get(x, y)

 get(x, y, width, height)

If get() is used without parameters, a copy of the entire display window is returned
as a PImage. The version with two parameters returns the color value of a single pixel
at the location specifi ed by the x and y parameters. A rectangular area of the display
window is returned if the additional width and height parameters are used. If get()
grabs the entire display window or a section of the window, the returned data must be
assigned to a variable of type PImage. These images can be redrawn to the screen in
different positions and resized.

 strokeWeight(8);

 line(0, 0, width, height);

 line(0, height, width, 0);

 PImage cross = get(); // Get the entire window

 image(cross, 0, 50); // Draw the image in a new position

35-01

Reas_05_279-336.indd Sec4:321Reas_05_279-336.indd Sec4:321 5/23/07 3:52:21 PM5/23/07 3:52:21 PM

322 Image 3: Pixels

 smooth();

 strokeWeight(8);

 line(0, 0, width, height);

 line(0, height, width, 0);

 noStroke();

 ellipse(18, 50, 16, 16);

 PImage cross = get(); // Get the entire window

 image(cross, 42, 30, 40, 40); // Resize to 40 x 40 pixels

 strokeWeight(8);

 line(0, 0, width, height);

 line(0, height, width, 0);

 PImage slice = get(0, 0, 20, 100); // Get window section

 set(18, 0, slice);

 set(50, 0, slice);

The get() function always grabs the pixels in the display window in the same way,
regardless of what is drawn to the window. In the previous examples, the get()
function grabbed the images of the lines after they had been converted to pixels for
display on screen. The following example is the same as code 35-01, but a photograph is
fi rst loaded into the display window, so get() grabs that image.

 PImage trees;

 trees = loadImage("topanga.jpg");

 image(trees, 0, 0);

 PImage crop = get(); // Get the entire window

 image(crop, 0, 50); // Draw the image in a new position

When used with an x- and y-coordinate, the get() function returns values that should
be assigned to a variable of the color data type. These values can be used to set the
color of other pixels or can serve as parameters to fill() or stroke(). In the following
example, the color of one pixel is used to set the color of the rectangle.

 PImage trees;

 trees = loadImage("topanga.jpg");

 noStroke();

 image(trees, 0, 0);

 color c = get(20, 30); // Get color at (20, 30)

 fill(c);

 rect(20, 30, 40, 40);

The mouse values can be used as the parameters to the get() function. This allows
the cursor to select colors from the display window. In the following example, the pixel
beneath the cursor is read and defi nes the fi ll value for the rectangle on the right.

35-02

35-03

35-04

35-05

Reas_05_279-336.indd Sec4:322Reas_05_279-336.indd Sec4:322 5/23/07 3:52:21 PM5/23/07 3:52:21 PM

323 Image 3: Pixels

 PImage trees;

 void setup() {

 size(100, 100);

 noStroke();

 trees = loadImage("topangaCrop.jpg");

 }

 void draw() {

 image(trees, 0, 0);

 color c = get(mouseX, mouseY);

 fill(c);

 rect(50, 0, 50, 100);

 }

The get() function can be used within a for structure to grab many pixels or groups
of pixels. In the following example, the values from each row of pixels in the image are
used to set the values for the lines on the right. Run this code and move the mouse up
and down to see the relation between the image on the left and the bands of color on the
right.

 PImage trees;

 int y = 0;

 void setup() {

 size(100, 100);

 trees = loadImage("topangaCrop.jpg");

 }

 void draw() {

 image(trees, 0, 0);

 y = constrain(mouseY, 0, 99);

 for (int i = 0; i < 49; i++) {

 color c = get(i, y);

 stroke(c);

 line(i+50, 0, i+50, 100);

 }

 stroke(255);

 line(0, y, 49, y);

 }

35-06

35-07

Reas_05_279-336.indd Sec4:323Reas_05_279-336.indd Sec4:323 5/23/07 3:52:22 PM5/23/07 3:52:22 PM

324 Image 3: Pixels

Every PImage variable has its own get() to grab pixels from the image. This allows
pixels to be grabbed from an image independently of the pixels in the display window.
Because a PImage is an object, the get() function is accessed with the name of the
image and the dot operator. In the following example, the pixels are grabbed directly
from the image and not from the screen, so white lines drawn to the display window are
not grabbed.

 PImage trees;

 trees = loadImage("topanga.jpg");

 stroke(255);

 strokeWeight(12);

 image(trees, 0, 0);

 line(0, 0, width, height);

 line(0, height, width, 0);

 PImage treesCrop = trees.get(20, 20, 60, 60);

 image(treesCrop, 20, 20);

Writing pixels

The pixels in Processing’s display window can be written directly with the set()
function. There are two versions of this function, each with three parameters.

 set(x, y, color)

 set(x, y, image)

When the third parameter is a color, set() changes the color of any pixel in the
display window. When the third parameter is an image, set() writes an image at the
coordinates specifi ed by the x and y parameters.

 color black = color(0);

 set(20, 80, black);

 set(20, 81, black);

 set(20, 82, black);

 set(20, 83, black);

 for (int i = 0; i < 55; i++) {

 for (int j = 0; j < 55; j++) {

 color c = color((i+j) * 1.8);

 set(30+i, 20+j, c);

 }

 }

35-08

35-09

35-10

Reas_05_279-336.indd Sec4:324Reas_05_279-336.indd Sec4:324 5/23/07 3:52:23 PM5/23/07 3:52:23 PM

325 Image 3: Pixels

The set() function can write an image to the display window at any location. Using
set() to draw an image is faster than using the image() function because the pixels
are copied directly. However, images drawn with set() cannot be resized or tinted, and
they are not affected by the transformation functions.

 PImage trees;

 void setup() {

 size(100, 100);

 trees = loadImage("topangaCrop.jpg");

 }

 void draw() {

 int x = constrain(mouseX, 0, 50);

 set(x, 0, trees);

 }

Every PImage variable has its own set() function to write pixels directly to the image.
This allows pixels to be written to an image independently of the pixels in the display
window. Because a PImage is an object, the set() function is run with the name of the
image and the dot operator. In the following example, four white pixels are set into the
image variable trees, and the image is then drawn to the display window.

 PImage trees;

 trees = loadImage("topangaCrop.jpg");

 background(0);

 color white = color(255);

 trees.set(0, 50, white);

 trees.set(1, 50, white);

 trees.set(2, 50, white);

 trees.set(3, 50, white);

 image(trees, 20, 0);

 Exercises
1. Load an image and use get() to create a collage by overlaying different sections of the
 same image.
2. Load an image and use mouseX and mouseY to read the value of the pixel beneath
 the cursor. Use this value to change some aspect of the image.
3. Draw a shape in the display window. Copy a section of the window to another by
 using get() and set() within a for structure.

35-11

35-12

Reas_05_279-336.indd Sec4:325Reas_05_279-336.indd Sec4:325 5/23/07 3:52:23 PM5/23/07 3:52:23 PM

Reas_05_279-336.indd Sec4:326Reas_05_279-336.indd Sec4:326 5/23/07 3:52:24 PM5/23/07 3:52:24 PM

327

Typography 2: Motion
This unit introduces typography in motion.

Despite the potential for kinetic type within fi lm, animated typography didn’t begin
to fl ourish until the 1950s with the fi lm title work of Saul Bass, Maurice Binder, and
Pablo Ferro. These designers and their peers set a high standard with their kinetic title
sequences for fi lms such as North by Northwest (1959), Dr. No (1962), and Bullitt (1968).
They explored the evocative power of kinetic letterforms to set a mood and express
additional layers of meaning in relation to written language. In subsequent years the
design of fi lm titles has matured and been augmented by experimental typography for
television and the Internet.
 Software has played a large role in extending the possibilities of type in motion.
The Visual Language Workshop (VLW), founded by Muriel Cooper at the MIT Media
Lab in 1985, applied rigorous design thinking to the presentation of kinetic and spatial
typography. Researchers including Suguru Ishizaki, Lisa Strausfeld, Yin Yin Wong, and
David Small produced progressive typographic explorations ranging from the expression
of animated phrases to the navigation of vast typographic landscapes. Because programs
did not exist to perform these experiments, the researchers developed custom software
to realize their ideas. While at the VLW, David Small created the Talmud Project to
explore reading in a unique way. It displays the Talmud and related commentaries on
the screen simultaneously. A dial controls the legibility of each text through blurring
and fading, while keeping each source in context. Peter Cho, building on the explorations
of the VLW, wrote software that continued to push the boundaries of expressive kinetic
typography. His Letterscapes website presents every letter of the Roman alphabet as a
character with a unique motion and response in relation to its form. With his Takeluma
project, Cho went even further by inventing a kinetic alphabet for visualizing speech.
 In the last decade, many software tools have been released that facilitate working
with kinetic typography. Adobe’s Flash software has provided new freedom for working
with type on the Web, and Adobe After Effects has supported more sophisticated
typography in fi lm and television. This unit introduces techniques for exploring kinetic
typography with code.

Words in motion

For typography to move, the program must run continuously, and therefore it requires a
draw() function. Using typography within draw() requires three steps. First, a PFont
variable must be declared outside of setup() and draw(). Next, the font should be
loaded and set within setup(). Finally, the font can be used to place characters on the
screen inside draw() with the text() function.

Reas_05_279-336.indd Sec4:327Reas_05_279-336.indd Sec4:327 5/23/07 3:52:25 PM5/23/07 3:52:25 PM

328 Typography 2: Motion

The following examples use a font named Eureka. To run these examples, you will need
to use the “Create Font” tool to create your own font. Change the name of the parameter
to loadFont() to the name of the font that you created.

 PFont font;

 String s = "Pea";

 void setup() {

 size(100, 100);

 font = loadFont("Eureka-48.vlw");

 textFont(font);

 fill(0);

 }

 void draw() {

 background(204);

 text(s, 22, 20);

 }

To put type into motion, simply draw it at a different position each frame. Words can
move in an orderly fashion if their position is changed slightly each frame, and they can
move without apparent order if placed in an arbitrary position each frame.

 PFont font;

 float x1 = 0;

 float x2 = 100;

 void setup() {

 size(100, 100);

 font = loadFont("Eureka-48.vlw");

 textFont(font);

 fill(0);

 }

 void draw() {

 background(204);

 text("Right", x1, 50);

 text("Left", x2, 100);

 x1 += 1.0;

 if (x1 > 100) { x1 = -150; }

 x2 -= 0.8;

 if (x2 < -150) { x2 = 100; }

 }

36-01

36-02

Reas_05_279-336.indd Sec4:328Reas_05_279-336.indd Sec4:328 5/23/07 3:52:26 PM5/23/07 3:52:26 PM

329 Typography 2: Motion

 PFont font;

 void setup() {

 size(100, 100);

 font = loadFont("Eureka-48.vlw");

 textFont(font);

 noStroke();

 }

 void draw() {

 fill(204, 24);

 rect(0, 0, width, height);

 fill(0);

 text("flicker", random(-100, 100), random(-20, 120));

 }

Typography need not move in order to change over time. More subtle transformations,
such as changes in the gray value or transparency of the text, can be made by changing
the value of a variable within draw().

 PFont font;

 int opacity = 0;

 int direction = 1;

 void setup() {

 size(100, 100);

 font = loadFont("EurekaSmallCaps-36.vlw");

 textFont(font);

 }

 void draw() {

 background(204);

 opacity += 2 * direction;

 if ((opacity < 0) || (opacity > 255)) {

 direction = -direction;

 }

 fill(0, opacity);

 text("fade", 4, 60);

 }

36-03

36-04

Reas_05_279-336.indd Sec4:329Reas_05_279-336.indd Sec4:329 5/23/07 3:52:26 PM5/23/07 3:52:26 PM

330 Typography 2: Motion

Applying the transformations translate(), scale(), and rotate() can also
create motion.

 PFont font;

 String s = "VERTIGO";

 float angle = 0.0;

 void setup() {

 size(100, 100);

 font = loadFont("Eureka-90.vlw");

 textFont(font, 24);

 fill(0);

 }

 void draw() {

 background(204);

 angle += 0.02;

 pushMatrix();

 translate(33, 50);

 scale((cos(angle/4.0) + 1.2) * 2.0);

 rotate(angle);

 text(s, 0, 0);

 popMatrix();

 }

Another technique, called rapid serial visual presentation (RSVP), displays words on the
screen sequentially and provides a fundamentally different way to think about reading.
Run this program and change the frame rate to see how it affects the process of reading.
To store the words within one variable called words, this example uses a data element
called an Array (explained in Data 4, p. 301).

 PFont font;

 String[] words = { "Three", "strikes", "and", "you're",

 "out...", " " };

 int whichWord = 0;

 void setup() {

 size(100, 100);

 font = loadFont("Eureka-32.vlw");

 textFont(font);

 textAlign(CENTER);

 frameRate(4);

 }

36-05

36-06

Reas_05_279-336.indd Sec4:330Reas_05_279-336.indd Sec4:330 5/23/07 3:52:27 PM5/23/07 3:52:27 PM

331 Typography 2: Motion

 void draw() {

 background(204);

 whichWord++;

 if (whichWord == words.length) {

 whichWord = 0;

 }

 text(words[whichWord], width/2, 55);

 }

Letters in motion

Individually animated letters offer more fl exibility than entire moving words. Building
words letter by letter, each with a different movement or speed, can convey a particular
meaning or tone. Working in this way requires more patience and often longer
programs, but the results can be more rewarding because of the increased possibilities.

 // The size of each letter grows and shrinks from

 // left to right

 PFont font;

 String s = "AREA";

 float angle = 0.0;

 void setup() {

 size(100, 100);

 font = loadFont("EurekaMono-48.vlw");

 textFont(font);

 fill(0);

 }

 void draw() {

 background(204);

 angle += 0.1;

 for (int i = 0; i < s.length(); i++) {

 float c = sin(angle + i/PI);

 textSize((c + 1.0) * 32 + 10);

 text(s.charAt(i), i*26, 60);

 }

 }

36-06
cont.

36-07

Reas_05_279-336.indd Sec4:331Reas_05_279-336.indd Sec4:331 5/23/07 3:52:28 PM5/23/07 3:52:28 PM

332 Typography 2: Motion

 // Each letter enters from the bottom in sequence and

 // stops when it reaches its destination

 PFont font;

 String word = "rise";

 char[] letters;

 float[] y; // Y-coordinate for each letter

 int currentLetter = 0; // Letter currently in motion

 void setup() {

 size(100, 100);

 font = loadFont("EurekaSmallCaps-36.vlw");

 textFont(font);

 letters = word.toCharArray();

 y = new float[letters.length];

 for (int i = 0; i < letters.length; i++) {

 y[i] = 130; // Position off the screen

 }

 fill(0);

 }

 void draw() {

 background(204);

 if (y[currentLetter] > 35) {

 y[currentLetter] -= 3; // Move current letter up

 } else {

 if (currentLetter < letters.length-1) {

 currentLetter++; // Switch to next letter

 }

 }

 // Calculate x to center the word on screen

 float x = (width - textWidth(word)) / 2;

 for (int i = 0; i < letters.length; i++) {

 text(letters[i], x, y[i]);

 x += textWidth(letters[i]);

 }

 }

 Exercises
1. Select a noun and an adjective. Animate the noun to reveal the adjective.
2. Use the transformation functions to animate a short phrase.
3. Select a verb and animate each letter of the word to convey its meaning.

36-08

Reas_05_279-336.indd Sec4:332Reas_05_279-336.indd Sec4:332 5/23/07 3:52:28 PM5/23/07 3:52:28 PM

333

Typography 3: Response
This unit introduces typography that responds to input from the mouse and keyboard.

Many people spend hours a day inputting letters into computers, but this action is very
constrained. What features could be added to a text editor to make it more responsive
to the typist? For example, the speed of typing could decrease the size of the letters,
or a long pause in typing could add many spaces, mimicking a person’s pause while
speaking. What if the keyboard could register how hard a person is typing (the way a
piano plays a soft note when a key is pressed gently) and could automatically assign
attributes such as italics for soft presses and bold for forceful presses? These analogies
suggest how conservatively current software treats typography and typing.
 Many artists and designers are fascinated with type and have created unique ways
of exploring letterforms with the mouse, keyboard, and more exotic input devices.
A minimal yet engaging example is John Maeda’s Type, Tap, Write software, created
in 1998 as an homage to manual typewriters. This software uses the keyboard as the
input to a black-and-white screen representation of a keyboard. Pressing the number
keys cause the software to cycle through different modes, each revealing a playful
interpretation of keyboard data. Casey Reas and Golan Levin’s Dakadaka software from
2000, named after the sounds made while hitting a keyboard, explores the percussive
and rhythmic aspects of typing. Input from the keyboard is translated into four different
positional abstract alphabets that change according to the speed of typing and the order
of the pressed keys. In Jeffrey Shaw and Dirk Groeneveld’s The Legible City (1989–91),
buildings are replaced with three-dimensional letters to create a city of typography
that conforms to the streets of a real place. In the Manhattan version, for instance, texts
from the mayor, a taxi driver, and Frank Lloyd Wright comprise the city. The image
is presented on a projection screen, and the user navigates by pedaling and steering
a stationary bicycle situated in front of the projected image. Projects such as these
demonstrate that software presents an extraordinary opportunity to extend the way we
read and write.

Responsive words

Typographic elements can be assigned behaviors that defi ne a personality in relation
to the mouse or keyboard. A word can express aggression by moving quickly toward the
mouse, or one moving away slowly can express timidity.

Reas_05_279-336.indd Sec4:333Reas_05_279-336.indd Sec4:333 5/23/07 3:52:29 PM5/23/07 3:52:29 PM

334 Typography 3: Response

 // The word "avoid" stays away from the mouse because its

 // position is set to the inverse of the cursor position

 PFont f;

 void setup() {

 size(100, 100);

 f = loadFont("Eureka-24.vlw");

 textFont(f);

 textAlign(CENTER);

 fill(0);

 }

 void draw() {

 background(204);

 text("avoid", width-mouseX, height-mouseY);

 }

 // The word "tickle" jitters when the cursor hovers over

 PFont f;

 float x = 33; // X-coordinate of text

 float y = 60; // Y-coordinate of text

 void setup() {

 size(100, 100);

 f = loadFont("Eureka-24.vlw");

 textFont(f);

 noStroke();

 }

 void draw() {

 fill(204, 120);

 rect(0, 0, width, height);

 fill(0);

 // If the cursor is over the text, change the position

 if ((mouseX >= x) && (mouseX <= x+55) &&

 (mouseY >= y-24) && (mouseY <= y)) {

 x += random(-5, 5);

 y += random(-5, 5);

 }

 text("tickle", x, y);

 }

37-01

37-02

Reas_05_279-336.indd Sec4:334Reas_05_279-336.indd Sec4:334 5/23/07 3:52:29 PM5/23/07 3:52:29 PM

335 Typography 3: Response

Responsive letters

Breaking a word into its component letters creates more options in determining its
response to the mouse or keyboard. Independent letters that each have the ability to
respond in a different way contribute to the word’s total response. The following two
examples demonstrate this technique. The toCharArray() method (p. 108) is used
to extract the individual characters from a String variable and put them into an array
of characters. The charAt() method (p. 108) is an alternate way to isolate the individual
letters within a String.

 // The horizontal position of the mouse determines the

 // rotation angle. The angle accumulates with each letter

 // drawn to make the typography curve.

 String word = "Flexibility";

 PFont f;

 char[] letters;

 void setup() {

 size(100, 100);

 f = loadFont("Eureka-24.vlw");

 textFont(f);

 letters = word.toCharArray();

 fill(0);

 }

 void draw() {

 background(204);

 pushMatrix();

 translate(0, 33);

 for (int i = 0; i < letters.length; i++) {

 float angle = map(mouseX, 0, width, 0, PI/8);

 rotate(angle);

 text(letters[i], 0, 0);

 // Offset by the width of the current letter

 translate(textWidth(letters[i]), 0);

 }

 popMatrix();

 }

37-03

Reas_05_279-336.indd Sec4:335Reas_05_279-336.indd Sec4:335 5/23/07 3:52:30 PM5/23/07 3:52:30 PM

336 Typography 3: Response

 // Calculates the size of each letter based on the

 // position of the cursor so the letters are larger

 // when the cursor is closer

 String word = "BULGE";

 char[] letters;

 float totalOffset = 0;

 PFont font;

 void setup() {

 size(100, 100);

 font = loadFont("Eureka-48.vlw");

 textFont(font);

 letters = word.toCharArray();

 textAlign(CENTER);

 fill(0);

 }

 void draw() {

 background(204);

 translate((width - totalOffset) / 2, 0);

 totalOffset = 0;

 float firstWidth = (width / letters.length) / 4.0;

 translate(firstWidth, 0);

 for (int i = 0; i < letters.length; i++) {

 float distance = abs(totalOffset - mouseX);

 distance = constrain(distance, 24, 60);

 textSize(84 - distance);

 text(letters[i], 0, height - 2);

 float letterWidth = textWidth(letters[i]);

 if (i != letters.length-1) {

 totalOffset = totalOffset + letterWidth;

 translate(letterWidth, 0);

 }

 }

 }

 Exercises
1. Change the visual attributes of a word as the cursor moves across the display window.
2. Draw a verb on screen and have it respond to the cursor to communicate its meaning.
3. Select an adverb and a verb. Design the way the verb responds to the mouse to
 communicate the adverb.

37-04

Reas_05_279-336.indd Sec4:336Reas_05_279-336.indd Sec4:336 5/23/07 3:52:31 PM5/23/07 3:52:31 PM

337

Color 2: Components
This unit introduces functions for reading the components of a color and discusses
techniques for creating dynamic color palettes.

Syntax introduced:
red(), blue(), green(), alpha(), hue(), saturation(), brightness()

Colors are stored in software as numbers. Each color is defi ned by its component
elements. When color is defi ned by RGB values, there are three numbers that store
the red, green, and blue components and an optional fourth number that stores a
transparency value. When working with HSB values, three numbers store the hue,
saturation, and brightness values and a fourth denotes the transparency. The visible
color is a combination of these components. Adjusting the individual color properties in
isolation from the others is a useful technique for dynamically changing a single color
value or the entire palette for a program.

Extracting color

In Processing, the color data type is a single number that stores the individual
components of a color. This value combines the red, green, blue, and alpha
(transparency) components. Behind the scenes, this value is actually an int, and can
be used interchangeably with an int variable anywhere in a program. The color data
type stores the components of the color as a a series of values from 0 to 255 embedded
into this larger number. We can look at an abstracted view of a color with this table:

The red(), green(), and blue() functions are used for reading the components of a
color. The red() function extracts the red component, the green() function extracts
the green component, and the blue() function extracts the blue component.

255

255

64 124 188

255151 186 66

214 124 43

126214 124 43

ColorAlphaRed Green Blue

Reas_06_337-346.indd Sec4:337Reas_06_337-346.indd Sec4:337 5/23/07 4:21:02 PM5/23/07 4:21:02 PM

338 Color 2: Components

color c1 = color(0, 126, 255); // Create a new color

float r = red(c1); // Assign 0.0 to r

float g = green(c1); // Assign 126.0 to g

float b = blue(c1); // Assign 255.0 to b

println(r + ", " + g + ", " + b); // Prints "0.0, 126.0, 255.0"

color c2 = color(102); // Create a new gray value

float r2 = red(c2); // Assign 102.0 to r2

float g2 = green(c2); // Assign 102.0 to g2

float b2 = blue(c2); // Assign 102.0 to b2

println(r2 + ", " + g2 + ", " + b2); // Prints "102.0, 102.0, 102.0"

The alpha() function reads the alpha value of the color. Remember, a fourth value
added to the color() function sets the transparency value for this color. If no alpha
value is set, the default 255 is used.

color c = color(0, 51, 102); // Create a new color

color g = color(0, 126, 255, 220); // Create a new color

float a = alpha(c); // Assign 255.0 to a

float b = alpha(g); // Assign 220.0 to b

println(a + ", " + b); // Prints "255.0, 220.0"

The hue(), saturation(), and brightness() functions work like red(), green(),
and blue(), but return different components of the color. It makes sense to switch to
the HSB color model when using these functions, but sometimes you will want these
components while in the default RGB color mode.

colorMode(HSB, 360, 100, 100); // Set color mode to HSB

color c = color(210, 100, 40); // Create a new color

float h = hue(c); // Assign 210.0 to h

float s = saturation(c); // Assign 100.0 to s

float b = brightness(c); // Assign 40.0 to b

println(h + ", " + s + ", " + b); // Prints "210.0, 100.0, 40.0"

color c = color(217, 41, 117); // Create a new color

float r = red(c); // Assign 217.0 to r

float h = hue(c); // Assign 236.64774 to h

println(r + ", " + h); // Prints "217.0, 236.64774"

The values from all of these functions are scaled based on the current color mode
settings. If the range for color values is changed with colorMode(), the values returned
will be scaled within the new range.

38-01

38-02

38-03

38-04

Reas_06_337-346.indd Sec4:338Reas_06_337-346.indd Sec4:338 5/23/07 4:21:03 PM5/23/07 4:21:03 PM

339 Color 2: Components

colorMode(RGB, 1.0); // Sets color mode to RGB

color c = color(0.2, 0.8, 1.0); // Creates a new color

float r = red(c); // Assign 0.2 to r

float h = hue(c); // Assign 0.5416667 to h

println(r + ", " + h); // Prints "0.2, 0.5416667"

The values returned from these color functions are always fl oating-point values;
therefore, you’ll receive an error if you try to assign the result to an integer value. If
you need the result to be an integer, you can simply convert the value using the int()
function (p. 107).

color c = color(118, 22, 24); // Create a new color

int r1 = red(c); // ERROR! red() returns a float

float r2 = red(c); // Assign 118.0 to r2

int r3 = int(red(c)); // Assign 118 to r3

As described in Image 3 (p. 321), these functions make it possible to read the individual
color components of the pixels in the display window. In the following examples, the
get() function is used to access the color at the current cursor position. The components
of these colors are extracted and used to set the drawing properties.

 // Set the stroke color of the lines to the

 // red component of the pixel below the cursor

 void setup() {

 size(100, 100);

 smooth();

 fill(204, 0, 0);

 }

 void draw() {

 background(0);

 noStroke();

 ellipse(66, 46, 80, 80);

 color c = get(mouseX, mouseY);

 float r = red(c); // Extract red component

 stroke(255-r); // Set the stroke based on red value

 line(mouseX, 0, mouseX, height);

 line(0, mouseY, width, mouseY);

 }

38-05

38-06

38-07

Reas_06_337-346.indd Sec4:339Reas_06_337-346.indd Sec4:339 5/23/07 4:21:04 PM5/23/07 4:21:04 PM

340 Color 2: Components

 // Simulates one pixel of a flat-panel display

 PImage wall;

 void setup() {

 size(100, 100);

 wall = loadImage("veg.jpg");

 stroke(255);

 }

 void draw() {

 background(wall);

 color c = get(mouseX, mouseY);

 float r = red(c); // Extract red

 float g = green(c); // Extract green

 float b = blue(c); // Extract blue

 fill(r, 0, 0);

 rect(32, 20, 12, 60); // Red component

 fill(0, g, 0);

 rect(44, 20, 12, 60); // Green component

 fill(0, 0, b);

 rect(56, 20, 12, 60); // Blue component

 }

Values extracted with the red(), green(), and blue() functions can be used in many
different ways. For instance, the numbers can be used to control aspects of motion or
the fl ow of the program. In the following example, the brightness of pixels in an image
controls the speed of 400 points moving across the screen. Each point moves across the
screen from left to right. The pixel value in the image with the same coordinate as a point
is read and used to set the speed at which the point moves. Each point moves slowly
through dark areas and quickly through lighter areas. Run the code and try a different
photo to see how the same program can be used to create different patterns of motion.

 int num = 400;

 float[] x = new float[num];

 float[] y = new float[num];

 PImage img;

 void setup() {

 size(100, 100);

 img = loadImage("standing-alt.jpg");

 for (int i = 0; i < num; i++) {

 x[i] = random(width);

 y[i] = random(height);

38-08

38-09

Reas_06_337-346.indd Sec4:340Reas_06_337-346.indd Sec4:340 5/23/07 4:21:05 PM5/23/07 4:21:05 PM

341 Color 2: Components

 }

 stroke(255);

 }

 void draw() {

 background(0);

 for (int i = 0; i < num; i++) {

 color c = img.get(int(x[i]), int(y[i]));

 float b = brightness(c) / 255.0;

 float speed = pow(b, 2) + 0.05;

 x[i] += speed;

 if (x[i] > width) {

 x[i] = 0;

 y[i] = random(height);

 }

 point(x[i], y[i]);

 }

 }

Dynamic color palettes

One of the most important concepts in working with color is relativity. When one color
is positioned next to another, they both appear to change. If a color is to appear the same
in a new juxtaposition, it often must be physically different (defi ned with different
numbers). This is important to consider when working with color in software, since
elements are often moving and changing colors. For example, placing these fi ve colors . . .

. . . in a different order changes their appearance:

The phenomenon of color relativity can be extended in software by linking colors’
relations and making them change dynamically in response to input from the mouse.
In the following example, four colors are used. The colors stored in the variables olive

AA BB CC DD EE

A B C D EA B C D E C A D B EC A D B E

38-09
cont.

Reas_06_337-346.indd Sec4:341Reas_06_337-346.indd Sec4:341 5/23/07 4:21:05 PM5/23/07 4:21:05 PM

342 Color 2: Components

and gray remain the same, while the values for yellow and orange change in relation
to mouseY and therefore shift as the cursor moves up and down.

 color olive, gray;

 void setup() {

 size(100, 100);

 colorMode(HSB, 360, 100, 100, 100);

 noStroke();

 smooth();

 olive = color(75, 61, 59);

 gray = color(30, 17, 42);

 }

 void draw() {

 float y = mouseY / float(height);

 background(gray);

 fill(olive);

 quad(70 + y*6, 0, 100, 0, 100, 100, 30 - y*6, 100);

 color yellow = color(48 + y*20, 100, 88 - y*20);

 fill(yellow);

 ellipse(50, 45 + y*10, 60, 60);

 color orange = color(29, 100, 83 - y*10);

 fill(orange);

 ellipse(54, 42 + y*16, 24, 24);

 }

A good technique for creating subtle and complex color palettes with software is to
use colors directly from images. Image can be loaded into the software and their colors
read using the get() function. For the examples in the rest of this section, the 100 color
values from a 10 * 10 pixel image are used to set the fi ll and stroke colors of shapes. To
show the different values more clearly, the image has been enlarged:

Depending on your goals, you can load a photographic image or one that has been
constructed pixel by pixel. An image of any dimension can be loaded and used as a color
palette. Sometimes it’s appropriate to use only a few colors, and other times hundreds of
unique colors might be desired.

38-10

Reas_06_337-346.indd Sec4:342Reas_06_337-346.indd Sec4:342 5/23/07 4:21:06 PM5/23/07 4:21:06 PM

343 Color 2: Components

 PImage img;

 void setup() {

 size(100, 100);

 smooth();

 frameRate(0.5);

 img = loadImage("palette10x10.jpg");

 }

 void draw() {

 background(0);

 for (int x = 0; x < img.width; x++) {

 for (int y = 0; y < img.height; y++) {

 float xpos1 = random(x*10);

 float xpos2 = width - random(y*10);

 color c = img.get(x, y);

 stroke(c);

 line(xpos1, 0, xpos2, height);

 }

 }

 }

 PImage img;

 void setup() {

 size(100, 100);

 noStroke();

 img = loadImage("palette10x10.jpg");

 }

 void draw() {

 int ix = int(random(img.width));

 int iy = int(random(img.height));

 color c = img.get(ix, iy);

 fill(c, 102);

 int xgrid = int(random(-2, 5)) * 25;

 int ygrid = int(random(-2, 5)) * 25;

 rect(xgrid, ygrid, 40, 40);

 }

38-11

38-12

Reas_06_337-346.indd Sec4:343Reas_06_337-346.indd Sec4:343 5/23/07 4:21:07 PM5/23/07 4:21:07 PM

344 Color 2: Components

Loading the colors from the image into an array opens more possibilities. Once the colors
are in an array, they can be easily reordered or shifted. In the following example, the
color values from the image are loaded sequentially into an array and then reordered
according to their brightness. The sortColors() function takes an array of colors as
an input, puts them in order from dark to light, and then returns the sorted colors. As it
counts from 0 to 255, it puts all the colors with the current value from the unsorted array
into the new array.

Original array

Array sorted by brightness

The following example uses the values of the sorted array elements to determine the
thickness and center point of the line pairs drawn to the display window. Each pair
of lines is spaced evenly at ten-pixel intervals, and a random value is used to access a
color from the imageColors[] array. Because the colors in the array are sorted, line 24
ensures that the thin lines are bright and the thick lines are dark, regardless of their hue
and saturation.

 PImage img;

 color[] imageColors;

 void setup() {

 size(100, 100);

 frameRate(0.5);

 smooth();

 noFill();

 img = loadImage("palette10x10.jpg");

 imageColors = new color[img.width*img.height];

 for (int y = 0; y < img.height; y++) {

 for (int x = 0; x < img.width; x++) {

 imageColors[y*img.height + x] = img.get(x, y);

 }

 }

 imageColors = sortColors(imageColors);

 }

 void draw() {

 background(255);

 for (int x = 10; x < width; x += 10) {

 int r = int(random(imageColors.length));

 float thick = ((100-r) / 4.0) + 1.0;

38-13

Reas_06_337-346.indd Sec4:344Reas_06_337-346.indd Sec4:344 5/23/07 4:21:08 PM5/23/07 4:21:08 PM

345 Color 2: Components

 stroke(imageColors[r]);

 strokeWeight(thick);

 line(x, height, x, height-r+thick);

 line(x, 0, x, height-r-thick);

 }

 }

 color[] sortColors(color[] colors) {

 color[] sorted = new color[colors.length];

 int num = 0;

 for (int i = 0; i <= 255; i++) {

 for (int j = 0; j < colors.length; j++) {

 if (int(brightness(colors[j])) == i) {

 sorted[num] = colors[j];

 num++;

 }

 }

 }

 return sorted;

 }

 Exercises
1. Write a program to print the red, green, and blue values of every pixel in an image
 to the console.
2. Design a composition that changes based on the mouseX value. Make the color for
 each element of the composition also change in relation to this variable.
3. Load an image and use its colors to set the palette for a composition.

38-13
cont.

Reas_06_337-346.indd Sec4:345Reas_06_337-346.indd Sec4:345 5/23/07 4:21:09 PM5/23/07 4:21:09 PM

Reas_06_337-346.indd Sec4:346Reas_06_337-346.indd Sec4:346 5/23/07 4:21:09 PM5/23/07 4:21:09 PM

347

Image 4: Filter, Blend, Copy, Mask
This unit introduces techniques for fi ltering, blending, copying, and masking images.

Syntax introduced:
filter(), blend(), blendColor(), copy(), mask()

Digital images have the remarkable potential to be easily reconfi gured and combined
with other images. Software now simulates and improves upon complex and time-
consuming operations formerly completed in a darkroom with light and chemistry.
Every pixel in a digital image is a grouping of numbers that can be added, multiplied,
or averaged with the numbers from any other pixel. Some of these calculations are
based on simple arithmetic and others use the more complex mathematics of signal
processing, but the visual results are most important. Software programs such as the
GNU Image Manipulation Program (GIMP) and Adobe’s Photoshop have made it possible
to perform many of the more common and useful calculations without thinking about
the math behind the effects. These programs allow users to easily perform technical
operations such as converting images from RGB colors to grayscale values, increasing
an image’s contrast, or tweaking color balance. Such tools also allow users to apply
fi lters that range from the basic to the kitschy and absurd. A fi lter might blur an image,
mimic solarization, or simulate watercolor effects. The actions of fi ltering, blending, and
copying can easily be controlled with code to produce striking changes. These techniques
may be too slow for use in real-time animation.

Filtering, Blending

Processing provides functions to fi lter and blend images in the display window. Each
of these functions operates by transforming the pixel values of a single image or by
performing an operation to merge pixels between two different images. The filter()
function has two prototypes:

 filter(mode)

 filter(mode, level)

Eight options exist for the mode parameter: THRESHOLD, GRAY, INVERT, POSTERIZE,
BLUR, OPAQUE, ERODE, or DILATE. Some of these parameters require the level
parameter and others don’t. For example, the THRESHOLD mode converts every pixel in
an image to black or white based on whether its value is above or below the value of the
level parameter.
 The following example applies the THRESHOLD fi lter to an image with the level
parameter set to 0.3, which signifi es that pixels with a gray value greater than 30 percent

Reas_07_347-394.indd Sec4:347Reas_07_347-394.indd Sec4:347 5/23/07 4:22:40 PM5/23/07 4:22:40 PM

348 Image 4: Filter, Blend, Copy, Mask

Filtering
The filter() function modifi es the pixels of the display window and images. The different kinds
of fi lters seen here provide a range of ready-made options, but it’s possible to write custom fi lters
using the language elements introduced in Image 5 (p. 355).

BLUR

Executes a Gaussian blur with
the level parameter specifying
 the extent of the blurring

POSTERIZE

Limits each channel of the
image to the number of colors
 specifi ed as the level parameter

THRESHOLD

Converts the image to black-
and-white pixels depending on
whether they are above or below
the threshold defi ned by the
level parameter

GRAY

Converts any colors in the image
to grayscale equivalents

DILATE

Increases the light areas with
the amount defi ned by the level
parameter

INVERT

Sets each pixel to
its inverse value

ERODE

Reduces the light
areas with the
amount defi ned by
the level parameter

BLUR, 1 BLUR, 4 BLUR, 8

POSTERIZE, 2 POSTERIZE, 4 POSTERIZE, 8

THRESHOLD, 0.2 THRESHOLD, 0.5 THRESHOLD, 0.8

Reas_07_347-394.indd Sec4:348Reas_07_347-394.indd Sec4:348 5/23/07 4:22:41 PM5/23/07 4:22:41 PM

349 Image 4: Filter, Blend, Copy, Mask

of the maximum brightness will be set to white and pixels below that value will be set
to black.

 PImage img = loadImage("topanga.jpg");

 image(img, 0, 0);

 filter(THRESHOLD, 0.3);

The filter() function affects only what has already been drawn. For example, if a
program draws two lines and blur is created after one line is drawn, it does not affect the
second line:

 smooth();

 strokeWeight(5);

 noFill();

 line(0, 30, 100, 60);

 filter(BLUR, 3);

 line(0, 50, 100, 80);

Changing the parameter value of filter() with each frame creates movement. The
effects of filter() are reset each time through draw(), but increasing or decreasing
the level parameter results in the fi lter becoming more or less pronounced as the
program runs:

 float fuzzy = 0.0;

 void setup() {

 size(100, 100);

 smooth();

 strokeWeight(5);

 noFill();

 }

 void draw() {

 background(204);

 if (fuzzy < 16.0) {

 fuzzy += 0.05;

 }

 line(0, 30, 100, 60);

 filter(BLUR, fuzzy);

 line(0, 50, 100, 80);

 }

39-01

39-02

39-03

Reas_07_347-394.indd Sec4:349Reas_07_347-394.indd Sec4:349 5/23/07 4:22:43 PM5/23/07 4:22:43 PM

350 Image 4: Filter, Blend, Copy, Mask

Blending
The blend() function combines two images. Different modes
blend in different ways. The equations shown with each description
mathematically defi ne each blending technique. The letters A and B are
the pixels of the source images, and C is the pixels of the resulting image.
The factor is the alpha component (transparency) of the source image.
Additional blend modes are documented in the Processing reference.

A B C

ADD

 Additive blending with maximum value
of white:
C = min(A*factor + B, 255)

SUBTRACT

 Subtractive blending with minimum
value of black:
 C = max(B - A*factor, 0)

LIGHTEST

The lightest color is used:
 C = max(A*factor, B)

DARKEST

 The darkest color is used:
C = min(A*factor, B)

MULTIPLY

Multiply the colors; result will always
be darker:
C = A * B

Reas_07_347-394.indd Sec4:350Reas_07_347-394.indd Sec4:350 5/23/07 4:22:45 PM5/23/07 4:22:45 PM

351 Image 4: Filter, Blend, Copy, Mask

The PImage class has a filter() method that can isolate fi ltering to a specifi c image.
The following examples show how to use this method on individual images without
affecting the display window.

 PImage img = loadImage("forest.jpg");

 image(img, 0, 0);

 img.filter(INVERT);

 image(img, 50, 0);

The blend() function mixes pixels in different ways depending on the mode
parameter. The blend() function has two different versions.

 blend(x, y, width, height, dx, dy, dwidth, dheight, mode)

 blend(srcImg, x, y, width, height, dx, dy, dwidth, dheight, mode)

The mode parameter can be BLEND, ADD, SUBTRACT, DARKEST, LIGHTEST, DIFFERENCE,
EXCLUSION, MULTIPLY, SCREEN, OVERLAY, HARD_LIGHT, SOFT_LIGHT, DODGE, and
BURN. The x and y parameters are the x- and y-coordinates of the region to copy. The
width and height parameters set the size of the source area. The dx and dy parameters
are the x- and y-coordinate of the destination area. The dwidth and dheight are the
width and height of the destination area. To blend between two images instead of the
display window, a second image can be used as the srcImg parameter. If the source and
destination regions are different sizes, the pixels will be automatically resized to fi t the
specifi ed target region.
 You can blend the image in the display window with itself using any of the different
modes. The next example demonstrates blending the window using the ADD mode.

 background(0);

 stroke(153);

 strokeWeight(24);

 smooth();

 line(44, 0, 24, 80);

 line(0, 24, 80, 44);

 blend(0, 0, 100, 100, 16, 0, 100, 100, ADD);

You can also blend imported images with the display window by including a source
image as the fi rst parameter to blend. In this example, the image is seen only through
the drawn lines because the background was set to black and the mode parameter is
DARKEST.

 PImage img = loadImage("topanga.jpg");

 background(0);

 stroke(255);

 strokeWeight(24);

39-04

39-05

39-06

Reas_07_347-394.indd Sec4:351Reas_07_347-394.indd Sec4:351 5/23/07 4:22:46 PM5/23/07 4:22:46 PM

352 Image 4: Filter, Blend, Copy, Mask

 smooth();

 line(44, 0, 24, 80);

 line(0, 24, 80, 44);

 blend(img, 0, 0, 100, 100, 0, 0, 100, 100, DARKEST);

The PImage class has a blend() method that can be used to blend an image or two
images together without affecting the display window. The following example blends
the center of the image forest.jpg with the center of airport.jpg and then displays the
modifi ed image variable to the display window.

 PImage img = loadImage("forest.jpg");

 PImage img2 = loadImage("airport.jpg");

 img.blend(img2, 12, 12, 76, 76, 12, 12, 76, 76, ADD);

 image(img, 0, 0);

The blendColor() function is used to blend individual color values.

 blendColor(c1, c2, mode)

The c1 and c2 parameters are the color values that create a new color when blended
together. The options for the mode parameter are the same as the options for the
blend() function. Because this unit is printed in black and white, it’s not possible to use
examples with color values, so the effect is demonstrated in the following example by
using gray values.

 color g1 = color(102); // Middle gray

 color g2 = color(51); // Dark gray

 color g3 = blendColor(g1, g2, MULTIPLY); // Create black

 noStroke();

 fill(g1);

 rect(50, 0, 50, 100); // Right rect

 fill(g2);

 rect(20, 25, 30, 50); // Left rect

 fill(g3);

 rect(50, 25, 20, 50); // Overlay rect

The Processing language includes syntax that makes it easy to write additional custom
fi lters and blending operations. These actions are is discussed further in ƒa (p. 337).

39-06
cont.

39-07

39-08

Reas_07_347-394.indd Sec4:352Reas_07_347-394.indd Sec4:352 5/23/07 4:22:47 PM5/23/07 4:22:47 PM

353 Image 4: Filter, Blend, Copy, Mask

Copying pixels

The copy() function has two versions, each of which has a large number of parameters:

 copy(x, y, width, height, dx, dy, dwidth, dheight)

 copy(srcImg, x, y, width, height, dx, dy, dwidth, dheight)

The version of copy() with eight parameters replicates a region of pixels from
the display window in another area of the display window. The version with nine
parameters copies all or a portion of the image specifi ed by the srcImg parameter into
the display window. If the source and destination regions are of different sizes, the
pixels will automatically be resized to fi t the destination width and height. The other
parameters are the same as described for blend() (p. 351). The copy() function differs
from the previously discussed get() and set() functions because it can both get pixels
from one location and set them to another. The following two examples demonstrate the
function.

 PImage img = loadImage("forest.jpg");

 image(img, 0, 0);

 copy(0, 0, 100, 50, 0, 50, 100, 50);

 PImage img1, img2;

 void setup() {

 size(100, 100);

 img1 = loadImage("forest.jpg");

 img2 = loadImage("airport.jpg");

 }

 void draw() {

 background(255);

 image(img1, 0, 0);

 int my = constrain(mouseY, 0, 67);

 copy(img2, 0, my, 100, 33, 0, my, 100, 33);

 }

The PImage class also has a copy() method. It can be used to copy portions of one
image to itself or areas of one image to another. The following example shows this
method in action.

39-09

39-10

Reas_07_347-394.indd Sec4:353Reas_07_347-394.indd Sec4:353 5/23/07 4:22:48 PM5/23/07 4:22:48 PM

354 Image 4: Filter, Blend, Copy, Mask

 PImage img = loadImage("tower.jpg");

 img.copy(50, 0, 50, 100, 0, 0, 50, 100);

 image(img, 0, 0);

Masking

The mask() method of the PImage class sets the transparency values of an image
based on the contents of another image. The mask image should contain only grayscale
data and must be the same size as the image to which it is applied. If the image is not
grayscale, it may be converted with the filter() function. The light areas of the mask
let the original image through, and the dark areas conceal the original. The following
example uses mask() to composite the images shown below.

airport.jpg airportmask.jpg

The resulting image and the code to produce it follow:

 background(255);

 PImage img = loadImage("airport.jpg");

 PImage maskImg = loadImage("airportmask.jpg");

 img.mask(maskImg);

 image(img, 0, 0);

 Exercises
1. Load an image and alter it with filter().
2. Load three images and combine them with blend().
3. Load two images and use copy() with mouseX and mouseY to combine them in a way
 that reveals the relationship between the images.

39-11

39-12

Reas_07_347-394.indd Sec4:354Reas_07_347-394.indd Sec4:354 5/23/07 4:22:48 PM5/23/07 4:22:48 PM

355

Image 5: Image Processing
This unit introduces techniques for directly accessing the pixels in an image and explains
the use of those techniques in modifying images.

Syntax introduced:
pixels[], loadPixels(), updatePixels(), createImage()

Image processing is a general term for manipulating and modifying images, whether
for the purpose of correcting a defect, improving aesthetic appeal, or facilitating
communication. Programs such as GIMP and Adobe Photoshop provide their users
with ways to process images including changing the contrast, blurring, and warping.
This section explains how some image processing features work to provide a better
understanding of their application.
 In Processing, each image is stored as a one-dimensional array of colors. When an
image is displayed to the screen, each element in the array is drawn as a pixel. The
number of elements in the array is determined by multiplying the width of an image
by its height. If an image is 100 pixels wide and 100 pixels high, the array will have
10,000 elements. If an image is 200 pixels wide and 2 pixels high, the array will have
400 elements. The fi rst position in the array is the pixel in the upper-left corner of the
image, and the last position in the array is the pixel in the lower-right corner. The width
and height of an image are used to map each element’s position in the one-dimensional
array to the two-dimensional position on screen. To make this clear, let’s look at an array
belonging to a small image of the size 10 * 6 pixels:

When this image is loaded into Processing, its one-dimensional pixel array contains each
row of the two-dimensional image, one after another:

Because the image is 10 * 6 pixels, the array has 60 elements. The fi rst element is at
position [0] and the last at position [59]. Storing images in this format makes it easy to
apply algorithms to the color values.

Reas_07_347-394.indd Sec4:355Reas_07_347-394.indd Sec4:355 5/23/07 4:22:49 PM5/23/07 4:22:49 PM

356 Image 5: Image Processing

Pixels

The pixels[] array stores a color value for each pixel of the display window. The
loadPixels() function must be called before the pixels[] array is used. After the
pixels have been read or changed, they must be updated using the updatePixels()
function. Like beginShape() and endShape(), loadPixels() and updatePixels()
should always appear together.
 The following example changes the color of the pixels in the display window
by changing one pixel each frame based on the current second value. Over time, the
pixels are set in order from left to right and top to bottom. The shift from white to black
happens with each minute—when the value from seconds() jumps from 59 to 0. When
the last pixel in the array is set, the program starts again at the beginning of the array.

 void setup() {

 size(100, 100);

 }

 void draw() {

 float gray = map(second(), 0, 59, 0, 255);

 color c = color(gray);

 int index = frameCount % (width*height);

 loadPixels();

 pixels[index] = c;

 updatePixels();

 }

The loadPixels() and updatePixels() functions ensure that the pixels[] array is
ready to be manipulated and that the changes are updated. Be sure to place them around
any block of code that manipulates the array, but use them only when necessary because
overuse can make your program run slowly.
 Reading and writing data directly to and from the pixels[] array is a different
way to perform the same action as get() and set(). The x-coordinate and y-coordinate
can be mapped to the corresponding position within the array by multiplying the y-
coordinate value by the width of the display window and then adding the x-coordinate
value. To calculate the location of any pixel in the array, use the equation (y*width)+x.

// These 3 lines of code are equivalent to: set(25, 50, color(0))

loadPixels();

pixels[50*width + 25] = color(0);

updatePixels();

To convert to the opposite direction, divide the pixel’s position in the array by the width
of the display window to get the y-coordinate, and take the modulo value (p. 45) of the
position and the width to get the x-coordinate:

40-01

40-02

Reas_07_347-394.indd Sec4:356Reas_07_347-394.indd Sec4:356 5/23/07 4:22:50 PM5/23/07 4:22:50 PM

357 Image 5: Image Processing

// These 3 lines are equivalent to: pixels[5075] = color(0)

int y = 5075 / width;

int x = 5075 % width;

set(x, y, color(0));

In programs that manipulate many pixels at a time, reading and writing values to
the pixels[] array is much faster than using get() and set(). The following
two examples show how to achieve the functionality of get() and set() using the
pixels[] array. These examples will actually be slower than using get() and set(),
but later examples will be much faster.

 void setup() {

 size(100, 100);

 }

 void draw() {

 // Constrain to not exceed the boundary of the array

 int mx = constrain(mouseX, 0, 99);

 int my = constrain(mouseY, 0, 99);

 loadPixels();

 pixels[my*width + mx] = color(0);

 updatePixels();

 }

 PImage arch;

 void setup() {

 size(100, 100);

 noStroke();

 arch = loadImage("arch.jpg");

 }

 void draw() {

 background(arch);

 // Constrain to not exceed the boundary of the array

 int mx = constrain(mouseX, 0, 99);

 int my = constrain(mouseY, 0, 99);

 loadPixels();

 color c = pixels[my*width + mx];

 fill(c);

 rect(20, 20, 60, 60);

 }

40-04

40-05

40-03

Reas_07_347-394.indd Sec4:357Reas_07_347-394.indd Sec4:357 5/23/07 4:22:51 PM5/23/07 4:22:51 PM

358 Image 5: Image Processing

Each image has its own pixels[] array that is accessed with the dot operator. This
array makes it possible to change an image while leaving the pixels in other images and
the display window untouched. In the next example, pixels inside an image are colored
black according to the position of the mouse.

 PImage arch;

 void setup() {

 size(100, 100);

 arch = loadImage("arch.jpg");

 }

 void draw() {

 background(204);

 int mx = constrain(mouseX, 0, 99);

 int my = constrain(mouseY, 0, 99);

 arch.loadPixels();

 arch.pixels[my*width + mx] = color(0);

 arch.updatePixels();

 image(arch, 50, 0);

 }

Using the pixels[] array rather than the image() function to draw the image to the
display window provides more control and leaves room for variation in displaying the
image. Small calculations modifying the for structure and the pixels[] array reveal
some of the potential of this technique.

 PImage arch = loadImage("arch.jpg");

 int count = arch.width * arch.height;

 arch.loadPixels();

 loadPixels();

 for (int i = 0; i < count; i += 2) {

 pixels[i] = arch.pixels[i];

 }

 updatePixels();

 PImage arch = loadImage("arch.jpg");

 int count = arch.width * arch.height;

 arch.loadPixels();

 loadPixels();

 for (int i = 0; i < count; i += 3) {

 pixels[i] = arch.pixels[i];

 }

 updatePixels();

40-06

40-07

40-08

Reas_07_347-394.indd Sec4:358Reas_07_347-394.indd Sec4:358 5/23/07 4:22:51 PM5/23/07 4:22:51 PM

359 Image 5: Image Processing

 PImage arch = loadImage("arch.jpg");

 int count = arch.width * arch.height;

 arch.loadPixels();

 loadPixels();

 for (int i = 0; i < count; i++) {

 pixels[i] = arch.pixels[count - i - 1];

 }

 updatePixels();

 PImage arch = loadImage("arch.jpg");

 int count = arch.width * arch.height;

 arch.loadPixels();

 loadPixels();

 for (int i = 0; i < count; i++) {

 pixels[i] = arch.pixels[i/2];

 }

 updatePixels();

Pixel components

The red(), green(), and blue() functions (pp. 337–338) are used to read the individual
color components from each pixel in an image. These components can be changed and
then returned to the pixels[] array to modify the image. For example, if each value is
multiplied by 2, the image will become lighter; if each value is divided by 2, the image
will become darker. Using a for structure makes it easy to read and change every pixel
in the display window. Because the pixels[] array is a one-dimensional array, only one
for structure is necessary to modify every pixel in the image. The following example
shows how to invert an image.

 PImage arch = loadImage("arch.jpg");

 background(arch);

 loadPixels();

 for (int i = 0; i < width*height; i++) {

 color p = pixels[i]; // Grab pixel

 float r = 255 - red(p); // Modify red value

 float g = 255 - green(p); // Modify green value

 float b = 255 - blue(p); // Modify blue value

 pixels[i] = color(r, g, b); // Assign modified value

 }

 updatePixels();

Values from the keyboard and the mouse can be used to change the way the pixels[]
array is altered while the program runs. In the following example, a color image is

40-09

40-10

40-11

Reas_07_347-394.indd Sec4:359Reas_07_347-394.indd Sec4:359 5/23/07 4:22:52 PM5/23/07 4:22:52 PM

360 Image 5: Image Processing

converted to gray values by averaging its components. These values are incremented by
mouseX to make the image lighter as the mouse moves to the right.

 PImage arch;

 void setup() {

 size(100, 100);

 arch = loadImage("arch.jpg");

 }

 void draw() {

 background(arch);

 loadPixels();

 for (int i = 0; i < width*height; i++) {

 color p = pixels[i]; // Read color from screen

 float r = red(p); // Modify red value

 float g = green(p); // Modify green value

 float b = blue(p); // Modify blue value

 float bw = (r + g + b) / 3.0;

 bw = constrain(bw + mouseX, 0, 255);

 pixels[i] = color(bw); // Assign modified value

 }

 updatePixels();

 line(mouseX, 0, mouseX, height);

 }

The functions for extracting individual color components are accurate and easy to use,
but they are slow. When an idea requires using these functions hundreds or thousands
of times each frame, they can be replaced with a technique called bit-shifting (p. 673).

Convolution

Another way to modify an image is to change the value of each pixel in relation to the
neighboring pixels. This process operates in a similar way as the cellular automata
introduced in Simulate 1 (p. 461). A matrix of numbers called a convolution kernel
is applied to every pixel in the image—neighboring pixels are multiplied by the
corresponding kernel value and added together to set the value of the center pixel.
Applying the kernel to every pixel in the image is called convolving the image. This type
of math can be performed very effi ciently, and in advanced programs such as Photoshop,
most of the fi lters are implemented in this manner.
 As an example, let’s use a kernel to determine the value for the pixel at coordinate
(2,2) in the simple 6 * 6 pixel image shown below. The center of the kernel is fi rst
placed at the coordinate, and then each value within the area is multiplied by the

40-12

Reas_07_347-394.indd Sec4:360Reas_07_347-394.indd Sec4:360 5/23/07 4:22:52 PM5/23/07 4:22:52 PM

361 Image 5: Image Processing

corresponding kernel value and all are added together. The sum is the new value for the
pixel at the center of the kernel:

The fi rst expression created by multiplying the image gray values by the kernel values is

 (255 * 0.111) + (226 * 0.111) + (153 * 0.111) +

 (226 * 0.111) + (153 * 0.111) + (0 * 0.111) +

 (153 * 0.111) + (0 * 0.111) + (0 * 0.111)

This simplifi es to

 28.305 + 25.086 + 16.983 +

 25.086 + 16.983 + 0.000 +

 16.983 + 0.000 + 0.000

This simplifi es further to 129.426, is converted to the integer value 129, and becomes the
gray value of the pixel.
 To convolve the entire image, perform this action for all of the pixels in the image.
It’s clear that a problem arises when you try to use the kernel at the edges of the image.
At the edges, there are no adjacent pixels from which to take values:

To simplify the code in the examples below, this is ignored and only the pixels away
from the border are used.
 Patterns in the kernel numbers create different types of fi lters. If all the values for
the kernel are positive, it creates what is called a low pass fi lter. A low pass fi lter removes
areas where extreme differences in the values of adjacent pixels exist. For example, if
one pixel is white and the next is black, they will create a gray when averaged together.
When applied to an entire image, a low pass fi lter causes a blur. A mixture of positive
and negative values can be used to create a high pass fi lter. A high pass fi lter removes
areas where there is little difference in value between adjacent pixels. This technique
sharpens images. A specifi c type of high pass fi lter is used for edge detection. An edge
is an area that contains sudden changes in value. Common kernels for edge detection
have negative numbers along one side and positive numbers on the opposing side, with
zeros in the middle. For all kernels, the sum of the values must be 1 for the brightness to

Original image Kernel values ResultEnlarged region
and gray values

255 1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

226

226 153

0

00153

153 129

Original image Enlarged region
and gray values

?

?

225 225

126

153126?

225

Reas_07_347-394.indd Sec4:361Reas_07_347-394.indd Sec4:361 5/23/07 4:22:53 PM5/23/07 4:22:53 PM

362 Image 5: Image Processing

remain the same when the image is convolved. If the sum is a smaller or larger number,
the image will become darker or lighter in value than the original.
 The following example demonstrates how to use a 3 * 3 kernel matrix to transform
an image. Modify the values in the kernel[][] array to try different fi lter techniques.
There are a few samples on the adjacent page. The createImage() function creates an
empty pixel buffer. The function requires three parameters that assign the width, height,
and format of the image. The format can be RGB (full color) or ARGB (full color with
alpha). It is not necessary to use loadPixels() immediately after createImage().

float[][] kernel = { { -1, 0, 1 },

 { -2, 0, 2 },

 { -1, 0, 1 } };

size(100, 100);

PImage img = loadImage("arch.jpg"); // Load the original image

img.loadPixels();

// Create an opaque image of the same size as the original

PImage edgeImg = createImage(img.width, img.height, RGB);

// Loop through every pixel in the image.

for (int y = 1; y < img.height-1; y++) { // Skip top and bottom edges

 for (int x = 1; x < img.width-1; x++) { // Skip left and right edges

 float sum = 0; // Kernel sum for this pixel

 for (int ky = -1; ky <= 1; ky++) {

 for (int kx = -1; kx <= 1; kx++) {

 // Calculate the adjacent pixel for this kernel point

 int pos = (y + ky)*width + (x + kx);

 // Image is grayscale, red/green/blue are identical

 float val = red(img.pixels[pos]);

 // Multiply adjacent pixels based on the kernel values

 sum += kernel[ky+1][kx+1] * val;

 }

 }

 // For this pixel in the new image, set the gray value

 // based on the sum from the kernel

 edgeImg.pixels[y*img.width + x] = color(sum);

 }

}

// State that there are changes to edgeImg.pixels[]

edgeImg.updatePixels();

image(edgeImg, 0, 0); // Draw the new image

40-13

Reas_07_347-394.indd Sec4:362Reas_07_347-394.indd Sec4:362 5/23/07 4:22:54 PM5/23/07 4:22:54 PM

363 Image 5: Image Processing

Convolving an image
Eight common 3 * 3 convolution kernels and their effects. A kernel is normalized if the
sum of the values is 1. If the sum is above 1, the image becomes lighter, and if it’s below 1,
the image becomes darker. These numbers can be inserted into code 40-13.

.11 .11 .11

.11 .11 .11

.11 .11 .11

.11 .11 .11

.11 .66 .11

.11 .11 .11

-1 -1 -1

-1 8 -1

-1 -1 -1

-1 -1 -1

-1 12 -1

-1 -1 -1

-1 0 1

-2 0 2

-1 0 1

-2 0 1

-3 0 2

-2 0 1

-1 -2 -1

 0 0 0

 1 2 1

-1 -2 -1

 0 0 0

 2 3 2

 0 -1 0

-1 4 -1

 0 -1 0

 0 -1 0

-1 6 -1

 0 -1 0

Reas_07_347-394.indd Sec4:363Reas_07_347-394.indd Sec4:363 5/23/07 4:22:55 PM5/23/07 4:22:55 PM

364 Image 5: Image Processing

Image as data

This unit has introduced digital images as one-dimensional sequences of numbers that
defi ne colors. This numerical data, however, need not be viewed as colors—it can be
used to generate motion or defi ne the vertices of a shape. The following examples use
the data from the pixels[] array of an image to generate alternative representations.

 // Convert pixel values into a circle's diameter

 PImage arch;

 int index;

 void setup() {

 size(100, 100);

 smooth();

 fill(0);

 arch = loadImage("arch.jpg");

 arch.loadPixels();

 }

 void draw() {

 background(204);

 color c = arch.pixels[index]; // Get a pixel

 float r = red(c) / 3.0; // Get the red value

 ellipse(width/2, height/2, r, r);

 index++;

 if (index == width*height) {

 index = 0; // Return to the first pixel

 }

 }

 // Convert the red values of pixels to line lengths

 PImage arch;

 void setup() {

 size(100, 100);

 arch = loadImage("arch.jpg");

 arch.loadPixels();

 }

 void draw() {

 background(204);

40-14

40-15

Reas_07_347-394.indd Sec4:364Reas_07_347-394.indd Sec4:364 5/23/07 4:22:56 PM5/23/07 4:22:56 PM

365 Image 5: Image Processing

 int my = constrain(mouseY, 0, 99);

 for (int i = 0; i < arch.height; i++) {

 color c = arch.pixels[my*width + i]; // Get a pixel

 float r = red(c); // Get the red value

 line(i, 0, i, height/2 + r/6);

 }

 }

 // Convert the blue values from one row of the image

 // to the coordinates for a series of lines

 PImage arch;

 void setup() {

 size(100, 100);

 smooth();

 arch = loadImage("arch.jpg");

 arch.loadPixels();

 }

 void draw() {

 background(204);

 int mx = constrain(mouseX, 0, arch.width-1);

 int offset = mx * arch.width;

 beginShape(LINES);

 for (int i = 0; i < arch.width; i += 2) {

 float r1 = blue(arch.pixels[offset + i]);

 float r2 = blue(arch.pixels[offset + i + 1]);

 float vx = map(r1, 0, 255, 0, height);

 float vy = map(r2, 0, 255, 0, height);

 vertex(vx, vy);

 }

 endShape();

 }

 Exercises
1. Write your own image fi lter by modifying the values of pixels[].
2. Explore different kernels to convolve an image and write a program to display
 your most interesting discovery.
3. Load an image and use its data to generate an animation that refl ects the
 original image.

40-16

40-15
cont.

Reas_07_347-394.indd Sec4:365Reas_07_347-394.indd Sec4:365 5/23/07 4:22:56 PM5/23/07 4:22:56 PM

Reas_07_347-394.indd Sec4:366Reas_07_347-394.indd Sec4:366 5/24/07 8:59:37 AM5/24/07 8:59:37 AM

367

Output 1: Images
This unit explains how to save images and sequences of images while a program
is running.

Syntax introduced:
save(), saveFrame()

A computer screen displays a new image to the screen many times each second. Most
operating systems provide a way to capture these images while the computer is running.
If you’re using a Macintosh computer, press Command-Shift-3. In Windows, press the
Print Screen (Prnt Scrn) key on the keyboard to save the image to the clipboard and then
open an image editor and paste it into a window. There are also software applications
that facilitate saving the images from the screen.
 Saving images from a software application can be useful as a documentation
technique or as a way to create frame-by-frame animation. The rate at which software
can draw to the screen is always limited by the speed of the computer. When software
is intended to be viewed live, the image quality often has to be reduced because of
the need to draw many frames each second. But if the software is for still images and
animation, each image can draw over a period of hours or days instead of in 1/30 of a
second. This control over time enables the composition of images containing more visual
elements or the use of rendering techniques such as blurring. After images are saved,
they can be loaded into image editing programs or programs such as Apple’s QuickTime
Pro software and made into movies.
 If you’re creating animation, you’ll save your fi les at different sizes depending on
where you live. The NTSC video format used widely in the Americas and the PAL format
used widely in Europe, Africa, and Asia each have different resolutions and frame rates.
If you’re making images for television, DVD, or high-defi nition video, you’ll save images
at different sizes and rates. The following table shows the basic resolutions and frames
per second for different formats:

 Format FPS DVD Resolution HDTV

 NTSC 30 720 × 480 1280 × 720 or 1920 × 1080

 PAL 25 720 × 576 1280 × 720 or 1920 × 1080

For example, making a 30-second animation for an NTSC DVD requires 30 frames each
second for a total of 900 frames. Producing the same animation for the PAL format
requires 25 frames each second for a total of 750 frames. Displaying an animation on
the Web requires deciding how large the fi le should be. The pixel dimensions of the fi le
and its format affect the size of the fi le download. Animation fi les stored online should
be as small as possible to make them fast to download. Make your decisions regarding
the pixel dimensions and compression formats by considering the type of content, how

Reas_07_347-394.indd Sec4:367Reas_07_347-394.indd Sec4:367 5/24/07 8:58:47 AM5/24/07 8:58:47 AM

368 Output 1: Images

much space you have to store the fi les, and how comfortable you are with degrading
the image quality by compressing the image. Regardless of the format or delivery of
your animations, the process involves saving a series of frames, loading them into a
separate application, and saving them as a movie. Saving images at a higher resolution
is discussed in the Extension 6 (p. 603).

Saving images

The save() function saves an image of the display window. It requires one parameter, a
String that becomes the name of the saved image fi le:

 save(filename)

Images are saved in a variety of formats depending on the extension used in the
fi lename parameter. For example, the filename parameter myFile.tif will save a TIFF
fi le, and the value myFile.tga will save a TARGA fi le. If no extension is included in the
fi lename, the image will save as TIFF and .tif will be added to the name. Be sure to
remember to put the name of the fi le in quotes to distinguish it as a String. The image
is saved into the current sketch’s folder.

line(0, 0, width, height);

line(width, 0, 0, height);

// Saves the TIFF file "x.tif" to the current sketch's folder

save("x.tif");

Only the elements drawn before save() will be included in the image; those drawn
afterward will not. In this example, only the fi rst line is saved in the fi le line.tif but both
lines are displayed on the screen.

line(0, 0, width, height);

// Saves the TIFF file "line.tif" to the current sketch's folder

save("line.tif");

line(width, 0, 0, height);

If the save() function appears within draw(), the fi le is continually rewritten each
time draw() is run. The fi le saved during the previous frame is replaced with a fi le
from the current frame. This is avoided by putting save() within an event such as
mousePressed() or keyPressed(). Because these events are always called when
draw() is fi nished, the saved image will include everything from the frame that was
drawing when the event occurred. In the following example, the fi le line.tif is saved
when a mouse button is pressed. If a mouse button is pressed more than once, the fi le is
created again and the original fi le is removed.

41-01

41-02

Reas_07_347-394.indd Sec4:368Reas_07_347-394.indd Sec4:368 5/23/07 4:22:58 PM5/23/07 4:22:58 PM

369 Output 1: Images

void setup() {

 size(100, 100);

}

void draw() {

 background(204);

 line(0, 0, mouseX, height);

 line(width, 0, 0, mouseY);

}

void mousePressed() {

 save("line.tif");

}

Saving sequential images

The saveFrame() function saves a numbered sequence of images:

 saveFrame()

 saveFrame("filename-####.ext")

If saveFrame() is used without a parameter, it saves the fi les as screen-0000.tif,
screen-0001.tif, screen-0002.tif, etc. The filename- component can be changed to any
name, and the .ext component can be set to .tif or .tga to set the format. The ####
portion of the name specifi es the number of digits. When the fi les are saved, the four #’s
are replaced with the value of the frameCount variable (p. 173). For example, the 127th
frame will be called fi lename-0127.tif and the 1732nd frame will be called fi lename-1732.tif.
Add an extra # symbol to support 10,000 frames or more.

// Save the first 50 frames

float x = 33;

float numFrames = 50;

void setup() {

 size(100, 100);

 smooth();

 noStroke();

}

void draw() {

 background(0);

 x += random(-2, 2);

41-03

41-04

Reas_07_347-394.indd Sec4:369Reas_07_347-394.indd Sec4:369 5/23/07 4:22:59 PM5/23/07 4:22:59 PM

370 Output 1: Images

 ellipse(x, 50, 40, 40);

 if (frameCount <= numFrames) {

 saveFrame("circles-####.tif");

 }

}

Using saveFrame() inside an if structure allows the program to save images only if
a certain condition is met. For example, you may want to save a sequence of 200 frames
after the mouse is pressed. Or you may want to save one frame and then skip a few
before saving another. The following code fragments present ways to achieve similar
objectives.

// Save 24 frames, from x-1000.tif to x-1023.tif

void draw() {

 background(204);

 line(mouseX, mouseY, pmouseX, pmouseY);

 if ((frameCount > 999) && (frameCount < 1024)) {

 saveFrame("x-####.tif");

 }

}

// Save every fifth frame (i.e., x-0005.tif, x-0005.tif, x-0010.tif)

void draw() {

 background(204);

 line(mouseX, mouseY, pmouseX, pmouseY);

 if ((frameCount % 5) == 0) {

 saveFrame("x-####.tif");

 }

}

 Exercises
1. Save an image from one of your previously created programs.
2. Save a sequence of images from one of your previously created programs.
3. Use another application to create a movie from the frames saved in exercise 2.

41-04
cont.

41-05

41-06

Reas_07_347-394.indd Sec4:370Reas_07_347-394.indd Sec4:370 5/23/07 4:22:59 PM5/23/07 4:22:59 PM

371

Synthesis 3: Motion and Arrays
This unit presents examples that synthesize concepts from Motion 1 through Output 1.

The previous units introduced concepts and techniques including motion, image
processing, color components, exporting images, and arrays. Each of these topics opens
a broad area for exploration, and they can be combined to create even more options.
This unit elaborates on motion and arrays.
 It’s easy to create simple motion with software, but sophisticated movement
requires thought and skill. The units Motion 1 (p. 279) and Motion 2 (p. 291) introduce the
topics of nonlinear motion, moving on curves, moving with sinusoids, and integrating
unpredictability. More complicated and believable movement requires combining these
ideas. Because computers are machines and code is highly structured, it’s easier to create
mechanical motion than organic motion. Creating believable organic motion is one of
the most diffi cult challenges in programming movement.
 Arrays are one of the more diffi cult software concepts to digest, but they are
essential for managing programs with many elements. For example, arrays can make
writing some of the programs in Synthesis 1 and Synthesis 2 easier. The collage software
(p. 150), for example, loads 29 images into separate variables and has 8 separate lines
of code to display each. Making an array of PImage variables would improve the code’s
modularity so it would be easier to maintain and change. The typing program (p. 258)
could also be greatly enhanced with arrays. For each line of text, a separate string and
group of variables is necessary for saving the angle, position, and size of each line. Using
an array for each variable would make it possible to include more lines of text without
increasing the length of the program.
 Three of the four examples in this unit use arrays to demonstrate their use. Two of
the programs focus on utilizing arrays to create motion, one combines drawing with an
array of images, and the fourth adds images together to create a software puppet that
responds to the mouse.

The four programs presented here were written by different programmers. Unlike most of the other examples in the
book, which have been written in a similar style, each of these programs refl ects the personal programming style of
its author. Learning how to read programs written by other people is an important skill.
The software featured in this unit is longer than the brief examples that fi ll this book. It’s not practical to print it on
these pages, but the code is included in the Processing code download at www.processing.org/learning.

Reas_07_347-394.indd Sec4:371Reas_07_347-394.indd Sec4:371 5/23/07 4:22:59 PM5/23/07 4:22:59 PM

372 Synthesis 3: Motion and Arrays

Centipede. The head of this chain of circles is controlled by the cursor. The position
of each circle is stored in two arrays. One array stores the x-coordinates and the other
stores the y-coordinates. The position of the head is updated every frame based on the
current cursor location, and the position of each following circle is calculated based on
its position in relation to the circle preceding it. Within the code, change the values of
the n_nodes variable to set the number of elements in the chain, and change the value
of the node_length variable to set the size of each element.

Program written by Ariel Malka (www.chronotext.org)

Reas_07_347-394.indd Sec4:372Reas_07_347-394.indd Sec4:372 5/24/07 9:00:37 AM5/24/07 9:00:37 AM

373 Synthesis 3: Motion and Arrays

Chronodraw. Inspired by the photographic explorations of Eadweard Muybridge (p. 295),
this software simultaneously shows lines drawn at different times on a single frame.
An array stores 200 images, with 23 displayed on screen at one time. Lines are drawn
directly into an image array using the custom drawing function. The images in the array
are displayed to the screen in the order defi ned by the variables, which are set by the
markers on the top and bottom of the display window. The bottom marker sets the speed
and the top marker sets the number of images skipped between adjacent units. Press the
spacebar and move the mouse left and right to change the markers.

Program written by Andreas Gysin (www.ertdfgcvb.ch)

Reas_07_347-394.indd Sec4:373Reas_07_347-394.indd Sec4:373 5/24/07 9:01:44 AM5/24/07 9:01:44 AM

374 Synthesis 3: Motion and Arrays

AmoebaAbstract_03. The structured and layered textures in these images are created
by moving rows of circles and squares across the display window. Six arrays are used
to store the information for each element. They store the x-coordinate, y-coordinate,
and speed and the red, green, and blue color data. Each element is mostly transparent,
and each frame accumulates with the previous frames to create a dynamic blend of the
different hues. Click the mouse to create a new color palette. Change the position of the
mouse to alter the speed and direction of the elements.

Program written by Marius Watz (www.unlekker.net)

Reas_07_347-394.indd Sec4:374Reas_07_347-394.indd Sec4:374 5/24/07 9:03:18 AM5/24/07 9:03:18 AM

375 Synthesis 3: Motion and Arrays

Mr. Roboto. This robot is comprised of a series of images. The pieces can move
independently to create an articulated character with fl uid movements. Using motion
from the sin() function, the robot’s mouth opens and closes as it continuously moves
toward the battery. The position of the cursor controls the position of the battery. When
the battery comes in contact with the robot, the robot’s mouth crushes the battery. This
effect is created by swapping the battery and robot images with new images.

Program written by Leon Hong (www.jigobite.com)

Reas_07_347-394.indd Sec4:375Reas_07_347-394.indd Sec4:375 5/24/07 9:02:31 AM5/24/07 9:02:31 AM

Still image from the R.E.M. “Animal” music video, 2003. Image courtesy of Motion Theory, Inc.

Reas_07_347-394.indd Sec4:376Reas_07_347-394.indd Sec4:376 5/24/07 9:04:22 AM5/24/07 9:04:22 AM

377

Interviews 3: Animation, Video

 Motion Theory. R.E.M. “Animal”
 Bob Sabiston. Waking Life
 Jennifer Steinkamp. Eye Catching
 Semiconductor. The Mini-Epoch Series

Reas_07_347-394.indd Sec4:377Reas_07_347-394.indd Sec4:377 5/24/07 9:03:54 AM5/24/07 9:03:54 AM

Reas_07_347-394.indd Sec4:378Reas_07_347-394.indd Sec4:378 5/24/07 9:05:18 AM5/24/07 9:05:18 AM

379 Interviews 3: Animation, Video

R.E.M. “Animal” (Interview with Mathew Cullen and Grady Hall)

 Creators Motion Theory (Mathew Cullen and Gray Hall, directors)
 Year 2003
 Medium Music Video
 Software Processing, Maya, Adobe After Effects
 URL www.motiontheory.com

 What is R.E.M. “Animal”?
 “Animal” is a music video for the band R.E.M. Mathew Cullen & Grady Hall of Motion
Theory directed this video featuring lead singer Michael Stipe. It was shot in Los Angeles and
Vancouver, B.C. The video is about an eclipse enabling a man (Stipe) to see the invisible forces
of life—emotion, connection, humanity—in the form of visible energy. While the eclipse holds,
everything takes on a different quality—energies arise that resemble living constellations,
people appear to be connected by bioluminescent strands, and movement creates patterns of
light. All of these forces connect with the video’s cosmic moments, which take us past planets,
galaxies, and nebulae, connecting outer space with inner space. When the eclipse ends, even
though we can’t see the energy and connections anymore, there’s a sense that they’re always
there, right underneath the surface.
 Why did you create R.E.M. “Animal”?
 Motion Theory, a micro-studio, was approached by Warner Bros. Records to come up with a
treatment for “Animal.” Simply put, we created the video because we loved the lyrics and themes
of the song. We knew there was a chance to express something in a new way—and that R.E.M.
and Michael Stipe would be supportive in creating something different and resonant. Stripping
this down to its most basic level, our deepest motivation was the desire to communicate the
connections between people in beautiful and poetic ways.
 What software tools were used?
 We filmed the bulk of the video on location, with some elements of the video shot on
greenscreen. We also did an additional effects shoot for some of the practical effects and time-
lapse moments. Once we had a finished edit, we had an ambitious task ahead: how to depict
the unseen connections between people in a way that felt new and natural, and yet avoided
looking like Disney fairy-dust. We used Processing to create the “living constellation” look—we
loved the way that it interacted directly with the movement in the film. The software helped
incredibly, because hand-animating those moments to the level of fluidity that was achieved
would have been very difficult, if not impossible. The planetary sequences, cityscapes, insects,
and “bioluminescent arms” were created during long hours with Maya, and everything was
composited in After Effects. Most shots in the finished piece combine a bit of everything, but our
aim was to make sure that the technology was invisible and simply let the story come through.
 Why did you use these tools?
 We wanted to create a thoroughly unique look for the energy depicted in the video.
Conventional visual effects were simply not sophisticated, delicate, and interactive enough
to capture the feeling, subtlety, and living qualities of the energy we wanted to portray. Our
solution was to program the constellations’ movements with realistic physics so that they St

ill
 im

ag
e

fr
om

 th
e

R.
E.

M
. “

A
ni

m
al

” m
us

ic
 v

id
eo

, 2
00

3.
Im

ag
e

co
ur

te
sy

 o
f M

ot
io

n
Th

eo
ry

, I
nc

.

Reas_07_347-394.indd Sec4:379Reas_07_347-394.indd Sec4:379 5/24/07 9:04:57 AM5/24/07 9:04:57 AM

380 Interviews 3: Animation, Video

interacted with Stipe’s movements, and seemed to be a real layer of the world. At other times, we
created new backgrounds, added insects, and made planetary journeys because we wanted the
world of this video to be slightly surreal, as if the frozen moment of the eclipse allows us to see
that there is a certain kind of magic out there we can’t usually see.
 Why do you choose to work with software?
 When we started, we didn’t really consciously say “We’re going to make sure every project
we do is different,” but when we looked back after a couple of years, we noticed one very
important through line in our creative process: the idea comes first. The reason this is important
is that we find it’s critical not to fall in love with a technique or a tool. To that point, software is
just a tool—but it is a tool that serves the imagination well, since it allows us to do things that
would otherwise be impossible.
 In the case of the R.E.M. video, we were inspired by the themes and scope of the song. We
didn’t want to settle for anything that we had seen. Our team, including lead programmer Ryan
Alexander, spent a lot of R&D time trying to figure out just how to make these different forms of
“the energy” look natural and surreal, but not be like a nasty glow effect. For us, this was much
more of a philosophical and artistic endeavor than a commercial one, and compromise felt out
of the question.
 Not every project can be so ambitious, of course, but we are still stubborn enough that we
always strive to think of something worth watching and saying—and software—along with,
of course, filming, writing, directing, imagination, and luck—empowers us to always find a
new way to express it. It seems that software has reached the point where we can basically pour
our imaginations out into a frame, or a whole movie, and actually achieve it in a reasonable
amount of time. In fact, we’re often fortunate enough—and helped by the collaboration of
many talented people from many disciplines—to have the result turn out far better than we
had first imagined. That’s a very strong sign that software is a powerful and vital tool. It’s given
us this wonderful freedom to just think of good ideas first, because we feel we’ll be able to bring
them to life in a way that makes the project worth doing.

Reas_07_347-394.indd Sec4:380Reas_07_347-394.indd Sec4:380 5/23/07 4:23:05 PM5/23/07 4:23:05 PM

381 Interviews 3: Animation, Video

St
ill

 im
ag

es
 fr

om
 th

e
R.

E.
M

. “
A

ni
m

al
” m

us
ic

 v
id

eo
, 2

00
3.

Im
ag

es
 co

ur
te

sy
 o

f M
ot

io
n

Th
eo

ry
, I

nc
.

Reas_07_347-394.indd Sec4:381Reas_07_347-394.indd Sec4:381 5/23/07 4:23:05 PM5/23/07 4:23:05 PM

St
ill

 im
ag

es
 fr

om
 W

ak
in

g
Li

fe
. W

ak
in

g
Li

fe
 ©

 2
00

1 T
w

en
ti

et
h

Ce
nt

ur
y

Fo
x.

 A
ll

ri
gh

ts
 re

se
rv

ed
.

Reas_07_347-394.indd Sec4:382Reas_07_347-394.indd Sec4:382 5/23/07 4:23:06 PM5/23/07 4:23:06 PM

383 Interviews 3: Animation, Video

Waking Life (Interview with Bob Sabiston)

 Creators Richard Linklater (writer/director),
 Bob Sabiston (software/animation director)
 Year 2001
 Medium Feature film, 35mm
 Software Rotoshop (rotoscoping application written in C++ for Macintosh)
 URL www.wakinglifemovie.com, www.flatblackfilms.com

 What is Waking Life?
 Waking Life is an animated feature film that takes place entirely within the main
character’s dream. The film was animated with Rotoshop, a rotoscoping application that
produces a floating style of animation well suited to the story. I didn’t create the film or have
much to do with its content—rather, my contribution is the specific style of animation that
Waking Life employs and the software used to produce it.
 Why did you create Waking Life?
 Waking Life gave me the opportunity to make the type of animated feature film that I
would want to watch. I like animation that isn’t your garden-variety kid’s cartoon, so the chance
to do a relatively plotless R-rated philosophical adventure by the director of Slacker really was a
dream come true.
 What software tools were used?
 Rotoshop, the custom rotoscoping software application I have been working on since 1997,
was used to animate the film. Thirty artists were hired to manually trace over frames of live-
action video footage—interpolation tools in the software allowed them to skip frames of video
that didn’t change significantly from previous frames. It took roughly a month for an artist
to rotoscope one minute of footage. Contrary to many assumptions about the process, there
is no element of image processing, filtering, or autotracing in the software. All the software
does is interpolate between lines and shapes drawn by the artists—they do all the hard work
themselves!
 Waking Life was shot in live action on consumer-level digital videocameras. It was one of
the first feature films edited with Final Cut Pro (FCP). Rotoshop uses QuickTime for its source
video—the video that you trace—so I exported the finished live-action footage from FCP into
five QuickTime reels. At this step the frame rate was reduced to 12 frames per second in order to
cut in half the number of frames that artists would have to draw.
 We had sixteen Mac G3 and G4 computers networked, each outfitted with a Wacom
graphics tablet. The computers had ten-gigabyte hard drives with a copy of the live-action
QuickTime on each machine. Animators traced over this footage to create their animation.
We assigned each artist a small section of the film at a time—generally, they were able to work
in their own style and weren’t required to conform to model sheets or predetermined designs.
Finished work was exported across the network to a single computer, where a QuickTime
compilation of the completed animation was automatically maintained by the software.

Reas_07_347-394.indd Sec4:383Reas_07_347-394.indd Sec4:383 5/23/07 4:23:09 PM5/23/07 4:23:09 PM

384 Interviews 3: Animation, Video

 Why did you write your own software tools?
 I created the software back in 1996 for an MTV contest. My friends and I had an idea just to
animate some real people, documentary subjects that we would go out and interview. I wanted
to capture the emotion on people’s faces by quickly tracing frame-by-frame in a gestural or
life-drawing style. Wrongly I assumed that software was out there to trace over the frames of
video—Photoshop could do it, but it was clunky and each frame had to be a separate file. It
wasn’t quick enough. So, having experience with programming, it seemed like a simple enough
thing to write.
 The first version took about a week to ten days. Using it I realized that I was drawing
the same lines over and over to make a face and that they didn’t change a whole lot frame to
frame. It was a small step to have the software connect corresponding lines between frames,
interpolating to fill in any gaps. Conceptually, this required drawing lines in a certain order from
frame to frame, which is not intuitive. You get used to it, though.
 By the time Waking Life came around in 1999, I had used Rotoshop for several animated
short films. It had evolved from the simple black-and-white tracing program into more of a
full-fledged application. However, the prospect of doing a full feature film inspired a big push to
expand the software’s capabilities. While Richard Linklater and Sandra Adair were editing the
live-action footage, I holed up for a month or two to hammer out improvements in the software.
Some of the things added for Waking Life were translucency, antialiasing of lines and shapes,
hierarchical grouping of layers, and the ability to output to any resolution. I also revamped the
user interface for the film’s 16 * 9 aspect ratio so that the film frame took up as much of the
screen as possible and all the UI controls were pushed into a strip along the bottom of the screen.
 During production, a whole slew of new issues arose simply from having to coordinate and
keep track of hundreds of animated scenes. I developed a system for assembling and archiving
animation and QuickTime files that worked automatically within the software. As animators
finished scenes, they could “publish” them to the movie as a whole so that we always had a
watchable version of the movie’s current state.
 Why do you choose to work with software?
 Software has always seemed to me like a variant of the creative process used to write books
or paint pictures. It is more constructive and has more limitations, but there is still a great
deal of the same inventiveness in play. What’s more, when you are finished you have made
something that actually does something. To work on software for use in a larger creative project
like a film is even more exciting. There is a satisfaction in building a set of tools that a group
of people can use toward pursuit of a common creative goal. It is also very nice to be able to fix
problems when they arise and to mold the software to satisfy the needs of the project.
 As someone who enjoys the comparatively less technical activity of animation and
rotoscoping, it has been rewarding to be able to bounce back and forth between working on
software and then just using the software. The two pursuits play off one another and keep me
moving forward.

Reas_07_347-394.indd Sec4:384Reas_07_347-394.indd Sec4:384 5/23/07 4:23:09 PM5/23/07 4:23:09 PM

385 Interviews 3: Animation, Video

St
ill

 im
ag

es
 fr

om
 W

ak
in

g
Li

fe
. W

ak
in

g
Li

fe
 ©

 2
00

1 T
w

en
ti

et
h

Ce
nt

ur
y

Fo
x.

 A
ll

ri
gh

ts
 re

se
rv

ed
.

Reas_07_347-394.indd Sec4:385Reas_07_347-394.indd Sec4:385 5/23/07 4:23:10 PM5/23/07 4:23:10 PM

Ey
e

Ca
tc

hi
ng

, 2
00

3.
Ph

ot
o

by
 M

ua
m

m
er

 Y
an

m
az

. I
m

ag
e

co
ur

te
sy

 o
f A

CM
E,

 L
os

 A
ng

el
es

; g
re

en
gr

as
si

, L
on

do
n;

 L
eh

m
an

n
M

au
pi

n,
 N

ew
 Y

or
k.

Reas_07_347-394.indd Sec4:386Reas_07_347-394.indd Sec4:386 5/23/07 4:23:11 PM5/23/07 4:23:11 PM

387 Interviews 3: Animation, Video

Eye Catching (Interview with Jennifer Steinkamp)

 Creator Jennifer Steinkamp
 Year 2003
 Medium Installation in a sixth-century cistern
 Software Alias Maya, Adobe After Effects, Apple QuickTime, Macromedia Director
 URL www.jsteinkamp.com

 What is Eye Catching?
 Not far from the Hagia Sophia in Istanbul, Turkey, there is a small, inconspicuous brick
building where an underground cistern, Yerebatan Sarnici—the Sunken Palace—was built
in the sixth century by order of Emperor Justinian as a reservoir for the Great Palace of the
Byzantine Empire. The ceiling of the enormous cistern is supported by 336 columns salvaged
from other sites—Doric, Ionic, and Corinthian styles; a wooden boardwalk allows visitors to
explore the mysterious space. Eye Catching is a computer video-projected installation within the
cistern. The title “Eye Catching” is a play on words about Medusa.
 Why did you create Eye Catching?
 I was invited to create a work of art for the Eighth Istanbul Biennial, 2003. I visited
Istanbul six months before the exhibition to survey the various sites. The curator, Dan Cameron,
suggested my art would work well in the Yerebatan cistern. (Curators always seem to know
where my art will work.) I noticed the ancient Medusa heads used as column supports. I thought
this would be a good area to project animation. I had no idea what I would do, especially since
I did not really remember Medusa’s story—except for the 1981 film Clash of the Titans.
 Typically for an art installation, I will take measurements of the site, and then create a 3D
model in Maya software. I use this model to calculate the projector placement and determine
the motion. The site was so old and full of water, it was impossible to assess; because of this
constraint, I set up a studio with three computers in my hotel room one week before the
exhibition to make the final renderings of the piece. The same computers were also used in
the exhibition.
 While I was stressing over what I could possibly do in this complicated site, I researched
the incredible story of Medusa, realizing that there was a feminist psychological interpretation
of the tale. Medusa was an extraordinarily beautiful woman; a sea god raped her. (There are
two different versions of who actually raped Medusa.) Then, because of jealousy, she was
transformed by the goddess Athena into an incredible monster with serpentine hair and a gaze
that would turn men to stone. One interpretation could be that this was the ultimate extension
of the power of female sexuality (stone as erection), and the fear and paranoia this can invoke
in men. I created serpentine trees to add to the enchanted environment of the cistern, as if
Medusa’s sensuality transformed the environment and everything around her. One of the trees
was old, with no leaves; it was created to seem dead, brought back to life.
 What software tools were used?
 I used Alias Maya Paint Effects to create and animate the trees. Adobe Photoshop was used
to make paintings of the leaves, flowers, and bark used as texture maps. Adobe After Effects
was used to composite the animation loops and render out to Apple QuickTime, Sorenson

Reas_07_347-394.indd Sec4:387Reas_07_347-394.indd Sec4:387 5/23/07 4:23:16 PM5/23/07 4:23:16 PM

compressed 1024 * 768 movies. Macromedia Director was used to oscillate the QuickTime movies
and randomly vary the playback rates, loading the movies into one gigabyte of RAM.
 Why did you use these tools?
 I use Maya and Photoshop because they are very deep, capable programs—there is a lot
of unexplored territory there. One could spend years exploring a multitude of artistic ideas.
Director is a pretty fast, handy method to control QuickTime. I can use Director to make a stand-
alone program to run on a PC and automatically start when the PC powers on. This is good for
the collectors, gallery and museum people who know little about computers.
 Why do you choose to work with software?
 I have been using computer software since 1982. I first came across it when I enrolled in
Gene Youngblood’s video art course at Caltech where I saw some of the first computer animation
artwork. I saw computer graphics as a means to explore new ideas, images, and motion. I still
possess this excitement. I use 3D software to create virtual objects and space and I then place
these into real space. Both the real and the virtual spaces are transformed by each other—
forming an in-between space, a space your body can understand.

Still image from Eye Catching, 2003. Image courtesy of ACME, Los Angeles;
greengrassi, London; Lehmann Maupin, New York.

Reas_07_347-394.indd Sec4:388Reas_07_347-394.indd Sec4:388 5/23/07 4:23:16 PM5/23/07 4:23:16 PM

389 Interviews 3: Animation, Video

Reas_07_347-394.indd Sec4:389Reas_07_347-394.indd Sec4:389 5/23/07 4:23:17 PM5/23/07 4:23:17 PM

390 Interviews 3: Animation, Video

Th
e

M
in

i-E
po

ch
 Se

ri
es

, 2
00

3.
Im

ag
es

 co
ur

te
sy

 o
f t

he
 a

rt
is

ts
.

Reas_07_347-394.indd Sec4:390Reas_07_347-394.indd Sec4:390 5/23/07 4:23:18 PM5/23/07 4:23:18 PM

391 Interviews 3: Animation, Video

The Mini-Epoch Series (Interview with Semiconductor)

 Creators Semiconductor (Ruth Jarman and Joseph Gerhardt)
 Year 2003
 Medium Installation
 Software Adobe Premiere, Autodesk 3ds Max, Adobe Photoshop
 URL www.semiconductorfilms.com

 What is The Mini-Epoch Series?
 The Mini-Epoch Series installation is five one-minute sound films, each installed on a 7"
widescreen LCD display. The films were shot, animated, and exhibited in Palazzo Zenobio, Venice.
 Screen One: Stop-frame animation of a puddle drying up over a period of four hours in
Palazzo Zenobio courtyard. Composited graphics represent population density fluctuating over
hundreds of years according to the availability of water, as the lake depletes. The sound controls
the statistics according to the rate of evaporation.
 Screen Two: Stop-frame animation of the sun moving across the floor of Palazzo Zenobio.
Animated within the sun’s path are composited graphical representations of land use, which
adapt to the availability of sunlight over thousands of years. The sound fluctuation is consistent
with the strength of sunlight, which in turn controls the transition of land use.
 Screen Three: Fictional animation of the sun moving across a Palazzo Zenobio room
and up the wall; made using actual data of the sun’s path for that time and place. We track
the window’s path across the wall as buildings are constructed in the city, forming animated
silhouettes. The shadow from the encroaching city subsequently blocks out the light and sends
the room into total darkness. Here we witness the construction of Venice’s past or future over
hundreds of years.
 Screen Four: Stop-frame animation of a peeling painted wall within the exhibition space.
As the landscape shifts over thousands of years the inhabitants migrate across this desertscape.
 Screen Five: Animation bringing to life the motion of the Venetian architecture in the
saturated terrain over hundreds of years.
 Why did you create The Mini-Epoch Series?
 We were invited to create a site-specific artwork for the Venice Biennale 2003, in Palazzo
Zenobio, Venice. Many layers of topography surround the exhibition location. The historic
Palazzo and its courtyard are encircled by the famous canals of Venice; these again are enclosed
by a lagoon that is also bounded by the sea. No city we have ever been to has had such a clear
ecological destiny. The city was founded by a unique collection of nomads and travelers who
wished to stay away from the permanence of solid ground but who are now long gone, leaving
this symbolic and crumbling dead city, or at best a living museum. The temporality is apparent
all around, making evident to us the fate of all cities and eventually all places we know. This
humbling but sentimental view is withheld from the work. Instead we associate with the
architecture’s own impartial view on the matter. Each element of the work, which spanned
five screens, portrays a microtopology and its statistical changes over time. Reanimating some
facet of a fictional civilization’s progress and ultimate demise, we reveal perspectives that are
invisible to us as a result of our short life span.

Reas_07_347-394.indd Sec4:391Reas_07_347-394.indd Sec4:391 5/23/07 4:23:19 PM5/23/07 4:23:19 PM

392 Interviews 3: Animation, Video

 What software tools were used?
 We used Adobe Premiere for time-lapse animation, 3ds Max and Max script for modeling
and animating according to the sound, and Adobe Photoshop for image editing.
 Why did you use these tools?
 These tools gave us access to functions required to animate, construct, and composite the
work. The initial work was done with stop-motion/time-lapse capturing in Adobe Premiere
(a function removed in recent versions). This allowed us to capture a time lapse animation of
environmental changes, e.g., the light changing as shadows move through the space or a puddle
drying up in the sun after a passing shower. Within 3ds Max we composited, scripted, and
synchronized the sound and image.
 Why did you write your own software tools?
 An artist’s dependence on globally used software tends to homogenize the output. Styles
quickly become very recognizable and thus diminish the ability to challenge the artist or the
viewer. When we’re creating work we always make explicit demands on the software, rather
than letting it dictate the aesthetic or the direction of the work. This often means we are driven
to create our own scripts, code, and more recently our own real-time performance software,
Sonic Inc—a real-time drawing/sculpting tool, which builds by, and responds to, sound. On
Screen Three of Mini-Epochs, we implemented a script we had initially written for our Sound
Film Inaudible Cities: Part One. It listens to the sound and generates buildings accordingly,
creating a whole metropolis block by block. This script was used to create the construction
of buildings beyond the window. On other screens, programming was applied to control the
relationship between the sound and the animation of data in the time-lapse environments.
 Why do you choose to work with software?
 The advent of the domestic computer presented us with a new artistic medium to probe
and enabled us to explore relationships between sound and image in the digital domain.
Through our creation of Sound Films we began to reveal our physical world in flux: cities in
motion, shifting landscapes, and systems in chaos. Central to these works is the role of sound,
which becomes synonymous with the image as it creates, controls, and deciphers it; exploring
resonance through the natural order of things. Working within the realm of the computer
and utilizing software created for the film and game industries, we are able to manipulate
our physical environment, controlling events on a macro and micro scale while testing the
technology’s potential, stretching it and sculpting it.
 Computer software is made for a specific function and consequently has a distinct identity,
whether this is controlling the “realistic” look of a 3D object or defaulting a set of parameters
to animate a particular motion. This poses a constant struggle for the creative user, as the
computer tries to impose its own signature on our work. We began to incorporate these
nuances as part of the making process, often subverting the software’s intended use by finding
a new path in which to resculpt the data, or forging new associations between digital and
analog. In several works we assigned specific responsibilities to the computer, encouraging its
participation. This identifies with our proposal of Artificial Expressionism, a pledge between the
computer and the artist: the artificial, indicative of zeros and ones, combined with the human
expression, the unpredictable element. Our artistic name Semiconductor also acknowledges the
computer as co-conspirator; half conducting the art work and forming a relationship with us
the artist. Th

e
M

in
i-E

po
ch

 Se
ri

es
, 2

00
3.

Im
ag

es
 co

ur
te

sy
 o

f t
he

 a
rt

is
ts

.

Reas_07_347-394.indd Sec4:392Reas_07_347-394.indd Sec4:392 5/23/07 4:23:20 PM5/23/07 4:23:20 PM

393 Interviews 3: Animation, Video

Reas_07_347-394.indd Sec4:393Reas_07_347-394.indd Sec4:393 5/23/07 4:23:20 PM5/23/07 4:23:20 PM

Reas_07_347-394.indd Sec4:394Reas_07_347-394.indd Sec4:394 5/23/07 4:23:22 PM5/23/07 4:23:22 PM

395

Structure 4: Objects I
This unit introduces the concept of object-oriented programming and presents
the code elements for working with objects.

Syntax introduced:
class, Object

Variables and functions are the building blocks of software. Several functions will often
be used together to work on a set of related variables. Object-oriented programming,
which was developed to make this process more explicit, uses objects and classes as
building blocks. A class defi nes a group of methods (functions) and fi elds (variables). An
object is a single instance of a class. The fi elds within an object are typically accessible
only via its own methods, allowing an object to hide its complexity from other parts of
a program. This resembles interfaces built for other complex technologies; the driver of
a car does not see the complexity of the engine while in motion, although the speed and
RPM are readily visible on the console. The same type of abstraction is used in object-
oriented programming to make code easier to understand and reuse in other contexts.
 Object-oriented programming is a different way of thinking about programming,
but it builds on the previously introduced concepts. The technology for object-oriented
programming existed long before the practice became popular in the mid-1980s and
gradually went on to become the dominant way to think about software. Many people
fi nd it to be a more intuitive way to think about programming. In addition to providing
a helpful conceptual model, object-oriented programming becomes a necessity when
a program includes many elements or when it grows larger than a few pages of code.
Objects can provide a powerful way to think about structuring your ideas in code, and
you’ll fi nd a number of examples with objects throughout the rest of this text.
 All software written in Processing consists of objects, but this fact is initially hidden
so that object-oriented programming concepts can be introduced later. Unless code is
made explicitly object-oriented, clicking the Run button transparently adds extra syntax
that wraps a sketch as an object.

Object-oriented programming

A modular program is composed of code modules that each perform a specifi c task.
Variables are the most basic way to think about reusing elements within a program.
They allow a single value to appear many times within a program and to be easily
changed. Functions abstract a specifi c task and allow code blocks to be reused
throughout a program. Typically, one is concerned only with what a function does, not
how it works. This frees the mind to focus on the goals of the program rather than on

Reas_08_395-518.indd Sec5:395Reas_08_395-518.indd Sec5:395 5/23/07 4:59:23 PM5/23/07 4:59:23 PM

396 Structure 4: Objects I

the complexities of infrastructure. Object-oriented programming further extends the
modularity of using variables and writing functions by allowing related functions to be
grouped together.
 It’s possible to make an analogy between software objects and real-world artifacts.
To get you in the spirit of thinking about the world through the object-oriented lens,
we’ve created a list of everyday items and a few potential fi elds and methods for each.

 Name Apple
 Fields color, weight
 Methods grow(), fall(), rot()

 Name Butterfly
 Fields species, gender
 Methods flapWings(), land()

 Name Radio
 Fields frequency, volume
 Methods turnOn(), tune(), setVolume()

 Name Car
 Fields make, model, color, year
 Methods accelerate(), brake(), turn()

Extending the apple example reveals more about the process of thinking about the
world in relation to software objects. To make a software simulation of the apple, the
grow() method might have inputs for temperature and moisture. The grow() method
can increase the weight fi eld of the apple based on these inputs. The fall() method
can continually check the weight and cause the apple to fall to the ground when the
weight goes above a threshold. The rot() method could then take over, beginning to
decrease the value of the weight fi eld and change the color fi elds.
 As explained in the introduction, objects are created from a class and a class
describes a set of fi elds and methods. An instance of a class is a variable, and like other
variables, it must have a unique name. If more than one object is created from a class,
each must have a unique name. For example, if two objects named fuji and golden are
created using the Apple class, each can have its own values for its fi elds:

 Name fuji
 Fields color: red
 weight: 6.2

 Name golden
 Fields color: yellow
 weight: 8.4

Two popular styles of class diagrams are tables and a circular format inspired by
biological cells. Each diagram style shows the name of the class, the fi elds, and the
methods. It is useful to diagram classes in this way to defi ne their characteristics before
starting to code. The diagrams are also useful because they show the components of a

Reas_08_395-518.indd Sec5:396Reas_08_395-518.indd Sec5:396 5/23/07 4:59:24 PM5/23/07 4:59:24 PM

397 Structure 4: Objects I

class without including too much detail. Looking at the Apple class and the fuji and
golden objects created from it, you can see how these diagrams work:

The circular diagrams reinforce encapsulation, the idea that an object’s fi elds should not
be accessible from the outside. The methods of an object should act as a buffer between
code outside the class and the data contained within:

The fi elds and methods of an object are accessed with the dot operator, a period. To get
the color value from the fuji object, the syntax fuji.color accesses the value of the
color fi eld inside the fuji object. The syntax golden.color accesses the value of the
color fi eld inside the golden object. The dot operator is also used to activate (or “call”) the
methods of the object. To run the grow() method inside the golden object, the syntax
golden.grow() is used.
 With the concepts and terminology discussed in this unit (object, class, fi eld,
method, encapsulation, and dot operator), you are equipped to begin the journey into
object-oriented programming, which is explained further in Structure 5 (p. 453).

Apple classApple class fuji objectfuji object golden objectgolden object

�������������
��	���

�����
�������������������
��	���

�����
������ yellow
8.4

yellow
8.4

red
6.2
red
6.2

�������
�	�������
�	 �������������
��	���

�����
������
color
weight
color
weight

AppleApple fujifuji goldengolden

grow()
fall()
rot()

grow()
fall()
rot()

Apple classApple class fuji objectfuji object golden objectgolden object

red
6.2
red
6.2

yellow
8.4
yellow
8.4

grow()
fall()
rot()

grow()
fall()
rot()

grow()
fall()
rot()

grow()
fall()
rot()

Reas_08_395-518.indd Sec5:397Reas_08_395-518.indd Sec5:397 5/23/07 4:59:25 PM5/23/07 4:59:25 PM

398 Structure 4: Objects I

Using classes and objects

Defi ning a class is creating your own data type. Unlike the primitive types int, float,
and boolean, it’s a composite type like String, PImage, and PFont, which means it can
hold many variables and methods inside one name. When creating a class, fi rst think
carefully about what you want the code to do. It’s common to make a list of variables
required (these will be the fi elds) and fi gure out what type they should be.
 The code on the following pages creates the same image of a white dot on the black
background, but the code is written in different ways. In the fi rst example program,
a circle is positioned on screen. It needs two fi elds to store the location. These variables
are float values that will provide more fl exibility to control the circle’s movement.
The circle also needs a size, so we’ve created the diameter fi eld to store its diameter:

 float x X-coordinate of the circle

 float y Y-coordinate of the circle

 float diameter Diameter of the circle

The name of a class should be carefully considered. The name can be nearly any word,
adhering to the same naming conventions as variables (p. 40); however, class names
should always be capitalized. This helps separate a class like String or PImage from the
lowercase names of primitive types like int or boolean. The name Spot was chosen for
this example because a spot is drawn to the screen (the name “Circle” also would have
made sense). As with variables, it can be very helpful to give a class a name that matches
its purpose.
 Once the fi elds and name for the class defi nition have been determined, consider
how the program would be written without the use of an object. In the following
example, the data for the ellipse’s position and diameter is a part of the main program.
In this case, that’s not a problem, but the use of several ellipses or complex motion would
make the program unwieldy.

 float x = 33;

 float y = 50;

 float diameter = 30;

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 }

 void draw() {

 background(0);

 ellipse(x, y, diameter, diameter);

 }

43-01

Reas_08_395-518.indd Sec5:398Reas_08_395-518.indd Sec5:398 5/23/07 4:59:25 PM5/23/07 4:59:25 PM

399 Structure 4: Objects I

To make this code more generally useful, the next example moves the fi elds that pertain
to the ellipse into their own class. The fi rst line in the program declares the object sp of
the type Spot. The Spot class is defi ned after the setup() and draw(). The sp object
is constructed within setup(), after which its fi elds can be accessed and assigned. The
next three lines assign values to the fi elds within Spot. These values are accessed inside
draw() to set the position and size of the ellipse. The dot operator is used to assign and
access the variables within the class.

 Spot sp; // Declare the object

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 sp = new Spot(); // Construct the object

 sp.x = 33; // Assign 33 to the x field

 sp.y = 50; // Assign 50 to the y field

 sp.diameter = 30; // Assign 30 to the diameter field

 }

 void draw() {

 background(0);

 ellipse(sp.x, sp.y, sp.diameter, sp.diameter);

 }

 class Spot {

 float x, y; // The x- and y-coordinate

 float diameter; // Diameter of the circle

 }

The Spot class as it exists is not very useful, but it’s a start. This next example builds on
the previous one by adding a method to the Spot class—this is one more step toward
using object-oriented programming to its advantage. The display() method has been
added to the class defi nition to draw the element to the screen:

 void display() Draws the spot to the display window

In the code below, the last line inside draw() runs the display() method for the sp
object by writing the name of the object and the name of the method connected with
the dot operator. Also notice the difference in the parameters of the ellipse function in
code 43-02 and 43-03. In code 43-03, the name of the object is not used to access the x, y,
and diameter fi elds. This is because the ellipse() function is called from within the
Spot object. Because this line is a part of the object’s display() function, it can access
its own variables without specifying its own name.

43-02

Reas_08_395-518.indd Sec5:399Reas_08_395-518.indd Sec5:399 5/23/07 4:59:26 PM5/23/07 4:59:26 PM

400 Structure 4: Objects I

 It’s important to reinforce the difference between the Spot class and the sp object
in this example. Although the code might make it look like the fi elds x, y, and diameter
and the method display() belong to Spot, this is just the defi nition for any object
created from this class. Each of these elements belong to (are encapsulated by) the sp
variable, which is one instance of the Spot data type.

 Spot sp; // Declare the object

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 sp = new Spot(); // Construct the object

 sp.x = 33;

 sp.y = 50;

 sp.diameter = 30;

 }

 void draw() {

 background(0);

 sp.display();

 }

 class Spot {

 float x, y, diameter;

 void display() {

 ellipse(x, y, diameter, diameter);

 }

 }

The next example introduces a new programming element called a constructor. A
constructor is a block of code activated as the object is created. The constructor always
has the same name as the class and is typically used to assign values to an object’s fi elds
as it comes into existence. (If there is no constructor, the value of every numeric fi eld is
set to zero.) The constructor is like other methods except that it is not preceded with a
data type or the keyword void because there is no return type. When the object sp is
created, the parameters 33, 50, and 30 are assigned in order to the variables xpos, ypos,
and dia within the constructor. Within the constructor block, these values are assigned
to the object’s fi elds x, y, and diameter. For the fi elds to be accessible within every
method of the object, they must be declared outside of the constructor. Remember the
rules of variable scope (p. 178)—if the fi elds are declared within the constructor, they
cannot be accessed outside the constructor.

43-03

Reas_08_395-518.indd Sec5:400Reas_08_395-518.indd Sec5:400 5/23/07 4:59:27 PM5/23/07 4:59:27 PM

401 Structure 4: Objects I

 Spot sp; // Declare the object

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 sp = new Spot(33, 50, 30); // Construct the object

 }

 void draw() {

 background(0);

 sp.display();

 }

 class Spot {

 float x, y, diameter;

 Spot(float xpos, float ypos, float dia) {

 x = xpos; // Assign 33 to x

 y = ypos; // Assign 50 to y

 diameter = dia; // Assign 30 to diameter

 }

 void display() {

 ellipse(x, y, diameter, diameter);

 }

 }

The behavior of the Spot class can be extended by the addition of more methods and
fi elds to the defi nition. The following example extends the class so that the ellipse moves
up and down the display window and changes direction when it collides with the top
or bottom. Since the class will be moving, it needs a fi eld to set the speed, and because
it will change directions, it needs a fi eld to hold the current direction. We’ve named
these fi elds speed and direction to make their uses clear and the names short. We
decided to make the speed a float value to give a broader range of possible speeds.
The direction fi eld is an int so that it can be easily incorporated into the math for
its movement:

 float speed Distance moved each frame

 int direction Direction of motion (1 is down, -1 is up)

To create the desired motion, we need to update the position of the circle on each frame.
The direction also has to change at the edges of the display window. To test for an edge,
the code tests whether the y-coordinate is smaller than the circle’s radius or larger than

43-04

Reas_08_395-518.indd Sec5:401Reas_08_395-518.indd Sec5:401 5/23/07 4:59:27 PM5/23/07 4:59:27 PM

402 Structure 4: Objects I

the height of the window minus the circle’s radius. Make sure to include the radius
value; then the direction will change when the outer edge of the circle (rather than
its center) reaches the edge. In addition to deciding what the methods need to do and
what they should be called, we must also consider the return type. Because nothing is
returned from this method, the keyword void is used:

 void move() Updates the circle’s position and direction

The code within the move() and display() methods could have been combined in one
method; they were separated to make the example more clear. Changing the position of
the object is a separate task from drawing it to the screen, and using separate methods
refl ects this. These changes allow every object created from the Spot class to have its
own size and position. The objects will also move up and down the screen, changing
directions at the edge.

class Spot {

 float x, y; // X-coordinate, y-coordinate

 float diameter; // Diameter of the circle

 float speed; // Distance moved each frame

 int direction = 1; // Direction of motion (1 is down, -1 is up)

 // Constructor

 Spot(float xpos, float ypos, float dia, float sp) {

 x = xpos;

 y = ypos;

 diameter = dia;

 speed = sp;

 }

 void move() {

 y += (speed * direction);

 if ((y > (height - diameter/2)) || (y < diameter/2)) {

 direction *= -1;

 }

 }

 void display() {

 ellipse(x, y, diameter, diameter);

 }

}

To save space and to keep the focus on the reuse of objects, examples from here to the
end of the unit won’t reprint the code for the Spot class in examples that require it.
Instead, when you see a comment like // Insert Spot class, cut and paste the code

43-05

Reas_08_395-518.indd Sec5:402Reas_08_395-518.indd Sec5:402 5/23/07 4:59:28 PM5/23/07 4:59:28 PM

403 Structure 4: Objects I

for the class into this position to make the code work. Run the following code to see the
result of the move() method updating the fi elds and the display() method drawing
the sp object to the display window.

 Spot sp; // Declare the object

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 sp = new Spot(33, 50, 30, 1.5); // Construct the object

 }

 void draw() {

 fill(0, 15);

 rect(0, 0, width, height);

 fill(255);

 sp.move();

 sp.display();

 }

 // Insert Spot class

Like a function, a well-written class enables the programmer to focus on the resulting
behavior and not the details of execution. Objects should be built for the purpose of
reuse. After a diffi cult programming problem is solved and encoded inside an object, that
code can be used later as a tool for building new code. For example, the functions and
classes used in Processing grew out of many commonly used functions and classes that
were part of the authors’ own code.
 As long as the interface to the class remains the same, the code within can be
updated and modifi ed without breaking a program that uses the object. For example, as
long as the object is constructed with the x-coordinate, y-coordinate, and diameter and
the names of move() and display() remain the same, the actual code inside Spot can
be changed. This allows the programmer to refi ne the code for each object independently
from the entire program.
 Like other types of variables, additional objects are added to a program by declaring
more names. The following program has three objects made from the Spot class. These
objects, named sp1, sp2, and sp3, each have their own set of fi elds and methods. A
method for each object is run by specifying its name, followed by the dot operator and
the method name. For example, the code sp1.move() runs the move() method, which
is a part of the sp1 object. When these methods are run, they access the fi elds within
their object. When sp3 runs move() for the fi rst time, the fi eld value y is updated by the
speed fi eld value of 2.0 because that value was passed into sp3 through the constructor.

43-06

Reas_08_395-518.indd Sec5:403Reas_08_395-518.indd Sec5:403 5/23/07 4:59:29 PM5/23/07 4:59:29 PM

404 Structure 4: Objects I

 Spot sp1, sp2, sp3; // Declare the objects

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 sp1 = new Spot(20, 50, 40, 0.5); // Construct sp1

 sp2 = new Spot(50, 50, 10, 2.0); // Construct sp2

 sp3 = new Spot(80, 50, 30, 1.5); // Construct sp3

 }

 void draw() {

 fill(0, 15);

 rect(0, 0, width, height);

 fill(255);

 sp1.move();

 sp2.move();

 sp3.move();

 sp1.display();

 sp2.display();

 sp3.display();

 }

 // Insert Spot class

It’s diffi cult to summarize the basic concepts and syntax of object-oriented programming
using only one example. To make the process of creating objects easier to comprehend,
we’ve created the Egg class to compare and contrast with Spot. The Egg class is built
with the goal of drawing an egg shape to the screen and wobbling it left and right. The
Egg class began as an outline of the fi elds and methods it needed to have the desired
shape and behavior:

 float x X-coordinate for middle of the egg

 float y Y-coordinate for bottom of the egg

 float tilt Left and right angle offset

 float angle Used to defi ne the tilt

 float scalar Height of the egg

 void wobble() Moves the egg back and forth

 void display() Draws the egg

After the class requirements were established, it developed the same way as the Spot
class. The Egg class started minimally, with only x and y fi elds and a display()
method. The class was then added to a program with setup() and draw() to check the
result. The scale() function was added to display() to decrease the size of the egg.

43-07

Reas_08_395-518.indd Sec5:404Reas_08_395-518.indd Sec5:404 5/23/07 4:59:29 PM5/23/07 4:59:29 PM

405 Structure 4: Objects I

When this fi rst program was working to our satisfaction, the rotate() method and
tilt fi eld were added to change the angle. Finally, the code was written to make the egg
move. The angle fi eld was added as a continuously changing number to set the tilt. The
wobble() method was added to increment the angle and calculate the tilt. The cos()
function was used to accelerate and decelerate the wobbling from side to side. After
many rounds of incremental additions and testing, the fi nal Egg class was working as
initially planned.

class Egg {

 float x, y; // X-coordinate, y-coordinate

 float tilt; // Left and right angle offset

 float angle; // Used to define the tilt

 float scalar; // Height of the egg

 // Constructor

 Egg(int xpos, int ypos, float t, float s) {

 x = xpos;

 y = ypos;

 tilt = t;

 scalar = s / 100.0;

 }

 void wobble() {

 tilt = cos(angle) / 8;

 angle += 0.1;

 }

 void display() {

 noStroke();

 fill(255);

 pushMatrix();

 translate(x, y);

 rotate(tilt);

 scale(scalar);

 beginShape();

 vertex(0, -100);

 bezierVertex(25, -100, 40, -65, 40, -40);

 bezierVertex(40, -15, 25, 0, 0, 0);

 bezierVertex(-25, 0, -40, -15, -40, -40);

 bezierVertex(-40, -65, -25, -100, 0, -100);

 endShape();

 popMatrix();

 }

}

43-08

Reas_08_395-518.indd Sec5:405Reas_08_395-518.indd Sec5:405 5/23/07 4:59:30 PM5/23/07 4:59:30 PM

406 Structure 4: Objects I

The Egg class is included in setup() and draw() the same way as in the Spot
examples. An object of type Egg called humpty is created outside of setup() and
draw(). Within setup(), the humpty object is constructed and the coordinates and
initial tilt value are passed to the constructor. Within draw(), the wobble() and
display() functions are run in sequence, causing the egg’s angle and tilt values to
update. These values are used to draw the shape to the screen. Run this code to see the
egg wobble from left to right.

 Egg humpty; // Declare the object

 void setup() {

 size(100, 100);

 smooth();

 // Inputs: x-coordinate, y-coordinate, tilt, height

 humpty = new Egg(50, 100, PI/32, 80);

 }

 void draw() {

 background(0);

 humpty.wobble();

 humpty.display();

 }

 // Insert Egg class

The Spot and Egg classes are two simple objects used to convey the basic syntax and
concepts involved in object-oriented programming.

Arrays of objects

Working with arrays of objects is similar to working with arrays of other data types. Like
all arrays, an array of objects is distinguished from a single object with brackets, the [
and] characters. Because each array element is an object, each element of the array must
be created before it can be accessed. The steps for working with an array of objects are:

 1. Declare the array

 2. Create the array

 3. Create each object in the array

These steps are translated into code in the following example:

43-09

Reas_08_395-518.indd Sec5:406Reas_08_395-518.indd Sec5:406 5/23/07 4:59:30 PM5/23/07 4:59:30 PM

407 Structure 4: Objects I

 int numSpots = 6;

 // Declare and create the array

 Spot[] spots = new Spot[numSpots];

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 for (int i = 0; i < spots.length; i++) {

 float x = 10 + i*16;

 float rate = 0.5 + i*0.05;

 // Create each object

 spots[i] = new Spot(x, 50, 16, rate);

 }

 }

 void draw() {

 fill(0, 12);

 rect(0, 0, width, height);

 fill(255);

 for (int i = 0; i < spots.length; i++) {

 spots[i].move(); // Move each object

 spots[i].display(); // Display each object

 }

 }

 // Insert Spot class

The Ring class presents another example of working with arrays and objects. This class
defi nes a circle that can be turned on, at which point it expands to a width of 400 and
then stops displaying to the screen by turning itself off. When this class is added to the
example below, a new ring turns on each time a mouse button is pressed. The fi elds and
methods for Ring make this behavior possible:

 float x X-coordinate of the ring

 float y Y-coordinate of the ring

 float diameter Diameter of the ring

 boolean on Turns the display on and off

 void grow() Increases the diameter if on is true

 void display() Draws the ring

Ring was fi rst developed as a simple class. Its features emerged through a series of
iterations. This class has no constructor because its values are not set until the start()
method is called within the program.

43-10

Reas_08_395-518.indd Sec5:407Reas_08_395-518.indd Sec5:407 5/23/07 4:59:31 PM5/23/07 4:59:31 PM

408 Structure 4: Objects I

class Ring {

 float x, y; // X-coordinate, y-coordinate

 float diameter; // Diameter of the ring

 boolean on = false; // Turns the display on and off

 void start(float xpos, float ypos) {

 x = xpos;

 y = ypos;

 on = true;

 diameter = 1;

 }

 void grow() {

 if (on == true) {

 diameter += 0.5;

 if (diameter > 400) {

 on = false;

 }

 }

 }

 void display() {

 if (on == true) {

 noFill();

 strokeWeight(4);

 stroke(155, 153);

 ellipse(x, y, diameter, diameter);

 }

 }

}

In this program, the rings[] array is created to hold fi fty Ring objects. Space in
memory for the rings[] array and Ring objects is allocated in setup(). The fi rst time
a mouse button is pressed, the fi rst Ring object is turned on and its x and y variables
are assigned the current values of the cursor. The counter variable currentRing is
incremented by one, so the next time through the draw(), the grow() and display()
methods will be run for the fi rst Ring element. Each time a mouse button is pressed, a
new Ring is turned on and displayed in the subsequent trip through draw(). When the
fi nal element in the array has been created, the program jumps back to the beginning of
the array to assign new positions to earlier Rings.

43-11

Reas_08_395-518.indd Sec5:408Reas_08_395-518.indd Sec5:408 5/23/07 4:59:31 PM5/23/07 4:59:31 PM

409 Structure 4: Objects I

 Ring[] rings; // Declare the array

 int numRings = 50;

 int currentRing = 0;

 void setup() {

 size(100, 100);

 smooth();

 rings = new Ring[numRings]; // Create the array

 for (int i = 0; i < numRings; i++) {

 rings[i] = new Ring(); // Create each object

 }

 }

 void draw() {

 background(0);

 for (int i = 0; i < numRings; i++) {

 rings[i].grow();

 rings[i].display();

 }

 }

 // Click to create a new Ring

 void mousePressed() {

 rings[currentRing].start(mouseX, mouseY);

 currentRing++;

 if (currentRing >= numRings) {

 currentRing = 0;

 }

 }

 // Insert Ring class

As modular code units, objects can be utilized in diverse ways according to the desires
of different people for the needs of different projects. This is one of the exciting things
about programming with objects.

Multiple files

The programs written before this unit have used one fi le for all of their code. As
programs become longer, a single fi le can become inconvenient. When programs grow to
hundreds and thousands of lines, breaking programs into modular units helps manage
different parts of the program. Processing manages fi les with the Sketchbook, and each
sketch can have multiple fi les that are managed with tabs.

43-12

Reas_08_395-518.indd Sec5:409Reas_08_395-518.indd Sec5:409 5/23/07 4:59:32 PM5/23/07 4:59:32 PM

Multiple Files
Programs can be divided into different fi les and
represented as tabs within the PDE. This makes it
easier to manage complicated programs.

File Edit Sketch Tools Help

SpotExample4

Processing

Spot sp; // Declare the object

void setup() {
 size(100, 100);
 smooth();
 noStroke();
 sp = new Spot(33, 50, 30);
}

void draw() {
 background(0);
 sp.display();
}

File Edit Sketch Tools Help

Example4 Spot

Processing

class Spot {
 float x, y, diameter;

 Spot(float xpos, float ypos, float dia) {
 x = xpos;
 y = ypos;
 diameter = dia;
 }

 void display() {
 ellipse(x, y, diameter, diameter);
 }
}

Reas_08_395-518.indd Sec5:410Reas_08_395-518.indd Sec5:410 5/23/07 4:59:32 PM5/23/07 4:59:32 PM

411 Structure 4: Objects I

 The arrow button in the upper-right corner of the Processing Development
Environment (PDE) is used to manage these fi les. Clicking this button reveals options to
create a new tab, rename the current tab, and delete the current tab. If a project has more
than one tab, each tab can also be hidden and revealed with this button. Hiding a tab
temporarily removes that code from the sketch.
 Code 43-04 can be divided into separate fi les to make it into a more modular
program. First open or retype this program into Processing and name it “Example4.” Now
click on the arrow button and select the New Tab option from the menu that appears.
A prompt asking for the name of the new tab appears. Type the name you want to assign
to the fi le and click “OK” to continue. Because we’ll be storing the Spot class in this fi le,
use the name “Spot.” You now have a new fi le called Spot.pde in your sketch folder. Select
“Show Sketch Folder” from the Sketch menu to see this fi le.
 Next, click on the original tab and and select the text for the Spot class. Cut the text
from this tab, change to the Spot tab, and paste. Save the sketch for good measure, and
press the Run button to see how the two fi les combine to create the fi nal program. The
fi le Spot.pde can be added to any sketch folder to make the Spot class accessible for that
sketch.
 When a sketch is created with multiple fi les, one of the fi les must have the same
name as the folder containing the sketch to be recognized by Processing. This fi le is
the main fi le for the sketch and always appears as the leftmost tab. The setup() and
draw() methods for the sketch should be in this fi le. Only one of the fi les in a sketch
can have a setup() and draw(). The other tabs appear in alphabetical order from left
to right. When a sketch is run, all of the PDE fi les that comprise a sketch are converted to
one fi le before the code is compiled and run. Additional functions and variables in the
additional tabs have access to all global variables in the main fi le with setup() and
draw(). Advanced programmers may want a different behavior, and a more detailed
explanation can be found in the reference.

 Exercises
1. Write your own unique Spot class that has a different behavior than the one
 presented in the example. Design a kinetic composition with 90 of your Spots.
2. Design a class that displays, animates, and defi nes the behavior of an organism in
 relation to another object made from the same class.
3. Create a class to defi ne a software puppet that responds to the mouse.

Reas_08_395-518.indd Sec5:411Reas_08_395-518.indd Sec5:411 5/23/07 4:59:33 PM5/23/07 4:59:33 PM

Reas_08_395-518.indd Sec5:412Reas_08_395-518.indd Sec5:412 5/23/07 4:59:34 PM5/23/07 4:59:34 PM

413

Drawing 2: Kinetic Forms
This unit focuses on developing kinetic drawing tools and elements unique to software.

The experimental animation techniques of drawing, painting, and scratching directly
onto fi lm are all predecessors to software-based kinetic drawings. The immediacy
and freshness of short fi lms such as Norman McLaren’s Hen Hop (1942), Len Lye’s Free
Radicals (1957), and Stan Brakhage’s The Garden of Earthly Delights (1981) is due to the
extraordinary qualities of physical gesture which software later made more accessible.
In his 1948 essay “Animated Films,” McLaren wrote, “In one operation, which is drawing
directly onto the 35mm clear machine leader with an ordinary pen nib and India ink, a
clean jump was made from the ideas in my head to the images on what would normally
be called a developed negative.” He further explains, “The equivalents of Scripting,
Drawing, Animating, Shooting, Developing the Negative, Positive Cutting, and Negative
Cutting were all done in one operation.”1 Like working directly on fi lm, programming
provides the ability to produce kinetic forms with immediate feedback.
 Software animation tools further extend fi lm techniques by allowing the artist
to edit and animate elements continuously after they have been drawn. In 1991, Scott
Snibbe’s Motion Sketch extended to software the techniques explored by McLaren, Lye,
and Brakhage. The application translates hand motion to visual elements on the screen.
Each gesture creates a shape that moves in a one-second loop. The resulting animations
can be layered to create a work of spatial and temporal complexity reminiscent of Oskar
Fischinger’s style. Snibbe extended this concept further with Motion Phone (1995), which
enabled people to work simultaneously in a shared drawing space via the Internet.
 Many artists have developed their own software in pursuit of creative animation.
Since 1996, Bob Sabiston has developed Rotoshop, a set of tools for drawing and
positioning graphics on top of video frames. He refi ned the software to make the
ambitious animated feature Waking Life (p. 383). Ed Burton’s MOOVL software extends
ideas from the Sodaconstructor (p. 263) to a drawing program in which visual elements
are aware of their relation to their environment and other elements. In MOOVL, shapes
can be drawn, connected, and trained to move. The behavior can be mediated via
changes in the gravity and other aspects of the simulation. The Mobility Agents software
created by John F. Simon, Jr. (1989–2005) augments lines drawn by hand with additional
lines drawn by the software. Drawn lines are augmented by or replaced with lines that
correspond to the angle and speed at which the initial lines are drawn. Zach Lieberman’s
Drawn software (2005) explores a hybrid space of physical materials and software
animation. Marks made on paper with a brush and ink are brought to life through the
clever use of a video camera and computer vision techniques. The camera takes an
image and the software calculates a mark’s location and shape, at which point the mark
can respond like any other reactive software form.

Reas_08_395-518.indd Sec5:413Reas_08_395-518.indd Sec5:413 5/23/07 4:59:36 PM5/23/07 4:59:36 PM

414 Drawing 2: Kinetic Forms

Artists explore software as a medium for pushing drawing in new directions. Drawing
with software provides the ability to integrate time, response, and behavior with drawn
marks. Information from the mouse (introduced in Input 5, p. 245) can be combined with
techniques of motion (introduced in Motion 2, p. 291) to produce animated drawings that
capture the kinetic gestures of the hand and reinterpret them as intricate motion. Other
unique inputs, such as voice captured through a microphone and body gestures captured
through a camera, can be used to control drawings.

Active tools

Software drawing instruments can change their form in response to gestures made by
the hand. Comparison of mouseX and mouseY variables with previous mouse values can
determine the direction and speed of motion. In the following example, the change in
the mouse position between the last frame and current frame sets the size of the ellipse
drawn to the screen. If the ellipse does not move, the size reverts to a single pixel.

 void setup() {

 size(100, 100);

 smooth();

 }

 void draw() {

 float s = dist(mouseX, mouseY, pmouseX, pmouseY) + 1;

 noStroke();

 fill(0, 102);

 ellipse(mouseX, mouseY, s, s);

 stroke(255);

 point(mouseX, mouseY);

 }

Software drawing instruments can follow a rhythm or abide by rules independent
of drawn gestures. This is a form of collaborative drawing in which the draftsperson
controls some aspects of the image and the software controls others. In the examples
that follow, the drawing elements obey their own rules, but the draftsperson controls
each element’s origin. In the next example, the drawing tool pulses from a small to
a large size, supplementing the motion of the hand.

44-01

Reas_08_395-518.indd Sec5:414Reas_08_395-518.indd Sec5:414 5/23/07 4:59:37 PM5/23/07 4:59:37 PM

415 Drawing 2: Kinetic Forms

 int angle = 0;

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 fill(0, 102);

 }

 void draw() {

 // Draw only when mouse is pressed

 if (mousePressed == true) {

 angle += 10;

 float val = cos(radians(angle)) * 6.0;

 for (int a = 0; a < 360; a += 75) {

 float xoff = cos(radians(a)) * val;

 float yoff = sin(radians(a)) * val;

 fill(0);

 ellipse(mouseX + xoff, mouseY + yoff, val/2, val/2);

 }

 fill(255);

 ellipse(mouseX, mouseY, 2, 2);

 }

 }

In the next example, the Blade class defi nes a drawing tool that creates a growing
diagonal line when the mouse is not moving and resets the line to a new position when
the mouse moves.

 Blade diagonal;

 void setup() {

 size(100, 100);

 diagonal = new Blade(30, 80);

 }

 void draw() {

 diagonal.grow();

 }

 void mouseMoved() {

 diagonal.seed(mouseX, mouseY);

 }

44-02

44-03

Reas_08_395-518.indd Sec5:415Reas_08_395-518.indd Sec5:415 5/23/07 4:59:37 PM5/23/07 4:59:37 PM

416 Drawing 2: Kinetic Forms

 class Blade {

 float x, y;

 Blade(int xpos, int ypos) {

 x = xpos;

 y = ypos;

 }

 void seed(int xpos, int ypos) {

 x = xpos;

 y = ypos;

 }

 void grow() {

 x += 0.5;

 y -= 1.0;

 point(x, y);

 }

 }

Active drawings

Individual drawing elements with their own behavior can produce drawings with or
without input from a person. These active drawings are a bit like what would result
from a raccoon stumbling into a paint tray and then running across pavement. Though
created by a series of predetermined rules and actions, the drawings are partially or
totally autonomous.
 The code for the next example is presented in steps because it’s longer than most
in the book. Before writing the longer program, we fi rst wrote a small program to test
the desired effect. This code displays a line that changes position very slightly with each
frame. Over a long period of time, the line’s position changes signifi cantly. This is similar
to code 32-05 (p. 296), but is more subtle.

 float x1, y1, x2, y2;

 void setup() {

 size(100, 100);

 smooth();

 x1 = width / 4.0;

 y1 = x1;

 x2 = width - x1;

 y2 = x2;

 }

44-03
cont.

44-04

Reas_08_395-518.indd Sec5:416Reas_08_395-518.indd Sec5:416 5/23/07 4:59:38 PM5/23/07 4:59:38 PM

417 Drawing 2: Kinetic Forms

 void draw() {

 background(204);

 x1 += random(-0.5, 0.5);

 y1 += random(-0.5, 0.5);

 x2 += random(-0.5, 0.5);

 y2 += random(-0.5, 0.5);

 line(x1, y1, x2, y2);

 }

If several such lines are drawn, the drawing will degrade over time as each line
continues to wander from its original position. In the next example, the code from
above was modifi ed to create the MovingLine class. Five hundred of these MovingLine
objects populate the display window. When the lines are fi rst drawn, they vibrate but
maintain their form. Over time, the image degrades into chaos as each line wanders
across the surface of the window.

 int numLines = 500;

 MovingLine[] lines = new MovingLine[numLines];

 int currentLine = 0;

 void setup() {

 size(100, 100);

 smooth();

 frameRate(30);

 for (int i = 0; i < numLines; i++) {

 lines[i] = new MovingLine();

 }

 }

 void draw() {

 background(204);

 for (int i = 0; i < currentLine; i++) {

 lines[i].display();

 }

 }

 void mouseDragged() {

 lines[currentLine].setPosition(mouseX, mouseY,

 pmouseX, pmouseY);

 if (currentLine < numLines - 1) {

 currentLine++;

 }

 }

44-04
cont.

44-05

Reas_08_395-518.indd Sec5:417Reas_08_395-518.indd Sec5:417 5/23/07 4:59:38 PM5/23/07 4:59:38 PM

418 Drawing 2: Kinetic Forms

 class MovingLine {

 float x1, y1, x2, y2;

 void setPosition(int x, int y, int px, int py) {

 x1 = x;

 y1 = y;

 x2 = px;

 y2 = py;

 }

 void display() {

 x1 += random(-0.1, 0.1);

 y1 += random(-0.1, 0.1);

 x2 += random(-0.1, 0.1);

 y2 += random(-0.1, 0.1);

 line(x1, y1, x2, y2);

 }

 }

The next example shows a simple animation tool that displays a continuous cycle of
twelve images. Each image is displayed for 100 milliseconds (one tenth of a second) to
create animation. While each image is displayed, it’s possible to draw directly into it by
pressing the mouse and moving the cursor.

 int currentFrame = 0;

 PImage[] frames = new PImage[12];

 int lastTime = 0;

 void setup() {

 size(100, 100);

 strokeWeight(4);

 smooth();

 background(204);

 for (int i = 0; i < frames.length; i++) {

 frames[i] = get(); // Create a blank frame

 }

 }

 void draw() {

 int currentTime = millis();

 if (currentTime > lastTime+100) {

 nextFrame();

 lastTime = currentTime;

 }

44-05
cont.

44-06

Reas_08_395-518.indd Sec5:418Reas_08_395-518.indd Sec5:418 5/23/07 4:59:39 PM5/23/07 4:59:39 PM

419 Drawing 2: Kinetic Forms

 if (mousePressed == true) {

 line(pmouseX, pmouseY, mouseX, mouseY);

 }

 }

 void nextFrame() {

 frames[currentFrame] = get(); // Get the display window

 currentFrame++; // Increment to next frame

 if (currentFrame >= frames.length) {

 currentFrame = 0;

 }

 image(frames[currentFrame], 0, 0);

 }

 Exercises
1. Design and program your own active drawing instrument.
2. Design and program visual elements that change after they have been drawn
 to the display window.
3. Extend code 44-06 into a more complete animation program.

 Notes

1. Norman McLaren, “Animated Films,” in Experimental Animation, edited by Robert Russett and Cecile Starr

 (Da Capo Press, 1976), p. 122.

44-06
cont.

Reas_08_395-518.indd Sec5:419Reas_08_395-518.indd Sec5:419 5/23/07 4:59:39 PM5/23/07 4:59:39 PM

Reas_08_395-518.indd Sec5:420Reas_08_395-518.indd Sec5:420 5/23/07 4:59:39 PM5/23/07 4:59:39 PM

421

Output 2: File Export
This unit introduces the formatting of data and the writing of fi les.

Syntax introduced:
nf(), saveStrings(),

PrintWriter, createWriter(),

PrintWriter.flush(), PrintWriter.close(), exit()

Digital fi les on computers are not tangible like their paper namesakes, and they don’t
sit in fi le cabinets for years collecting dust. A digital fi le is a sequence of bytes at a
location on the computer’s disk. Despite the diverse content stored in digital fi les, the
material of each is the same—a sequence of 1s and 0s. Almost every task performed
with computers involves working with fi les. For example, before a text document is
written, the text editor application fi le must be read and a new data fi le created to store
the content. When the information is saved, the fi le is given a name and written to disk
for later retrieval.
 The primary reason to save a fi le is to store data so that it’s available after a program
stops running. When running, a program uses part of the computer’s memory to store
its data temporarily. When the program is stopped, the program gives control of this
memory back to the operating system so other programs can access it. If the data created
by the program is not saved to a fi le, it is lost when the program closes.
 All software fi les have a format, a convention for ordering data so that software
applications know how to interpret the data when it is read from memory. Some
common formats include TXT for plain text fi les, MP3 for storing sound, and EXE for
executable programs on Windows. Common formats for image data are JPEG and GIF
(pp. 95, 96) and common formats for text documents are DOC and RTF. The XML format
has become popular in recent years as a general-purpose data format that can be
extended to hold specifi c types of data in an easy-to-read fi le.

Formatting data

Text fi les often contain characters that are not visible (referred to as nonprintable) and
are used to defi ne the spacing of the visible characters. The two most common are tab
and new line. These characters can be represented in code as \t and \n, respectively. The
combination of the \ (backslash) character with another is called an escape sequence.
These escape sequences are treated as one character by the computer. The backslash
begins the escape sequence and the second character defi nes the meaning. It’s often
useful to put escape sequences in your programs to make the fi les easier to read or to
make it easier to load them back into a program and separate the data elements.

Reas_08_395-518.indd Sec5:421Reas_08_395-518.indd Sec5:421 5/23/07 4:59:45 PM5/23/07 4:59:45 PM

422 Output 2: File Export

// Prints "tab space"

println("tab\tspace");

// Prints each word after "\n" on a new line:

// line1

// line2

// line3

println("line1\nline2\nline3");

Data can also be formatted with functions such as nf(). There are two versions of this
function:

 nf(intValue, digits)

 nf(floatValue, left, right)

The intValue parameter is an integer number to be formatted, and the digits
parameter is the total number of digits in the formatted number. The floatValue
parameter is a fl oating-point number to be formatted; the left parameter sets the
number of digits to the left of the decimal, and the right parameter sets the number
of digits to the right of the decimal. Setting either digits parameter to zero means “any”
number of digits. In addition to formatting int and float data, the nf() function
converts the data into the String type so it can be output to the console or saved to a
text fi le.

println(nf(200, 10)); // Prints "0000000200"

println(nf(40, 5)); // Prints "00040"

println(nf(90, 3)); // Prints "090"

println(nf(200.94, 10, 4)); // Prints "0000000200.9400"

println(nf(40.2, 5, 3)); // Prints "00040.200"

println(nf(9.012, 0, 5)); // Prints "9.01200"

Exporting files

Saving fi les is a useful way to store data so it can be viewed after a program has stopped
running. Data can either be saved continuously while the program runs or stored in
variables while the program is running; and then it can be saved to a fi le in one batch.
 The saveStrings() function writes an array of strings to a fi le, with each string
written to a new line. This fi le is saved to the sketch’s folder and can be accessed by
selecting the “Show Sketch Folder” item from the Sketch menu. The following example
uses the saveStrings() function to write data created while drawing lines to the
screen. Each time a mouse button is pressed, a new value is added to the x[] and y[]
arrays, and when a key is pressed the data stored in these arrays is written to a fi le called
lines.txt. The exit() function then stops the program.

45-01

45-02

Reas_08_395-518.indd Sec5:422Reas_08_395-518.indd Sec5:422 5/23/07 4:59:47 PM5/23/07 4:59:47 PM

423 Output 2: File Export

int[] x = new int[0];

int[] y = new int[0];

void setup() {

 size(100, 100);

}

void draw() {

 background(204);

 stroke(0);

 noFill();

 beginShape();

 for (int i = 0; i < x.length; i++) {

 vertex(x[i], y[i]);

 }

 endShape();

 // Show the next segment to be added

 if (x.length >= 1) {

 stroke(255);

 line(mouseX, mouseY, x[x.length-1], y[x.length-1]);

 }

}

void mousePressed() { // Click to add a line segment

 x = append(x, mouseX);

 y = append(y, mouseY);

}

void keyPressed() { // Press a key to save the data

 String[] lines = new String[x.length];

 for (int i = 0; i < x.length; i++) {

 lines[i] = x[i] + "\t" + y[i];

 }

 saveStrings("lines.txt", lines);

 exit(); // Stop the program

}

The PrintWriter class provides another way to export fi les. Instead of writing the
entire fi le at one time as saveStrings() does, the createWriter() method opens
a fi le to write to and allows data to be added continuously to the fi le while the program
is running. To make the fi le save correctly, it’s necessary to use the flush() method
to write any remaining data to the fi le. The close() method is also needed to fi nish
writing the fi le properly. The following example uses the PrintWriter to save the
cursor position to a fi le while a mouse button is pressed.

45-03

Reas_08_395-518.indd Sec5:423Reas_08_395-518.indd Sec5:423 5/23/07 4:59:47 PM5/23/07 4:59:47 PM

424 Output 2: File Export

PrintWriter output;

void setup() {

 size(100, 100);

 // Create a new file in the sketch directory

 output = createWriter("positions.txt");

 frameRate(12);

}

void draw() {

 if (mousePressed) {

 point(mouseX, mouseY);

 // Write the coordinate to a file with a

 // "\t" (TAB character) between each entry

 output.println(mouseX + "\t" + mouseY);

 }

}

void keyPressed() { // Press a key to save the data

 output.flush(); // Write the remaining data

 output.close(); // Finish the file

 exit(); // Stop the program

}

The fi le created with the previous program has a simple format. The x-coordinate of
the cursor is written followed by a tab, then followed by the y-coordinate. Code 46-01
(p. 429) shows how to load this fi le back into another sketch and use the data to redraw
the saved points.
 The next example is a variation of the previous one, but uses the spacebar and Enter
key to control when data is written to the fi le and when the fi le is closed. When a key is
pressed, the character is added to the letters variable. When the spacebar is pressed,
the String is written to the words.txt fi le. When the Enter key is pressed, the fi le is
fl ushed, then is closed, and the program exits.

PFont font;

String letters = "";

PrintWriter output;

void setup() {

 size(100, 100);

 fill(0);

 font = loadFont("Eureka-24.vlw");

 textFont(font);

45-04

45-05

Reas_08_395-518.indd Sec5:424Reas_08_395-518.indd Sec5:424 5/23/07 4:59:48 PM5/23/07 4:59:48 PM

425 Output 2: File Export

 // Create a new file in the sketch directory

 output = createWriter("words.txt");

}

void draw() {

 background(204);

 text(letters, 5, 50);

}

void keyPressed() {

 if (key == ' ') { // Spacebar pressed

 output.println(letters); // Write data to words.txt

 letters = ""; // Clear the letter String

 } else {

 letters = letters + key;

 }

 if (key == ENTER) {

 output.flush(); // Write the remaining data

 output.close(); // Finish the file

 exit(); // Stop the program

 }

}

 Exercises
1. Use nf() to reformat the value 12.2 into these confi gurations:
 0012.20000, 12.20, 00012.2.
2. While a program is running, save every letter key and the time it was pressed into
 a fi le named timekeys.txt.
3. Using code 45-03 as a base, make a Bézier curve editor that exports its geometry
 to a fi le.

45-05
cont.

Reas_08_395-518.indd Sec5:425Reas_08_395-518.indd Sec5:425 5/23/07 4:59:48 PM5/23/07 4:59:48 PM

39061 45255 +39.058412 -084.339639 CINCINNATI
39061 45258 +39.166759 -084.538220 P CINCINNATI
39061 45262 +39.166759 -084.538220 P CINCINNATI
39061 45263 +39.166759 -084.538220 U CINCINNATI
39061 45264 +39.166759 -084.538220 U CINCINNATI
39061 45267 +39.166759 -084.538220 U CINCINNATI
39061 45268 +39.166759 -084.538220 U CINCINNATI
39061 45269 +39.166759 -084.538220 U CINCINNATI
39061 45270 +39.166759 -084.538220 U CINCINNATI
39061 45271 +39.166759 -084.538220 U CINCINNATI
39061 45273 +39.166759 -084.538220 U CINCINNATI
39061 45274 +39.166759 -084.538220 U CINCINNATI
39061 45275 +38.946921 -083.862877 P CINCINNATI
39015 45277 +39.166759 -084.538220 U CINCINNATI
39061 45296 +39.166759 -084.538220 U CINCINNATI
39061 45298 +39.166759 -084.538220 U CINCINNATI
39061 45299 +39.262158 -084.509268 U CINCINNATI
39061 45301 +39.706459 -084.016233 P ALPHA
39057 45302 +40.407239 -084.203271 ANNA
39149 45303 +40.214675 -084.653188 A NSONIA
39037 45304 +40.126915 -084.539928 ARCANUM
39037 45305 +39.632829 -084.049985 BELLBROOK
39057 45306 +40.439778 -084.189245 BOTKINS
39149 45307 +39.575597 -083.715323 P BOWERSVILLE
39057 45308 +40.115737 -084.279352 BRADFORD
39109 45309 +39.836157 -084.330392 BROOKVILLE
39113 45310 +40.354106 -084.643532 P BURKETTSVILLE
39107 45311 +39.640948 -084.647001 CAMDEN
39135 45312 +40.066567 -084.081610 CASSTOWN
39109 45314 +39.747459 -083.759973 CEDARVILLE
39057 45315 +39.854454 -084.340345 CLAYTON
39113 45316 +39.795971 -083.819766 P CLIFTON
39057 45317 +40.137029 -084.046873 CONOVER
39109 45318 +40.124386 -084.281167 COVINGTON
39109 45319 +39.918936 -083.944909 P DONNELSVILLE
39023 45320 +39.774850 -084.674889 EATON
39135 45321 +39.872177 -084.681067 ELDORADO
39135 45322 +39.877005 -084.331945 ENGLEWOOD
39113 45323 +39.857967 -083.933431 ENON
39023 45324 +39.728549 -084.014834 FAIRBORN
39057 45325 +39.781301 -084.413970 FARMERSVILLE
39113 45326 +40.144491 -084.100988 FLETCHER
39109 45327 +39.747497 -084.396912 GERMANTOWN
39113 45328 +40.114729 -084.493439 P GETTYSBURG
39037 45329 +40.135426 -084.619129 GORDON
39037 45330 +39.641558 -084.527613 P GRATIS
39135 45331 +40.156478 -084.649068 GREENVILLE
39037 45332 +39.993964 -084.783714 HOLLANSBURG
39037 45333 +40.248489 -084.345612 HOUSTON
39149 45334 +40.434921 -084.058495 JACKSON CENTER
39149 45335 +39.674084 -083.766709 JAMESTOWN
39057 45336 +40.441325 -084.262602 P KETTLERSVILLE
39149 45337 +39.985177 -084.399364 LAURA
39109 45338 +39.780916 -084.567331 LEWISBURG
39135 45339 +40.005764 -084.351781 LUDLOW FALLS
39109 45340 +40.364305 -084.056464 MAPLEWOOD
39149 45341 +39.878918 -084.021827 MEDWAY
39023 45342 +39.641658 -084.274640 MIAMISBURG
39113 45343 +39.750471 -084.268593 P MIAMISBURG
39113 45344 +39.959249 -083.986855 NEW CARLISLE
39023 45345 +39.800056 -084.327000 NEW LEBANON
39113 45346 +39.982103 -084.705736 NEW MADISON
39037 45347 +39.783378 -084.668892 NEW PARIS
39135 45348 +40.316833 -084.633911 NEW WESTON
39037 45349 +39.989309 -083.938933 P NORTH HAMPTON
39023 45350 +40.135426 -084.619129 P NORTH STAR
39037 45351 +40.340616 -084.496342 P OSGOOD
39037 45352 +40.050323 -084.745706 P PALESTINE
39037 45353 +40.295220 -084.032272 P PEMBERTON
39149 45354 +39.905385 -084.402785 P PHILLIPSBURG
39113 45356 +40.123618 -084.228811 PIQUA
39109 45358 +39.987043 -084.486582 P PITSBURG
39037 45359 +40.050483 -084.348699 PLEASANT HILL
39109 45360 +40.330713 -084.092589 P PORT JEFFERSON
39149 45361 +39.963492 -084.414484 P POTSDAM
39109 45362 +40.287621 -084.637078 ROSSBURG
39037 45363 +40.263253 -084.263227 RUSSIA
39149 45365 +40.293558 -084.209198 SIDNEY
39149 45367 +40.333611 -084.218308 U SIDNEY
39149 45368 +39.854349 -083.665280 SOUTH CHARLESTON
39023 45369 +39.957723 -083.614481 SOUTH VIENNA
39023 45370 +39.608285 -084.025972 SPRING VALLEY
39057 45371 +39.941967 -084.166260 TIPP CITY
39109 45372 +40.013871 -083.833250 P TREMONT CITY
39023 45373 +40.062621 -084.226398 TROY
39109 45374 +40.039970 -084.229799 U TROY
39109 45377 +39.889006 -084.242243 VANDALIA
39113 45378 +39.897035 -084.499044 P VERONA
39135 45380 +40.253040 -084.523891 VERSAILLES
39037 45381 +39.750097 -084.537597 WEST ALEXANDRIA
39135 45382 +39.881330 -084.621617 WEST MANCHESTER
39135 45383 +39.987910 -084.350107 WEST MILTON
39109 45384 +39.712811 -083.878088 P WILBERFORCE
39057 45385 +39.684731 -083.908130 XENIA
39057 45387 +39.760531 -083.883600 YELLOW SPRINGS
39057 45388 +40.321853 -084.484466 YORKSHIRE
39037 45389 +40.056400 -084.025444 P CHRISTIANSBURG
39021 45390 +40.211787 -084.758818 UNION CITY
39037 45401 +39.750471 -084.268593 P DAYTON
39113 45402 +39.756658 -084.181639 DAYTON
39113 45403 +39.764658 -084.150738 DAYTON
39113 45404 +39.794958 -084.163589 DAYTON
39113 45405 +39.789857 -084.217391 DAYTON
39113 45406 +39.782457 -084.239391 DAYTON
39113 45407 +39.758658 -084.226041 DAYTON
39113 45408 +39.730258 -084.219846 DAYTON

Reas_08_395-518.indd Sec5:426Reas_08_395-518.indd Sec5:426 5/23/07 4:59:48 PM5/23/07 4:59:48 PM

427

Input 6: File Import
This unit focuses on loading fi les and accessing the fi le data.

Syntax introduced:
loadStrings(), split(), splitTokens(), WHITESPACE

Output 2 (p. 421) explained how to export fi les, and this unit complements it by
demonstrating how to load fi les. Files are the easiest way to store and load data, but
before you load a data fi le into a program, it’s essential to know how the fi le is formatted.
In a plain text fi le, the control characters for tab and new line (p. 421) are used to
differentiate and align the data elements. Separating the individual elements with a
tab or space character and each line with a new line character is a common formatting
technique. Here’s one example excerpted from a data fi le:1

 00214 +43.005895 -071.013202 U PORTSMOUTH 33 015

 00215 +43.005895 -071.013202 U PORTSMOUTH 33 015

 00501 +40.922326 -072.637078 U HOLTSVILLE 36 103

 00544 +40.922326 -072.637078 U HOLTSVILLE 36 103

 00601 +18.165273 -066.722583 ADJUNTAS 72 001

 00602 +18.393103 -067.180953 AGUADA 72 003

 00603 +18.455913 -067.145780 AGUADILLA 72 005

If you see a fi le formatted in a similar way, you can use a text editor to tell whether there
are tabs or spaces between the elements by moving the cursor to the beginning of a line
and using the arrow keys to navigate left or right through the characters. If the cursor
jumps from one element to another, there is a tab between the elements; if the cursor
moves via a series of steps through the whitespace, spaces were used to format the data.
In addition to knowing how the data elements are separated, it’s essential to know how
many data elements each line contains and the data type of each element. For example,
the fi le above has data that should be stored as String, int, and float variables.
 In addition to loading data from plain text fi les, it’s common to load data from XML
fi les. XML is a fi le structure that is based on “tagging” information, similar to its cousin
HTML. It defi nes a structure for ordering data, but leaves the content and categories of
the data elements open. For example, in an XML structure designed for storing book
information, each element might have an entry for title and publisher:

<book>

 <title>Processing</title>

 <publisher>MIT Press</publisher>

</book>

Reas_08_395-518.indd Sec5:427Reas_08_395-518.indd Sec5:427 5/23/07 4:59:49 PM5/23/07 4:59:49 PM

428 Input 6: File Import

In an XML structure designed for storing a list of websites, each element might have an
entry for the name of the website and the URL.

<website>

 <name>Processing.org</name>

 <url>http://processing.org</url>

</website>

In these two examples, notice that the names of the element tags are different, but
the structure is the same. Each entry is defi ned with a tag to begin the data and a
corresponding tag to end the entry. Because the tag for each data element describes the
type of content, XML fi les are often more self-explanatory than fi les delimited by tabs.
The XML library included with Processing can load and parse simple, strictly-formatted
XML fi les. Contributed libraries have been developed with a broader set of features.
 Tab-delimited and XML data are useful in different contexts. Many “feeds” available
from the Web are available in XML format. These include weather service updates from
the NOAA and the RSS feeds common to many websites. In these cases, the data is both
varied and hierarchical, making it suitable for XML. For information exported from a
database, a tab-delimited fi le is more appropriate, because the additional metadata
included in XML wastes considerable space and takes longer to load into a program. For
example, the excerpt presented at the beginning of this unit is from a fi le that contains
40,000 lines. Because the data comprises seven straightforward columns, adding
additional tags to make this XML would make it unnecessarily burdensome and slow.

Loading numbers

The easiest way to bring external data into Processing is to save it as a fi le in TXT format.
The fi le can then be loaded and parsed to extract the individual data elements. A TXT
fi le format stores only plain text characters, which means there is no formatting such as
bold, italics, and colors.
 Numbers are stored in fi les as characters. The easiest way to load them into
Processing is to treat the numbers temporarily as a string before converting them
to fl oating-point or integer variables. A fi le containing numbers can be loaded into
Processing with the loadStrings() function. This function reads the contents of a fi le
and creates a string array of its individual lines—one array element for each line of the
fi le. As with any media loaded into Processing, the fi le must be located in the sketch’s
data folder. For example, if the text fi le numbers.txt is in the current sketch’s data folder,
its data can be read into Processing with this line of code:

 String[] lines = loadStrings("numbers.txt");

The lines[] array is fi rst declared and then assigned the String array created by the
loadStrings() function. It holds the contents of the fi le, with each element in the

Reas_08_395-518.indd Sec5:428Reas_08_395-518.indd Sec5:428 5/23/07 4:59:49 PM5/23/07 4:59:49 PM

429 Input 6: File Import

array containing one line of the text in the fi le. This code reads through each element of
the array and prints its contents to the Processing console:

 for (int i = 0; i < lines.length; i++) {

 println(lines[i]);

 }

The following example loads the text fi le created with code 45-04 (p. 424). This fi le
contains the mouseX and mouseY variable separated by a tab and formatted like this:

 x1 y1

 x2 y2

 x3 y3

 x4 y4

 x5 y5

This program is designed to read the entire fi le into an array; then it reads each line of
the array and extracts the two coordinate values into another array. The fi le checks to
make sure the data is formatted as expected by confi rming that there are two elements
on each line, then converts these elements to integer values and uses them to draw a
point to the screen.

String[] lines = loadStrings("positions.txt");

for (int i = 0; i < lines.length; i++) {

 // Split this line into pieces at each tab character

 String[] pieces = split(lines[i], '\t');

 // Take action only if there are two values on the line

 // (this will avoid blank or incomplete lines)

 if (pieces.length == 2) {

 int x = int(pieces[0]);

 int y = int(pieces[1]);

 point(x, y);

 }

}

The split() function is used to divide each line of the text fi le into its separate
elements. This function splits a string into pieces using a character or string as
the divider.

 split(str, delim)

The str parameter must be a String, but the delim parameter can be a char or
String and does not appear in the returned String[] array.

46-01

Reas_08_395-518.indd Sec5:429Reas_08_395-518.indd Sec5:429 5/23/07 4:59:50 PM5/23/07 4:59:50 PM

430 Input 6: File Import

String s = "a, b";

String[] p = split(s, ", ");

println(p[0]); // Prints "a"

println(p[1]); // Prints "b"

The splitTokens() function allows you to split a String at one or many character
“tokens.” There are two versions of this function:

 splitTokens(str)

 splitTokens(str, tokens)

The tokens parameter is a String containing a list of characters that are used to
separate the line. If the tokens parameter is not used, all whitespace characters (space,
tab, new line, etc.) are used as delimiters.

String t = "a b";

String[] q = splitTokens(t);

println(q[0]); // Prints "a"

println(q[1]); // Prints "b"

The following example demonstrates the fl exibility of splitTokens(). When “, ” is
used as the tokens parameter, it doesn’t matter in what order the comma and space
appear in the fi le, or whether there is just a comma or just a space.

String s = "a, b c ,,d "; // Despite the bad formatting,

String[] p = splitTokens(s, ", "); // the data is parsed correctly

println(p[0]); // Prints "a"

println(p[1]); // Prints "b"

println(p[2]); // Prints "c"

println(p[3]); // Prints "d"

The same data fi le used in code 46-01 can be used to display the points from the fi le
in the sequence in which they were originally drawn. Adding setup() and draw()
requires the lines[] array to be declared at the beginning of the sketch. Rather than
every point being drawn inside a for structure, only one point is drawn each time the
draw() is run.

String[] lines;

int index = 0;

void setup() {

 lines = loadStrings("positions.txt");

 frameRate(12);

}

46-02

46-03

46-04

46-05

Reas_08_395-518.indd Sec5:430Reas_08_395-518.indd Sec5:430 5/23/07 4:59:50 PM5/23/07 4:59:50 PM

431 Input 6: File Import

void draw() {

 if (index < lines.length) {

 String[] pieces = split(lines[index], '\t');

 if (pieces.length == 2) {

 int x = int(pieces[0]);

 int y = int(pieces[1]);

 point(x, y);

 }

 // Go to the next line for the next run through draw()

 index = index + 1;

 }

}

The code for reading other data formats will be very similar to the examples above.

Loading characters

Loading numbers from a fi le is similar to loading text data. Files usually contain multiple
kinds of data, so it’s important to know what kind is inside a fi le so that it can be parsed
into variables of the appropriate type (p. 37).
 The following example loads data about cars. In the fi le used for this example, text
data is mixed with integer and fl oating-point numbers:

 ford galaxie 500 15 8 429 198 4341 10 70 1

 chevrolet impala 14 8 454 220 4354 9 70 1

 plymouth fury iii 14 8 440 215 4312 8.5 70 1

 pontiac catalina 14 8 455 225 4425 10 70 1

This small excerpt of a fi le2 shows its content and formatting. Each element is separated
with a tab and corresponds to a different aspect of each car. This fi le stores the miles
per gallon, cylinders, displacement, etc., for more than 400 different cars. A Record
class was created to load this data and store the information for each entry. An array
of Record objects was created for all 400 cars. The fi rst for loop loads the data into an
array of objects, and the second for loop lists the data the console.

Record[] records;

int recordCount;

void setup() {

 String[] lines = loadStrings("cars2.tsv");

 records = new Record[lines.length];

 for (int i = 0; i < lines.length; i++) {

 String[] pieces = split(lines[i], '\t'); // Load data into array

46-05
cont.

46-06

Reas_08_395-518.indd Sec5:431Reas_08_395-518.indd Sec5:431 5/23/07 4:59:50 PM5/23/07 4:59:50 PM

432 Input 6: File Import

 if (pieces.length == 9) {

 records[recordCount] = new Record(pieces);

 recordCount++;

 }

 }

 for (int i = 0; i < recordCount; i++) {

 println(i + " -> " + records[i].name); // Print name to console

 }

}

class Record {

 String name;

 float mpg;

 int cylinders;

 float displacement;

 float horsepower;

 float weight;

 float acceleration;

 int year;

 float origin;

 public Record(String[] pieces) {

 name = pieces[0];

 mpg = float(pieces[1]);

 cylinders = int(pieces[2]);

 displacement = float(pieces[3]);

 horsepower = float(pieces[4]);

 weight = float(pieces[5]);

 acceleration = float(pieces[6]);

 year = int(pieces[7]);

 origin = float(pieces[8]);

 }

}

This example only shows how to load the data into the program. The Record class could
be extended to include an image or vertex model of each car, which would enable the
creation of a visual database that could be navigated using the statistics and design of
each vehicle.
 The next example loads the text of a book into a program and counts the number
of words, printing words longer than ten letters to the console. It uses a built-in variable
called WHITESPACE, a string that contains the most common control characters that
create whitespace within a text fi le. It is literally the string “ \t\n\r\f\u00A0”, which
includes the common escape sequences for tab, new line, carriage return, formfeed,
and the Unicode “nonbreaking space” character (Appendix C, p. 664). The WHITESPACE

46-06
cont.

Reas_08_395-518.indd Sec5:432Reas_08_395-518.indd Sec5:432 5/23/07 4:59:51 PM5/23/07 4:59:51 PM

433 Input 6: File Import

constant differentiates between the individual elements of the book’s text. The book
loaded into the program comes from the Gutenberg archive,3 which formats its
documents so the actual text of the book begins with *** START and ends with
*** END. These specifi c character sequences are used within the program to set when
it starts and stops counting words.

String[] lines = loadStrings("2895.txt");

int totalCount = 0; // Total word count for entire book

boolean started = false; // Ignore lines until the *** START line

for (int i = 0; i < lines.length; i++) {

 if (lines[i].startsWith("*** START")) { // Start parsing text

 started = true;

 } else if (lines[i].startsWith("*** END")) { // Stop parsing text

 started = false;

 } else if (started == true) { // If we're in the useful region

 // List of characters and punctuation to ignore between

 // letters. WHITESPACE is all the whitespace characters

 String separators = WHITESPACE + ",;.:?()\"-";

 // Split the line anywhere that we see one or more of

 // these separators

 String[] words = splitTokens(lines[i], separators);

 // Add this number to the total

 totalCount += words.length;

 // Go through the list of words on the line

 for (int j = 0; j < words.length; j++) {

 String word = words[j].toLowerCase();

 if (word.length() > 10) {

 println(word); // Print word if longer than ten letters

 }

 }

 }

}

// How many words are in the entire book?

println("This book has " + totalCount + " total words.");

When this program is run, the last fi fteen lines printed to the console are:

requirements

considerable

requirements

confirmation

contributions

46-07

Reas_08_395-518.indd Sec5:433Reas_08_395-518.indd Sec5:433 5/23/07 4:59:51 PM5/23/07 4:59:51 PM

434 Input 6: File Import

solicitation

requirements

prohibition

unsolicited

international

information

distributed

necessarily

information

This book has 194700 total words.

 Exercises
1. Write a program to load and display the data saved in code 45-03 (p. 423).
2. Write a program to load and display the data saved in code 45-05 (p. 424).
3. Select a data set from http://lib.stat.cmu.edu/datasets and write a program to load
 and display the data.

 Notes

1. http://www.census.gov/geo/www/tiger/zip1999.html.

2. From the StatLib Datasets Archive at Carnegie Mellon University, http://lib.stat.cmu.edu/datasets/cars.data.

 More information about this dataset can be found at http://lib.stat.cmu.edu/datasets/cars.desc.

3. http://www.gutenberg.org/fi les/2895/2895.txt.

Reas_08_395-518.indd Sec5:434Reas_08_395-518.indd Sec5:434 5/23/07 4:59:52 PM5/23/07 4:59:52 PM

435

Input 7: Interface
This unit introduces and discusses code for graphical interface elements.

The graphical user interface (GUI), also known as the direct manipulation interface,
helped bring computers out of laboratories and into homes, offi ces, and schools. The
combination of the mouse and graphical interfaces has made computer use intuitive.
Common navigation techniques such as pointing, clicking, and dragging all require
a device like the mouse that controls an on-screen cursor. Most GUIs are comprised of
icons representing the hierarchy of fi les and folders on the hard drive. The user performs
actions by selecting icons and moving them directly with the cursor.
 Before pointing devices were developed, the most common way to interface with
a computer was through a command line interface (CLI). A CLI requires text commands
such as cp (copy), mv (move), and mkdir (make directory) to perform actions on fi les.
Moving the fi le data.txt from its current folder to a different folder named base is
achieved in UNIX, known for its CLI, with the text:

 mv data.txt base/

Unlike the GUI, in which the data.txt icon is dragged to a folder icon titled base, working
professionally with a CLI requires the user to maintain a mental model of the folder
structures and remember the names of commands. Some actions are easier to perform
with one style of interface, some with the other; both have their benefi ts and diffi culties.
 Operating systems like Mac OS and Windows have a distinct visual appearance
and style of interaction, which is determined by the sum of the behaviors of individual
elements in the interface. The visual difference between operating systems is obvious.
For example, using Windows NT feels like working inside a concrete bunker, while
earlier versions of Mac OS X resembled working inside a brightly lit candy store. The
different style of interaction required by each GUI is less obvious but more important.
Details such as the way in which a window opens, or how a fi le is deleted, create the
dynamics for the environment we mentally inhabit while using a computer.
 The GUI has evolved continuously over the last thirty years, but the basic metaphor
remains unchanged. This standard interface method is referred to as WIMP (an acronym
for Windows, Icons, Mouse, and Pointer). There have been fascinating explorations into
alternative computer interfaces including Zooming User Interfaces (ZUIs) such as the Pad
interface model and its derivatives. In contrast to Windows interfaces where elements
open and close, a zooming interface allows the user to zoom out to get an overview of
the computer’s contents and zoom in to view individual data elements. This technique
provides a map to the complete data landscape that other windowing systems obscure.
The Lifestreams project is another alternative interface. It was developed as a networked
replacement for the software desktop with the goal of reducing the time spent
managing documents while simultaneously making them more accessible. A lifestream

Reas_08_395-518.indd Sec5:435Reas_08_395-518.indd Sec5:435 5/23/07 4:59:52 PM5/23/07 4:59:52 PM

436 Input 7: Interface

is an ordered stream of digital information including pictures, movies, Emails, and bills.
The fi les in an individual’s stream are structured in the order of creation, starting with
their fi rst document and continuing through their entire life up to the present. As these
and other exploratory GUI projects are emerging from the research community, the
video game industry is continuously experimenting with interface techniques used to
navigate the ever more complex information contained in games.
 Writing GUI programs can be more diffi cult than writing CLI programs because of
the additional code needed to draw elements to the screen and defi ne their behavior.
Specialized libraries for creating GUI elements help reduce the time spent coding.
Microsoft, for example, developed the Visual Basic programming environment to assist
people in assembling windows with menus, buttons, and behaviors; it allows them to
select from available graphic elements and assign them behaviors with menus. The
Adobe Flash software has a Button object that simplifi es the creation of interface
buttons. Creating a program with a basic interface requires understanding interface
techniques and common GUI elements such as buttons, check boxes, radio buttons, and
scrollbars. With clear knowledge of how each GUI element works, the programmer can
understand how to modify them to improve the way people interface with computers.

Rollover, Button, Dragging

The fi rst step in building an interface element is to make the shape aware of the mouse.
The two shapes that will most easily recognize the mouse within their boundaries are
the circle and the rectangle. The OverCircle and OverRect classes presented below
have been written to make it clear when the mouse is over these elements.
 The OverCircle class has four fi elds. They set the x-coordinate, y-coordinate,
diameter, and gray value. The update() method is run when the mouse is over the
element, and the display() method draws the element to the screen. The position and
size of the circle are set within the constructor, and the default gray value is set to black.
The dist() function within update() calculates the distance from the mouse to the
center of the circle; if the distance is less than the circle’s radius, the gray value is set
to white.

class OverCircle {

 int x, y; // The x- and y-coordinates

 int diameter; // Diameter of the circle

 int gray; // Gray value

 OverCircle(int xp, int yp, int d) {

 x = xp;

 y = yp;

 diameter = d;

 gray = 0;

 }

47-01

Reas_08_395-518.indd Sec5:436Reas_08_395-518.indd Sec5:436 5/23/07 4:59:52 PM5/23/07 4:59:52 PM

437 Input 7: Interface

 void update(int mx, int my) {

 if (dist(mx, my, x, y) < diameter/2) {

 gray = 255;

 } else {

 gray = 0;

 }

 }

 void display() {

 fill(gray);

 ellipse(x, y, diameter, diameter);

 }

}

The fi elds and methods for the OverRect class are identical to those in OverCircle,
but the size fi eld now sets the width and height of the rectangle rather than the
diameter of a circle. The relational expression inside update() tests to see if the
incoming mouseX and mouseY values are within the rectangle.

class OverRect {

 int x, y; // The x- and y-coordinates

 int size; // Dimension (width and height) of the rectangle

 int gray; // Gray value

 OverRect(int xp, int yp, int s) {

 x = xp;

 y = yp;

 size = s;

 gray = 0;

 }

 void update(int mx, int my) {

 if ((mx > x) && (mx < x+size) && (my > y) && (my < y+size)) {

 gray = 255;

 } else {

 gray = 0;

 }

 }

 void display() {

 fill(gray);

 rect(x, y, size, size);

 }

}

47-01
cont.

47-02

Reas_08_395-518.indd Sec5:437Reas_08_395-518.indd Sec5:437 5/23/07 4:59:53 PM5/23/07 4:59:53 PM

438 Input 7: Interface

In the next example, objects are created from the OverRect and OverCircle class and
are placed within the display window. When the mouse moves over each element, the
color changes from black to white.

 // Requires the OverRect and OverCircle classes

 OverRect r = new OverRect(9, 30, 36);

 OverCircle c = new OverCircle(72, 48, 40);

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 }

 void draw() {

 background(204);

 r.update(mouseX, mouseY);

 r.display();

 c.update(mouseX, mouseY);

 c.display();

 }

Both of these classes can be extended further. For example, changing the update()
method for both OverCircle and OverRect can create a smooth value transition
when the mouse is over the shape. The following code fragment shows how to do this for
OverCircle. Use the update() method below in place of the original update() in the
last example to see the difference. This gradual transition detail gives interface elements
a subtlety that enhances their behavior.

void update(int mx, int my) {

 if (dist(mx, my, x, y) < diameter/2) {

 if (gray < 250) {

 gray++;

 }

 } else {

 if (gray > 0) {

 gray--;

 }

 }

}

The code from OverRect can be enhanced to create a rectangular button element. The
Button class is distinct from the OverRect class in that it has an additional state. While

47-03

47-04

Reas_08_395-518.indd Sec5:438Reas_08_395-518.indd Sec5:438 5/23/07 4:59:53 PM5/23/07 4:59:53 PM

439 Input 7: Interface

OverRect acknowledges when the mouse is over the shape, the Button class makes
it possible to determine whether the mouse is over the shape and when the mouse
clicks on the shape. If the mouse is over the button it can trigger an event, and when the
mouse is pressed it can trigger a separate event.
 Like OverRect, the Button class has a position, a size, and a default gray value.
The constructor for Button receives six parameters; the last three set the default gray
value, the gray value when the mouse is over the button, and the gray value when the
mouse is over the button and is pressed. The update() method sets the boolean fi eld
over to true or false depending on the location of the mouse. The press() method
should be run from within the main program’s mousePressed() function. When run,
it sets the boolean fi eld press to true if the mouse is currently over the button and to
false if not. The release() method should be run from within the main program’s
mouseReleased() function. When the mouse is released the boolean fi eld pressed
is set to false, which prepares the button to be pressed again. The display() method
draws the button to the screen and sets its gray value based on the current status of the
mouse in relation to the button.

class Button {

 int x, y; // The x- and y-coordinates

 int size; // Dimension (width and height)

 color baseGray; // Default gray value

 color overGray; // Value when mouse is over the button

 color pressGray; // Value when mouse is over and pressed

 boolean over = false; // True when the mouse is over

 boolean pressed = false; // True when the mouse is over and pressed

 Button(int xp, int yp, int s, color b, color o, color p) {

 x = xp;

 y = yp;

 size = s;

 baseGray = b;

 overGray = o;

 pressGray = p;

 }

 // Updates the over field every frame

 void update() {

 if ((mouseX >= x) && (mouseX <= x+size) &&

 (mouseY >= y) && (mouseY <= y+size)) {

 over = true;

 } else {

 over = false;

 }

 }

47-05

Reas_08_395-518.indd Sec5:439Reas_08_395-518.indd Sec5:439 5/23/07 4:59:54 PM5/23/07 4:59:54 PM

440 Input 7: Interface

 boolean press() {

 if (over == true) {

 pressed = true;

 return true;

 } else {

 return false;

 }

 }

 void release() {

 pressed = false; // Set to false when the mouse is released

 }

 void display() {

 if (pressed == true) {

 fill(pressGray);

 } else if (over == true) {

 fill(overGray);

 } else {

 fill(baseGray);

 }

 stroke(255);

 rect(x, y, size, size);

 }

}

To use the Button class, add it to a sketch and call its methods from within the mouse
event functions. Like most objects, it should be created within setup() and updated
and displayed within draw(). The methods of the object related to the mouse status
must be explicitly run from within the mousePressed() and mouseReleased()
functions.

 // Requires the Button class

 Button button;

 void setup() {

 size(100, 100);

 // Inputs: x, y, size,

 // base color, over color, press color

 button = new Button(25, 25, 50,

 color(204), color(255), color(0));

 }

47-05
cont.

47-06

Reas_08_395-518.indd Sec5:440Reas_08_395-518.indd Sec5:440 5/23/07 4:59:54 PM5/23/07 4:59:54 PM

441 Input 7: Interface

 void draw() {

 background(204);

 stroke(255);

 button.update();

 button.display();

 }

 void mousePressed() {

 button.press();

 }

 void mouseReleased() {

 button.release();

 }

Buttons are typically used to trigger events or update values. The previous example
showed how to use a Button object in isolation, and the next shows how to utilize it to
modify the fl ow of a program. In this example, the buttons turn white when the mouse
rolls over them, giving visual feedback that shows they are active elements. When the
mouse is pressed over a button, the button turns black to provide feedback. When a
button is selected, it updates the mode variable in the program. The left button sets mode
to 1, the middle sets it to 2, and the right button sets it to 3. In the program’s draw()
method, different lines of code are run depending on the value of this variable. In the
following example, only the position of an ellipse changes, but the different modes could
be used to move between scenes in a complex animation or to change the values of one
or more variables.

 // Requires the Button class

 Button button1, button2, button3;

 int mode = 1;

 void setup() {

 size(100, 100);

 smooth();

 color gray = color(204);

 color white = color(255);

 color black = color(0);

 button1 = new Button(10, 80, 10, gray, white, black);

 button2 = new Button(25, 80, 10, gray, white, black);

 button3 = new Button(40, 80, 10, gray, white, black);

 }

47-06
cont.

47-07

Reas_08_395-518.indd Sec5:441Reas_08_395-518.indd Sec5:441 5/23/07 4:59:54 PM5/23/07 4:59:54 PM

442 Input 7: Interface

 void draw() {

 background(204);

 manageButtons();

 noStroke();

 fill(0);

 if (mode == 1) {

 ellipse(0, 40, 60, 60);

 } else if (mode == 2) {

 ellipse(50, 40, 60, 60);

 } else if (mode == 3) {

 ellipse(100, 40, 60, 60);

 }

 }

 void manageButtons() {

 button1.update();

 button2.update();

 button3.update();

 button1.display();

 button2.display();

 button3.display();

 }

 void mousePressed() {

 if (button1.press() == true) { mode = 1; }

 if (button2.press() == true) { mode = 2; }

 if (button3.press() == true) { mode = 3; }

 }

 void mouseReleased() {

 button1.release();

 button2.release();

 button3.release();

 }

Using the same technique for rolling over a circle, it is straightforward to make a circular
button. It’s also possible to make a button with an irregular shape, but this requires a
different technique.

Check boxes, Radio buttons

Check boxes and radio buttons form another category of interface elements. They
frequently appear in windows for confi guring a computer or for fi lling out forms on the

47-07
cont.

Reas_08_395-518.indd Sec5:442Reas_08_395-518.indd Sec5:442 5/23/07 4:59:55 PM5/23/07 4:59:55 PM

443 Input 7: Interface

Web. The appearance of these elements is less important than their behavior, but check
boxes are usually square and radio buttons are typically circular. Check boxes operate
independently from others, while the status of a radio button is dependent on that of the
others in its group. Thus check boxes are used as an interface element when more than
one option is available, and radio buttons are used when only one element within a list
of options can be selected.
 A check box is a button with two states, ON and OFF, that change when the element
is selected. If the current state is OFF and the box is selected it changes its state to ON,
and vice versa. The Check class presented below defi nes the form and behavior of a
check box. The fi elds and methods are similar to those in the Button class, but the
display() method is unique. When the press fi eld is true, an X is drawn in the center
of the box to show that the state is ON.

class Check {

 int x, y; // The x- and y-coordinates

 int size; // Dimension (width and height)

 color baseGray; // Default gray value

 boolean checked = false; // True when the check box is selected

 Check(int xp, int yp, int s, color b) {

 x = xp;

 y = yp;

 size = s;

 baseGray = b;

 }

 // Updates the boolean variable checked

 void press(float mx, float my) {

 if ((mx >= x) && (mx <= x+size) && (my >= y) && (my <= y+size)) {

 checked = !checked; // Toggle the check box on and off

 }

 }

 // Draws the box and an X inside if the checked variable is true

 void display() {

 stroke(255);

 fill(baseGray);

 rect(x, y, size, size);

 if (checked == true) {

 line(x, y, x+size, y+size);

 line(x+size, y, x, y+size);

 }

 }

}

47-08

Reas_08_395-518.indd Sec5:443Reas_08_395-518.indd Sec5:443 5/23/07 4:59:55 PM5/23/07 4:59:55 PM

444 Input 7: Interface

When a Check object is used in a program, the display() method should be run from
draw() and the press() method should be run from mousePressed(). The next
example presents one Check object in the center of the screen to show its behavior, and
the example after that creates an array of Check objects and sets their positions to make
a matrix.

 // Requires the Check class

 Check check;

 void setup() {

 size(100, 100);

 // Inputs: x, y, size, fill color

 check = new Check(25, 25, 50, color(0));

 }

 void draw() {

 background(204);

 check.display();

 }

 void mousePressed() {

 check.press(mouseX, mouseY);

 }

 // Requires the Check class

 int numChecks = 25;

 Check[] checks = new Check[numChecks];

 void setup() {

 size(100, 100);

 int x = 14;

 int y = 14;

 for (int i = 0; i < numChecks; i++) {

 checks[i] = new Check(x, y, 12, color(0));

 x += 15;

 if (x > 80) {

 x = 14;

 y += 15;

 }

 }

 }

47-09

47-10

Reas_08_395-518.indd Sec5:444Reas_08_395-518.indd Sec5:444 5/23/07 4:59:55 PM5/23/07 4:59:55 PM

445 Input 7: Interface

 void draw() {

 background(0);

 for (int i=0; i<numChecks; i++) {

 checks[i].display();

 }

 }

 void mousePressed() {

 for (int i = 0; i < numChecks; i++) {

 checks[i].press(mouseX, mouseY);

 }

 }

Like a check box, a radio button also has two states, ON and OFF. Unlike check boxes,
radio buttons are used in groups of two or more, and only one element in the group can
be selected at a time. Each radio button must be able to turn the other elements OFF
when it’s selected. The Radio class is unique from all other classes presented in the book
because it is designed to use itself as one of its parameters. This makes it possible for
each element within the Radio class array to reference the other elements in the array.
 Look at this parameter in the Radio constructor on line 10 of code 47-11. The
data type of the input is an array of Radio objects. The array is passed through the
constructor and is then assigned to the others[] array, which also has the data type of
an array of Radio objects. Inside the press() method, each Radio object sets the state
of all the other Radio objects in the array to OFF if it has been clicked (turned ON). If the
state for the object is ON, a black interior circle is drawn within the display() method.

class Radio {

 int x, y; // The x- and y-coordinates of the rect

 int size, dotSize; // Dimension of circle, inner circle

 color baseGray, dotGray; // Circle gray value, inner gray value

 boolean checked = false; // True when the button is selected

 int me; // ID number for this Radio object

 Radio[] others; // Array of all other Radio objects

 Radio(int xp, int yp, int s, color b, color d, int m, Radio[] o) {

 x = xp;

 y = yp;

 size = s;

 dotSize = size - size/3;;

 baseGray = b;

 dotGray = d;

 others = o;

 me = m;

 }

47-10
cont.

47-11

Reas_08_395-518.indd Sec5:445Reas_08_395-518.indd Sec5:445 5/23/07 4:59:56 PM5/23/07 4:59:56 PM

446 Input 7: Interface

 // Updates the boolean value press, returns true or false

 boolean press(float mx, float my) {

 if (dist(x, y, mx, my) < size/2) {

 checked = true;

 for (int i = 0; i < others.length; i++) {

 if (i != me) {

 others[i].checked = false;

 }

 }

 return true;

 } else {

 return false;

 }

 }

 // Draws the element to the display window

 void display() {

 noStroke();

 fill(baseGray);

 ellipse(x, y, size, size);

 if (checked == true) {

 fill(dotGray);

 ellipse(x, y, dotSize, dotSize);

 }

 }

}

As mentioned, the most notable aspect of this example is the ability of the Radio objects
to access the other members of their array. Notice the call to the constructor in code
47-12 below. The last parameter is the name of the array of radio objects. The Radio
object’s display() method is run from draw(), and the press() method is run from
mousePressed(). The next example presents two Radio objects, and the example after
it demonstrates the use of a for structure to iterate through a larger number of objects.

47-11
cont.

Reas_08_395-518.indd Sec5:446Reas_08_395-518.indd Sec5:446 5/23/07 4:59:56 PM5/23/07 4:59:56 PM

447 Input 7: Interface

 // Requires the Radio class

 Radio[] buttons = new Radio[2];

 void setup() {

 size(100, 100);

 smooth();

 // Inputs: x, y, size, base color, fill color,

 // id number, array of others

 buttons[0] = new Radio(33, 50, 30, color(255), color(0),

 0, buttons);

 buttons[1] = new Radio(66, 50, 30, color(255), color(0),

 1, buttons);

 }

 void draw() {

 background(204);

 buttons[0].display();

 buttons[1].display();

 }

 void mousePressed() {

 buttons[0].press(mouseX, mouseY);

 buttons[1].press(mouseX, mouseY);

 }

 // Requires the Radio class

 int numButtons = 7;

 Radio[] buttons = new Radio[numButtons];

 void setup() {

 size(100, 100);

 smooth();

 for (int i = 0; i < buttons.length; i++) {

 int x = i*12 + 14;

 buttons[i] = new Radio(x, 50, 10, color(255), color(0),

 i, buttons);

 }

 }

 void draw() {

 background(204);

47-12

47-13

Reas_08_395-518.indd Sec5:447Reas_08_395-518.indd Sec5:447 5/23/07 4:59:57 PM5/23/07 4:59:57 PM

448 Input 7: Interface

 for (int i = 0; i < buttons.length; i++) {

 buttons[i].display();

 }

 }

 void mousePressed() {

 for (int i = 0; i < buttons.length; i++) {

 buttons[i].press(mouseX, mouseY);

 }

 }

Scrollbar

A scrollbar is an interface element for selecting a value from a range of possible values.
It can move through long lists of information such as Web pages and text documents.
Scrollbars are typically narrow rectangular elements with a positionable interior
element called a thumb. The user can move the thumb between the endpoints of the
scrollbar by dragging it to a new position. The minimal Scrollbar class presented
below creates horizontal scrollbars. There are multiple fi elds and methods for this class,
but these values and their behavior will be familiar from the previous examples.
 The Scrollbar class is similar to the other classes in the unit, but the locked
fi eld is unique, making it possible for the cursor to continue to update the position of
the thumb even if the cursor moves off the scrollbar area. This common GUI feature lets
people be less precise when moving the thumb element. If the mouse is pressed when
the cursor is over the scrollbar, moving the mouse off the bar will continue to update the
scrollbar until released. This class was designed so that each Scrollbar object has its
own minimum and maximum values, defi ned by the parameters to the constructor. The
getPos() method returns the current value of the thumb element within the scrollbar’s
range as defi ned by the minVal and maxVal fi elds.

class Scrollbar {

 int x, y; // The x- and y-coordinates

 float sw, sh; // Width and height of scrollbar

 float pos; // Position of thumb

 float posMin, posMax; // Max and min values of thumb

 boolean rollover; // True when the mouse is over

 boolean locked; // True when its the active scrollbar

 float minVal, maxVal; // Min and max values for the thumb

 Scrollbar (int xp, int yp, int w, int h, float miv, float mav) {

 x = xp;

 y = yp;

 sw = w;

47-13
cont.

47-14

Reas_08_395-518.indd Sec5:448Reas_08_395-518.indd Sec5:448 5/23/07 4:59:57 PM5/23/07 4:59:57 PM

449 Input 7: Interface

 sh = h;

 minVal = miv;

 maxVal = mav;

 pos = x + sw/2 - sh/2;

 posMin = x;

 posMax = x + sw - sh;

 }

 // Updates the over boolean and the position of the thumb

 void update(int mx, int my) {

 if (over(mx, my) == true) {

 rollover = true;

 } else {

 rollover = false;

 }

 if (locked == true) {

 pos = constrain(mx-sh/2, posMin, posMax);

 }

 }

 // Locks the thumb so the mouse can move off and still update

 void press(int mx, int my) {

 if (rollover == true) {

 locked = true;

 } else {

 locked = false;

 }

 }

 // Resets the scrollbar to neutral

 void release() {

 locked = false;

 }

 // Returns true if the cursor is over the scrollbar

 boolean over(int mx, int my) {

 if ((mx > x) && (mx < x+sw) && (my > y) && (my < y+sh)) {

 return true;

 } else {

 return false;

 }

 }

47-14
cont.

Reas_08_395-518.indd Sec5:449Reas_08_395-518.indd Sec5:449 5/23/07 4:59:58 PM5/23/07 4:59:58 PM

450 Input 7: Interface

 // Draws the scrollbar to the screen

 void display() {

 fill(255);

 rect(x, y, sw, sh);

 if ((rollover==true) || (locked==true)) {

 fill(0);

 } else {

 fill(102);

 }

 rect(pos, y, sh, sh);

 }

 // Returns the current value of the thumb

 float getPos() {

 float scalar = sw/(sw-sh);

 float ratio = (pos - x) * scalar;

 float offset = minVal + (ratio/sw * (maxVal-minVal));

 return offset;

 }

}

The Scrollbar class is the longest code we’ve presented in this book, but integrating it
into a program takes a single step. Like the other GUI elements in this unit, a Scrollbar
object is declared at the top of the code, created in setup(), displayed and updated in
draw(), and controlled by the mouse events mousePressed() and mouseReleased().
The next example features a pair of scrollbars with the same x-coordinates but different
ranges. The top scrollbar selects integer numbers between 0 and 100, and the bottom
scrollbar selects fl oating-point numbers between 0.0 and 1.0.

 // Requires Scrollbar class

 Scrollbar bar1, bar2;

 PFont font;

 void setup() {

 size(100, 100);

 noStroke();

 // Inputs: x, y, width, height, minVal, maxVal

 bar1 = new Scrollbar(10, 35, 80, 10, 0.0, 100.0);

 bar2 = new Scrollbar(10, 55, 80, 10, 0.0, 1.0);

 font = loadFont("Courier-30.vlw");

 textFont(font);

 textAlign(CENTER);

 }

47-14
cont.

47-15

Reas_08_395-518.indd Sec5:450Reas_08_395-518.indd Sec5:450 5/23/07 4:59:58 PM5/23/07 4:59:58 PM

451 Input 7: Interface

 void draw() {

 background(204);

 fill(0);

 int pos1 = int(bar1.getPos());

 text(nf(pos1, 2), 50, 30);

 float pos2 = bar2.getPos();

 text(nf(pos2, 1, 2), 50, 90);

 bar1.update(mouseX, mouseY);

 bar2.update(mouseX, mouseY);

 bar1.display();

 bar2.display();

 }

 void mousePressed() {

 bar1.press(mouseX, mouseY);

 bar2.press(mouseX, mouseY);

 }

 void mouseReleased() {

 bar1.release();

 bar2.release();

 }

The number returned from the scrollbar’s getPos() method can be used to control any
aspect of a program. The following example uses this number to set the position of an
image.

 // Requires Scrollbar Class

 Scrollbar bar;

 PImage img;

 void setup() {

 size(100, 100);

 noStroke();

 // Inputs: x, y, width, height, minVal, maxVal

 bar = new Scrollbar(10, 45, 80, 10, -200.0, 0.0);

 img = loadImage("landscape.jpg");

 }

 void draw() {

 background(204);

 int x = int(bar.getPos());

 image(img, x, 0);

47-16

47-15
cont.

Reas_08_395-518.indd Sec5:451Reas_08_395-518.indd Sec5:451 5/23/07 4:59:58 PM5/23/07 4:59:58 PM

452 Input 7: Interface

 bar.update(mouseX, mouseY);

 bar.display();

 }

 void mousePressed() {

 bar.press(mouseX, mouseY);

 }

 void mouseReleased() {

 bar.release();

 }

 Exercises
1. Modify the Button class to work with circles.
2. Create a composition with check boxes and radio buttons.
3. Extend the Scrollbar class to have arrow buttons on the left and right that move
 the thumb one step each time an arrow is pressed.

47-16
cont.

Reas_08_395-518.indd Sec5:452Reas_08_395-518.indd Sec5:452 5/23/07 4:59:59 PM5/23/07 4:59:59 PM

453

Structure 5: Objects II
This unit extends the discussion of object-oriented programming and introduces splitting
a program into multiple constructors, composite objects, and inheritance.

Syntax introduced:
extends, super

There is far more to object-oriented programming than was described in Structure 4
(p. 395). As your programs become longer and your ideas grow more ambitious, the
additional object-oriented programming concepts and techniques discussed in this unit
become important for managing code.

Multiple constructors

A class can have multiple constructors that assign the fi elds in different ways. Sometimes
it’s benefi cial to specify every aspect of an object’s data by assigning parameters to the
fi elds, but other times it might be appropriate to defi ne only one or a few.
 In the next example, one constructor sets the x-coordinate, y-coordinate, and radius,
while the other uses preset values. When the object is created, the program chooses the
constructor to use depending on the number and type of variables specifi ed. At the end
of setup(), the sp1 object is created using the fi rst version of the Spot constructor, and
the sp2 object is created using the second version.

 Spot sp1, sp2;

 void setup() {

 size(100, 100);

 smooth();

 noLoop();

 // Run the constructor without parameters

 sp1 = new Spot();

 // Run the constructor with three parameters

 sp2 = new Spot(66, 50, 20);

 }

 void draw() {

 sp1.display();

 sp2.display();

 }

48-01

Reas_08_395-518.indd Sec5:453Reas_08_395-518.indd Sec5:453 5/23/07 4:59:59 PM5/23/07 4:59:59 PM

454 Structure 5: Objects II

 class Spot {

 float x, y, radius;

 // First version of the Spot constructor;
 // the fields are assigned default values
 Spot() {
 x = 33;

 y = 50;

 radius = 8;

 }

 // Second version of the Spot constructor;
 // the fields are assigned with parameters
 Spot(float xpos, float ypos, float r) {

 x = xpos;

 y = ypos;

 radius = r;

 }

 void display() {

 ellipse(x, y, radius*2, radius*2);

 }

 }

Composite objects

An object can include several other objects. Creating such composite objects is a good
way to use the principles of modularity and build higher levels of abstraction. In the
natural world, objects often possess components that operate independently but in
relation to other components. Using a biological analogy, you might create a cell class,
groups of which can be combined into muscle tissue and nervous tissue. These tissues
can be combined into organs, and the organs into an organism. With multiple layers
of abstraction, each step is built from composites of the previous layer. A bicycle class
provides a different sort of example. It could be composed of objects for its frame,
wheels, brakes, drivetrain, etc., and each of these units could be built from other classes.
For example, the drivetrain could be built from objects for the pedals, crankset, and
gears.
 The following program combines the Egg class (p. 405) and the Ring class (p. 408)
to create a new class called EggRing. It has one Egg object called ovoid, created in the
constructor, and one Ring object called circle, created at the base of the class. The
transmit() method calls the methods for both classes and resets circle when the
object reaches its maximum size. As in all the examples using classes, the referenced
classes have to be included in the sketch for the project to run.

48-01
cont.

Reas_08_395-518.indd Sec5:454Reas_08_395-518.indd Sec5:454 5/23/07 4:59:59 PM5/23/07 4:59:59 PM

455 Structure 5: Objects II

// Requires Egg and Ring classes (codes 43-08 and 43-11)

class EggRing {

 Egg ovoid;

 Ring circle = new Ring();

 EggRing(int x, int y, float t, float sp) {

 ovoid = new Egg(x, y, t, sp);

 circle.start(x, y - sp/2);

 }

 void transmit() {

 ovoid.wobble();

 ovoid.display();

 circle.grow();

 circle.display();

 if (circle.on == false) {

 circle.on = true;

 }

 }

}

When the EggRing class is used in a program, each instance draws an egg to the screen
with one Ring object growing from its center.

 // Requires the Egg, Ring, and EggRing classes

 EggRing er1, er2;

 void setup() {

 size(100, 100);

 smooth();

 er1 = new EggRing(33, 66, 0.1, 33);

 er2 = new EggRing(66, 90, 0.05, 66);

 }

 void draw() {

 background(0);

 er1.transmit();

 er2.transmit();

 }

48-02

48-03

Reas_08_395-518.indd Sec5:455Reas_08_395-518.indd Sec5:455 5/23/07 5:00:00 PM5/23/07 5:00:00 PM

456 Structure 5: Objects II

Inheritance

A class can be defi ned using another class as a foundation. In object-oriented
programming terminology, one class can inherit fi elds and methods from another. An
object that inherits from another is called a subclass, and the object it inherits from is
called a superclass. A subclass extends the superclass. When one class extends another,
all of the methods and fi elds from the superclass are automatically included in the
subclass. New fi elds and methods can be added to the subclass to build on the data and
behavior of its superclass. If a method name is repeated within the subclass and has the
same prototype (the same number of parameters with the same data types) as the one
in the superclass, the method in the subclass overrides the other, thereby replacing it.
When a method or fi eld from the superclass is called from within the subclass, the name
is prefaced with the keyword super to let the software know this method or fi eld is
a part of the superclass. The following examples clarify these new terms and concepts.
 The Spin class was created to help explain the concept of inheritance. This very
minimal class has fi elds for setting the x-coordinate, y-coordinate, speed, and angle.
It has one method to update the angle.

class Spin {

 float x, y, speed;

 float angle = 0.0;

 Spin(float xpos, float ypos, float s) {

 x = xpos;

 y = ypos;

 speed = s;

 }

 void update() {

 angle += speed;

 }

}

The SpinArm class inherits elements from Spin and draws a line using the superclass’s
data. The constructor for SpinArm simply calls the constructor of the superclass. The
display() function uses the inherited x, y, angle, and speed fi elds to draw a rotating
line. Notice that the declarations for these fi elds are not repeated in the subclass because
they are accessible to the subclass.
 In the SpinArm constructor, super() is used to call the constructor of the Spin
superclass. If super() with parameters is not used in the constructor of a subclass, a line
calling super() with no parameters will be inserted behind the scenes. For this reason,
any class meant to be extended will usually require a version of its constructor with no
parameters, except in cases like this example where all subclasses call super() explicitly.

48-04

Reas_08_395-518.indd Sec5:456Reas_08_395-518.indd Sec5:456 5/23/07 5:00:00 PM5/23/07 5:00:00 PM

457 Structure 5: Objects II

class SpinArm extends Spin {

 SpinArm(float x, float y, float s) {

 super(x, y, s);

 }

 void display() {

 strokeWeight(1);

 stroke(0);

 pushMatrix();

 translate(x, y);

 angle += speed;

 rotate(angle);

 line(0, 0, 100, 0);

 popMatrix();

 }

}

The SpinSpots class also inherits the elements of Spin. Like the SpinArm class, it
uses its superclass’s fi elds and constructor, but it builds even further on Spin by adding
another fi eld. The dim fi eld was added to give the option to change the size of the circles.
Notice that this fi eld is declared at the top of the class, assigned in the constructor, and
accessed in the display() method to set the size of the circles.

class SpinSpots extends Spin {

 float dim;

 SpinSpots(float x, float y, float s, float d) {

 super(x, y, s);

 dim = d;

 }

 void display() {

 noStroke();

 pushMatrix();

 translate(x, y);

 angle += speed;

 rotate(angle);

 ellipse(-dim/2, 0, dim, dim);

 ellipse(dim/2, 0, dim, dim);

 popMatrix();

 }

}

48-05

48-06

Reas_08_395-518.indd Sec5:457Reas_08_395-518.indd Sec5:457 5/23/07 5:00:01 PM5/23/07 5:00:01 PM

458 Structure 5: Objects II

The process of creating objects from a subclass is identical to that of creating objects
from a normal class. The class is the data type, and object variables of this type are
declared, created, and accessed with the dot operator. In the following program, one
SpinSpot object and one SpinArm object are declared and created. Their update()
methods are used to increment the angle and draw to the screen. The class defi nitions
for Spin, SpinSpots, and SpinArm must be included in the same page or put in
separate tabs within the same sketch.

 // Requires the Spin, SpinSpots, and SpinArm class

 SpinSpots spots;

 SpinArm arm;

 void setup() {

 size(100, 100);

 smooth();

 arm = new SpinArm(width/2, height/2, 0.01);

 spots = new SpinSpots(width/2, height/2, -0.02, 33.0);

 }

 void draw() {

 background(204);

 arm.update();

 arm.display();

 spots.update();

 spots.display();

 }

The next example extends the Button class (p. 439) introduced in Input 7. The extended
class allows the cursor to move the button to different positions on the screen. This is
one of the primary actions of most computer interfaces. The DragButton class inherits
the behavior of responding to mouse events and extends this with the ability to move
when it is clicked and dragged by the mouse. This subclass uses the existing update()
and display() methods, augments the press() method, and adds a drag() method
to update its position when the mouse is dragged.

class DragButton extends Button {

 int xoff, yoff;

 DragButton(int x, int y, int s, color bv, color ov, color pv) {

 super(x, y, s, bv, ov, pv);

 }

 void press(int mx, int my) {

48-07

48-08

Reas_08_395-518.indd Sec5:458Reas_08_395-518.indd Sec5:458 5/23/07 5:00:01 PM5/23/07 5:00:01 PM

459 Structure 5: Objects II

 super.press();

 xoff = mx - x;

 yoff = my - y;

 }

 void drag(int mx, int my) {

 if (press == true) {

 x = mx - xoff;

 y = my - yoff;

 }

 }

}

The following example shows this new DragButton class embedded into a program.
Its methods are run from the mouse event functions to register the status of the mouse
with the icon object.

 // Requires DragButton and Button classes

 DragButton icon;

 void setup() {

 size(100, 100);

 smooth();

 color gray = color(204);

 color white = color(255);

 color black = color(0);

 icon = new DragButton(21, 42, 50, gray, white, black);

 }

 void draw() {

 background(204);

 icon.update(mouseX, mouseY);

 icon.display();

 }

 void mousePressed() { icon.press(mouseX, mouseY); }

 void mouseReleased() { icon.release(); }

 void mouseDragged() { icon.drag(mouseX, mouseY); }

The DragButton class can be extended further to allow an image to be loaded and
displayed as the icon. This class is very similar to DragButton but adds a fi eld for the
image and completely overrides the display() method to draw an outline around the
image. This action provides visual feedback when the cursor is over the icon and when

48-08
cont.

48-09

Reas_08_395-518.indd Sec5:459Reas_08_395-518.indd Sec5:459 5/23/07 5:00:01 PM5/23/07 5:00:01 PM

460 Structure 5: Objects II

the mouse is over the icon and pressed. Try integrating this new DragImage class into
the previous example.

class DragImage extends DragButton {

 PImage img;

 DragImage(int x, int y, int d, String s) {

 super(x, y, d, color(204), color(255), color(0));

 img = loadImage(s);

 }

 // Override the display() from Button

 void display() {

 if (press == true) {

 stroke(pressGray);

 } else if (over == true) {

 stroke(overGray);

 } else {

 stroke(baseGray);

 }

 noFill();

 rect(x-1, y-1, size+1, size+1);

 image(img, x, y, size, size);

 }

}

While modular programming is an important technique, it can be too much of a good
thing. Be careful to not abstract your code to a point where it becomes cumbersome. In
the example above, the description of this simple button behavior with three classes
is not practical. It was created this way to demonstrate key concepts of object-oriented
programming, but could (and probably should) be simplifi ed to one or two classes.

 Exercises
1. Write another constructor for the Spot class and use it within a variation
 of code 48-01.
2. Create your own composite class from two previously existing classes.
3. Create a unique subclass from the Button class.

48-10

Reas_08_395-518.indd Sec5:460Reas_08_395-518.indd Sec5:460 5/23/07 5:00:02 PM5/23/07 5:00:02 PM

461

Simulate 1: Biology
This unit discusses the concept of software simulation and the topics of cellular automata
and autonomous agents.

Simulation is used within physics, economics, the social sciences, and other fi elds to gain
insight into the complicated systems that comprise our world. Software simulations
employ the most powerful computers to model aspects of the world such as weather and
traffi c patterns. A tremendous amount of intellectual energy in the fi eld of computer
graphics has been dedicated to accurate simulation of lighting, textures, and the
movement of physical materials such as cloth and hair. An entire genre of computer
games exists that simulate city planning, military campaigns, and even everyday life.
Computers constitute a powerful medium for simulating the processes of the world, and
increasing computer speeds offer more sophisticated possibilities.
 Within the arts, new technologies have often been used to represent and simulate
nature. In ancient Greece, pneumatics animated sculptures. In the eighteenth century,
precise gears provided the technical infrastructure for lifelike sculptures such as
Vaucanson’s Duck, which could “open its wings and fl ap them, while making a perfectly
natural noise as if it were about to fl y away.”1 In our contemporary world, computers and
precision motors enable dancing robots and realistic children’s toys that speak and move.
One of the most fascinating simulations in recent art history is Wim Delvoye’s Cloaca
machine, which chemically and physically simulates the human digestive system.

Cellular automata

A cellular automaton (CA) is a self-operating system comprised of a grid of cells and
rules stating how each cell behaves in relation to its neighbor. CAs were fi rst considered
by John von Neumann in the 1940s; they became well known in the 1970s after the
publication of John Conway’s Game of Life CA in a Scientifi c American article by Martin
Gardner. CAs are intriguing because of their apparent simplicity in relation to the
unexpected results they produce.
 Steven Wolfram made important innovations in CA research in the early 1980s.
Wolfram’s one-dimensional CAs, each consisting of a single line of cells with rules,
determine the value of each cell at each frame. The value of each cell is determined by
its own value and those of its two neighbors. For example, if the current cell is white
and its neighbors are black, it may also become black in the next frame. A set of rules
determines when cells change their values. Since there are three cells with only two
possible values (black or white), there are eight possible rules. In the diagram below, the
three rectangles on the top are the three neighboring cells. The cell in the top middle
is the current cell being evaluated, and those on the left and right are its neighbors.

Reas_08_395-518.indd Sec5:461Reas_08_395-518.indd Sec5:461 5/23/07 5:00:02 PM5/23/07 5:00:02 PM

462 Simulate 1: Biology

Depending on the current cell’s value and that of its neighbors, the cell beneath the
current cell is changed to black or white. The rules give rise to a number of possible
variations and produce diverse results. One potential set of rules follows:

The CA starts with an initial state and is then updated to the next frame based on
its rules. Each cell in the row is evaluated in relation to its two adjacent cells. Visual
patterns begin to emerge from the minimal confi guration of all white cells with one
black cell in the middle:

The new one-dimensional image at each frame refers only to the previous frame.
Because each frame is one-dimensional, it can be combined with the others to create a
two-dimensional image, revealing the history of each frame of the CA within a single
image that can be read from top to bottom:

The rules for this one-dimensional CA can be encoded as an array of 0s and 1s. Using the
image at the top of this page as reference, if the confi guration in the top row stays the
same, the resulting bottom row can be defi ned as an array of 8 values, each a 1 or 0. This
confi guration can be coded as 0, 0, 0, 1, 1, 1, 1, 0 where 0 is white and 1 is black. Each of the
other 256 possible confi gurations can be coded as a sequence of 8 numbers. Changing
these numbers in the following example of a one-dimensional CA creates different
images. The images on page 464 present some of the possible rules and their results.

int[] rules = { 0, 0, 0, 1, 1, 1, 1, 0 };

int gen = 1; // Generation

color on = color(255);

color off = color(0);

void setup() {

 size(101, 101);

 frameRate(8); // Slow down to 8 frames each second

Condition

Result

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

49-01

Reas_08_395-518.indd Sec5:462Reas_08_395-518.indd Sec5:462 5/23/07 5:00:03 PM5/23/07 5:00:03 PM

463 Simulate 1: Biology

 background(0);

 set(width/2, 0, on); // Set the top middle pixel to white

}

void draw() {

 // For each pixel, determine new state by examining current

 // state and neighbor states and ignore edges that have only

 // one neighbor

 for (int i = 1; i < width-1; i++) {

 int left = get(i-1, gen-1); // Left neighbor

 int me = get(i, gen-1); // Current pixel

 int right = get(i+1, gen-1); // Right neighbor

 if (rules(left, me, right) == 1) {

 set(i, gen, on);

 }

 }

 gen++; // Increment the generation by 1

 if (gen > height-1) { // If reached the bottom of the screen,

 noLoop(); // stop the program

 }

}

// Implement the rules

int rules(color a, color b, color c) {

 if ((a == on) && (b == on) && (c == on)) { return rules[0]; }

 if ((a == on) && (b == on) && (c == off)) { return rules[1]; }

 if ((a == on) && (b == off) && (c == on)) { return rules[2]; }

 if ((a == on) && (b == off) && (c == off)) { return rules[3]; }

 if ((a == off) && (b == on) && (c == on)) { return rules[4]; }

 if ((a == off) && (b == on) && (c == off)) { return rules[5]; }

 if ((a == off) && (b == off) && (c == on)) { return rules[6]; }

 if ((a == off) && (b == off) && (c == off)) { return rules[7]; }

 return 0;

}

John Conway’s Game of Life predates Wolfram’s discoveries by more than a decade.
Gardner’s article in Scientifi c American describes Conway’s invention as “a fantastic
solitaire pastime he calls ‘life.’ Because of its analogies with the rise, fall and alternations
of a society of living organisms, it belongs to a growing class of what are called
‘simulation games’—games that resemble real-life processes.”2 Life was not originally
run with a computer, but early programmers rapidly became fascinated with it, and
working with the Game of Life in software enabled new insight into the patterns that
emerge as it runs.

49-01
cont.

Reas_08_395-518.indd Sec5:463Reas_08_395-518.indd Sec5:463 5/23/07 5:00:03 PM5/23/07 5:00:03 PM

Wolfram’s one-dimensional cellular automata
Use the numbers below each image as the data for the rules[] array in code
49-01 to watch each pattern generate.

0,0,0,1,1,1,1,0

0,0,1,1,0,1,1,0 0,1,0,1,1,0,1,0 1,0,1,1,0,1,1,0

0,1,0,0,1,0,0,1 0,1,0,0,1,1,0,1

0,0,1,0,1,0,0,1 0,0,1,0,1,1,1,1 0,0,1,1,1,0,1,1

0,0,1,0,1,1,0,1 1,0,1,0,0,1,0,1 0,1,1,0,1,0,1,1

0,1,0,0,1,1,1,0 0,1,0,1,0,1,0,1 1,0,0,1,1,0,1,1

Reas_08_395-518.indd Sec5:464Reas_08_395-518.indd Sec5:464 5/23/07 5:00:04 PM5/23/07 5:00:04 PM

465 Simulate 1: Biology

 The Game of Life is a two-dimensional CA in which the rules for determining the
value of each cell are defi ned by the neighboring cells in two dimensions. Each cell
has eight neighboring cells, each of which can be named in relation to the directional
orientation of the cell—north, northeast, east, southeast, south, southwest, west,
northwest:

The rules for turning a cell on (alive) and off (dead) relate to the number of neighboring cells:

 1. Death from isolation: Each live cell with less than two live neighbors dies in the next generation

 2. Death from overpopulation: Each cell with four or more live neighbors dies in the next generation

 3. Birth: Each dead cell with exactly three live neighbors comes to life in the next generation

 4. Survival: Each live cell with two live neighbors survives in the next generation

Applying these rules to a cell reveals how different confi gurations translate into
survival, death, and birth. In the image below, the cell being currently evaluated is in the
center and is black if alive; neighbor cells are gray if alive and white if empty:

Different spatial confi gurations of cells create repeating patterns with each new
generation. Some shapes are stable (do not change at each frame), some repeat, and
some move across the screen:

Death DeathDeath Death Death Birth Birth Survive Survive

NE

E

SE

N

S

NW

W

SW

Stable Configurations Periodic Configuration

Moving object (this configuration moves one unit right and down over three generations)

Reas_08_395-518.indd Sec5:465Reas_08_395-518.indd Sec5:465 5/23/07 5:00:04 PM5/23/07 5:00:04 PM

466 Simulate 1: Biology

Shapes called gliders are arrangements of cells that move across the grid, go through
frames of physical distortion, and then arrive back at the same shape shifted by one grid
unit. Repeating this pattern propels them across the grid.
 The current state for the Game of Life is stored in a two-dimensional array of
integers. A second grid hosts the next generation. At the end of each frame, the newly
created generation becomes the old generation, and the process repeats. Cells are
marked alive with the number 1 and and dead with 0. This makes it simple to count
the number of neighbors by adding the values of neighboring cells. The neighbors()
function looks at neighbors and counts the values of the adjacent cells. These numbers
are used to set white or black pixels within draw().

int[][] grid, futureGrid;

void setup() {

 size(540, 100);

 frameRate(8);

 grid = new int[width][height];

 futureGrid = new int[width][height];

 float density = 0.3 * width * height;

 for (int i = 0; i < density; i++) {

 grid[int(random(width))][int(random(height))] = 1;

 }

 background(0);

}

void draw() {

 for (int x = 1; x < width-1; x++) {

 for (int y = 1; y < height-1; y++) {

 // Check the number of neighbors (adjacent cells)

 int nb = neighbors(x, y);

 if ((grid[x][y] == 1) && (nb < 2)) {

 futureGrid[x][y] = 0; // Isolation death

 set(x, y, color(0));

 } else if ((grid[x][y] == 1) && (nb > 3)) {

 futureGrid[x][y] = 0; // Overpopulation death

 set(x, y, color(0));

 } else if ((grid[x][y] == 0) && (nb == 3)) {

 futureGrid[x][y] = 1; // Birth

 set(x, y, color(255));

 } else {

 futureGrid[x][y] = grid[x][y]; // Survive

 }

 }

 }

49-02

Reas_08_395-518.indd Sec5:466Reas_08_395-518.indd Sec5:466 5/23/07 5:00:05 PM5/23/07 5:00:05 PM

467 Simulate 1: Biology

 // Swap current and future grids

 int[][] temp = grid;

 grid = futureGrid;

 futureGrid = temp;

}

// Count the number of adjacent cells 'on'

int neighbors(int x, int y) {

 return grid[x][y-1] + // North

 grid[x+1][y-1] + // Northeast

 grid[x+1][y] + // East

 grid[x+1][y+1] + // Souteast

 grid[x][y+1] + // South

 grid[x-1][y+1] + // Southwest

 grid[x-1][y] + // West

 grid[x-1][y-1]; // Northwest

}

Changing the neighbors() function in code 49-02 to utilize the modulo operator (%)
makes it possible for the cells to wrap from one side of the screen to the other. The for
structures inside draw() also need to change to loop from 0 to width and 0 to height.

int neighbors(int x, int y) {

 int north = (y + height-1) % height;

 int south = (y + 1) % height;

 int east = (x + 1) % width;

 int west = (x + width-1) % width;

 return grid[x][north] + // North

 grid[east][north] + // Northeast

 grid[east][y] + // East

 grid[east][south] + // Southeast

 grid[x][south] + // South

 grid[west][south] + // Southwest

 grid[west][y] + // West

 grid[west][north]; // Northwest

}

Research into cellular automata did not stop with Conway and Wolfram. Others have
developed continuous CAs that are not limited to on/off states. Probabilistic CAs, for
example, can partially or totally determine their rules through probabilities rather
than absolutes. CAs possess the ability to simulate lifelike phenomena in spite of their
basic format. For example, the patterns created with a one-dimensional CA can mimic
patterns found in the shells of organisms such as cone snails. Other CAs produce images
similar to those created by biochemical reactions.

49-02
cont.

49-03

Reas_08_395-518.indd Sec5:467Reas_08_395-518.indd Sec5:467 5/23/07 5:00:06 PM5/23/07 5:00:06 PM

468 Simulate 1: Biology

frameCount = 1

frameCount = 10

frameCount = 20

frameCount = 30

frameCount = 40

Conway's Game of Life
Using a few simple rules defi ned in code 49-02, the color relations between adjacent pixels
create a dynamic ecosystem.

Reas_08_395-518.indd Sec5:468Reas_08_395-518.indd Sec5:468 5/23/07 5:00:06 PM5/23/07 5:00:06 PM

469 Simulate 1: Biology

Autonomous agents

An autonomous agent is a system that senses and acts on its environment according
to its own agenda. People, spiders, and plants are all autonomous agents. Each agent
uses input from the environment as a basis for its actions. Each pursues it own goals,
either consciously or through refl ex. In his book The Computational Beauty of Nature,
Gary William Flake defi nes an autonomous agent as “a unit that interacts with its
environment (which probably consists of other agents) but acts independently from
all other agents in that it does not take commands from some seen or unseen leader.”3
Agents aren’t a part of a coordinated global plan, but structure does emerge from
their interactions with other agents and the environment. The seemingly coordinated
behavior of an ant colony and the order within a school of fi sh illustrate structured
behavior emerging from the collective actions of individual agents.
 Like the examples of cellular automata presented above, autonomous agents can
also exist in a grid world. Chris Langton’s ant is a fascinating example. The ant can face
only one of four directions: north, south, east, or west. Like cellular automata, the ant
moves one frame at a time, behaving according to the following rules:

 1. Move one frame forward

 2. If on a white pixel, change the pixel to black and turn 90 degrees right

 3. If on a black pixel, change the pixel to white and turn 90 degrees left

As the ant moves through the environment, it returns to the same pixel many times
and each visit reverses the color of the pixel. Therefore, the future position of the ant
is determined by its past movements. The remarkable thing about this ant is that with
any starting orientation (north, south, east, or west), a sequence of actions that produce
a straight path always emerges. From the seemingly chaotic mess upon which the ant
embarks, an ordered path always develops. This program is not intended as a simulation
of a real insect. It’s an example of a software agent with extremely simple rules behaving
in an entirely unexpected but ultimately predictable and structured manner. The
instruction to eventually construct a straight path is never given, but it emerges through
the rules of the ant in relation to its environment. The environment contains the
memory of the ant’s previous frames, which the ant uses to determine its next move.
 In this example program, the ant’s world wraps around from each edge of the
screen to the opposite edge. Wrapping around to the other side of the screen, the ant is
disrupted by its previous path. The order eventually emerges and the ant begins a new
periodic sequence producing linear movement. In the code, directions are expressed as
numbers. South is 0, east is 1, north is 2, and west is 3. At each frame, the ant moves one
pixel forward based on its current orientation and then checks the color of the pixel at its
location. It turns right by subtracting 1 and turns left by adding 1. Run the code to see the
sequence change through time.

Reas_08_395-518.indd Sec5:469Reas_08_395-518.indd Sec5:469 5/23/07 5:00:06 PM5/23/07 5:00:06 PM

470 Simulate 1: Biology

 int SOUTH = 0; // Direction numbers with names

 int EAST = 1; // so that the code self-documents

 int NORTH = 2;

 int WEST = 3;

 int direction = NORTH; // Current direction of the ant

 int x, y; // Ant's current position

 color ON = color(255); // Color for an 'on' pixel

 color OFF = color(0); // Color for an 'off' pixel

 void setup() {

 size(100, 100);

 x = width/2;

 y = height/2;

 background(0);

 }

 void draw() {

 if (direction == SOUTH) {

 y++;

 if (y == height) {

 y = 0;

 }

 } else if (direction == EAST) {

 x++;

 if (x == width) {

 x = 0;

 }

 } else if (direction == NORTH) {

 if (y == 0) {

 y = height-1;

 } else {

 y--;

 }

 } else if (direction == WEST) {

 if (x == 0) {

 x = width-1;

 } else {

 x--;

 }

 }

 if (get(x, y) == ON) {

 set(x, y, OFF);

49-04

Reas_08_395-518.indd Sec5:470Reas_08_395-518.indd Sec5:470 5/23/07 5:00:07 PM5/23/07 5:00:07 PM

471 Simulate 1: Biology

 if (direction == SOUTH) {

 direction = WEST;

 } else {

 direction--;

 }

 } else {

 set(x, y, ON);

 if (direction == WEST) {

 direction = SOUTH;

 } else {

 direction++; // Rotate direction

 }

 }

 }

Mitchel Resnick’s termite is another example that demonstrates order emerging from
extremely simple rules. Like Langton’s ant, this termite is not intended as a simulation of
a real organism, but it exhibits remarkable behavior. The termite exists on a grid where a
white unit represents open space and black represents a wood chip. The termite wanders
through the space, and when it fi nds a wood chip it picks it up and wanders until it
runs into another wood chip. Finding a wood chip causes it to drop its current load, turn
around, and continue to wander. Over time, ordered piles emerge as a result of its effort.
 In the code that creates the termite and its environment, the angles[] array
contains the possible directions in which the termite can move. At each frame the
termite moves one space on the grid. The angles specify which neighboring pixel it can
move into:

When space in front of the termite is open, it moves to the next space in the current
direction or the next space in an adjacent direction. For example, if the current direction
is south, it will move to the next space in the south, southeast, or southwest direction. If
the current direction is northeast, it will move to the next space in the northeast, east,
or north direction. When the termite does not have space in front and it’s carrying a
wood chip, it will reverse its direction and move one space in the new direction. When it
does not have a space in front and it’s not carrying a wood chip, it moves into the space
occupied with the wood chip and picks it up.

NE

E

SE

N

S

NW

W

SW

1,-1

1,0

1,1

0,-1

0,1

-1,-1

-1,0

-1,1

49-04
cont.

Reas_08_395-518.indd Sec5:471Reas_08_395-518.indd Sec5:471 5/23/07 5:00:07 PM5/23/07 5:00:07 PM

472 Simulate 1: Biology

 int[][] angles = {{ 0, 1 }, { 1, 1 }, { 1, 0 }, { 1,-1 },

 { 0,-1 }, {-1,-1 }, {-1, 0 }, {-1, 1 }};

 int numAngles = angles.length;

 int x, y, nx, ny;

 int dir = 0;

 color black = color(0);

 color white = color(255);

 void setup() {

 size(100, 100);

 background(255);

 x = width/2;

 nx = x;

 y = height/2;

 ny = y;

 float woodDensity = width * height * 0.5;

 for (int i = 0; i < woodDensity; i++) {

 int rx = int(random(width));

 int ry = int(random(height));

 set(rx, ry, black);

 }

 }

 void draw() {

 int rand = int(abs(random(-1, 2)));

 dir = (dir + rand + numAngles) % numAngles;

 nx = (nx + angles[dir][0] + width) % width;

 ny = (ny + angles[dir][1] + height) % height;

 if ((get(x,y) == black) && (get(nx,ny) == white)) {

 // Move the chip one space

 set(x, y, white);

 set(nx, ny, black);

 x = nx;

 y = ny;

 } else if ((get(x,y) == black) && (get(nx,ny) == black)) {

 // Move in the opposite direction

 dir = (dir + (numAngles/2)) % numAngles;

 x = (x + angles[dir][0] + width) % width;

 y = (y + angles[dir][1] + height) % height;

 } else {

 // Not carrying

 x = nx;

49-05

Reas_08_395-518.indd Sec5:472Reas_08_395-518.indd Sec5:472 5/23/07 5:00:08 PM5/23/07 5:00:08 PM

473 Simulate 1: Biology

 y = ny;

 }

 nx = x; // Save the current position

 ny = y;

 }

Other simulations of autonomous agents have been created without restrictive grids.
These agents are allowed to move freely through their environment. Because they use
fl oating-point numbers for position, they have more potential variations in location
and orientation than the gridded CAs. Two of the best-known autonomous agents are
Valentino Braitenberg’s Vehicles and Craig Reynolds’s Boids.
 The neuroanatomist Valentino Braitenberg published Vehicles: Experiments in
Synthetic Psychology in 1984. In this small, delightful book he presents conceptual
schematics for fourteen unique synthetic creatures he calls Vehicles. Vehicle 1 has one
sensor and one motor that are connected so that a strong stimulus will make the motor
turn quickly and a weak stimulus will make the motor turn slowly. If the sensor registers
nothing, the vehicle will not move. Vehicle 2 has two sensors and two motors. If they
are correlated the same way as in Vehicle 1 they create Vehicle 2a and if they are crossed
they create Vehicle 2b. If the sensor is attracted to light, for example, and there is a
light in the room, Vehicle 2a will turn away from the light and Vehicle 2b will approach
the light. Braitenberg characterizes these machines as correspondingly cowardly and
aggressive to feature the anthropomorphic qualities we assign to moving objects:

Vehicle 3a and 3b are identical to Vehicle 2a and 2b but the correlation between the
sensor and the motor is reversed—a weak sensor stimulus will cause the motor to turn
quickly and a strong sensor stimulus causes the motors to stop. Vehicle 3a moves toward
the light and stops when it gets too close, and 3b approaches the light but turns and
leaves when it gets too close. If more than one stimulus is placed in the environment,
these simple confi gurations can yield intricate paths of movement as they negotiate
their attention between the competing stimuli.
 In 1986, Craig Reynolds developed the Boids software model to simulate coordinated
animal motion like that of fl ocks of birds and schools of fi sh. To refute the common
conception that these groups of creatures navigate by following a leader, Reynolds
presented three simple behaviors that simulated a realistic fl ocking behavior without

Vehicle 2a Vehicle 2b Vehicle 2a and 2b movement in relation to a stimulus

49-05
cont.

Reas_08_395-518.indd Sec5:473Reas_08_395-518.indd Sec5:473 5/23/07 5:00:08 PM5/23/07 5:00:08 PM

474 Simulate 1: Biology

Braitenberg’s Vehicles
Five hundred vehicles move through the environment. Each gray value represents a different category of vehicles.
The vehicles in each category share the same behavior (follow the same rules), so over time they form groups.

Reas_08_395-518.indd Sec5:474Reas_08_395-518.indd Sec5:474 5/23/07 5:00:09 PM5/23/07 5:00:09 PM

475 Simulate 1: Biology

the need for a hierarchy. These behaviors defi ne how each creature behaves in relation to
its neighbors:

 Separation: Alignment: Cohesion:
 Steer to avoid crowding Steer toward the average Steer to move toward the average
 local fl ockmates heading of local fl ockmates position of local fl ockmates

The fl ocking rules provide an evocative example of emergence, the phenomenon of a
global behavior originating from the interactions of simple, local behaviors. The fl ocking
behavior of the group is not overtly programmed, but emerges through the interaction
of each software unit based on the simple rules. The Pond example on page 497 is an
implementation of Boids.
 The autonomous agent simulations presented here were at the cutting edge of
research over twenty years ago. They have since become some of the most popular
examples for presenting the ideas of agency and emergence. The ideas from research
in autonomous agents has been extended into many disciplines within art and science
including sculpture, game design, and robotics.

 Exercises
1. Increase the size of the grid for Wolfram’s one-dimensional CA. There are 256 possible
 rule sets for this one program and only 13 are presented in this unit. Try some of the
 other options. Which do you fi nd the most interesting? Can the diverse results be put
 into categories?
2. Increase the size of the grid for Conway’s Game of Life. Can you fi nd other stable,
 periodic, or moving confi gurations?
3. Extend the termite code to have more than one termite moving chips of wood.

 Notes

1. Alfred Chapuis and Edmond Droz, Automata: A Historical and Technological Study, translated by Alec Reid

 (Editions du Griffon, 1958).

2. Martin Gardner, “Mathematical Games: The Fantastic Combinations of John Conway’s New Solitaire Game

 ‘Life,’” Scientifi c American 223 (October 1970), pp. 120 - 123.

3. Gary William Flake, The Computational Beauty of Nature (MIT Press, 1998), p. 261.

Reas_08_395-518.indd Sec5:475Reas_08_395-518.indd Sec5:475 5/23/07 5:00:09 PM5/23/07 5:00:09 PM

Reas_08_395-518.indd Sec5:476Reas_08_395-518.indd Sec5:476 5/23/07 5:00:10 PM5/23/07 5:00:10 PM

477

Simulate 2: Physics
This unit introduces physical simulations for particle systems and springs.

Physical simulation, a technique that creates relationships between software elements
and the rules of the physical world, helps people relate to what they see on screen. A long
list of technical papers and books have been written about this topic. Video game and
3D computer animation communities have devoted tremendous energy to simulating
aspects of the world such as the collision of solid objects and physical phenomena such
as fi re and water. Because a discussion of physical simulation could occupy an entire
book, this unit will only present some of the basic concepts. The domain of physical
simulation is introduced through terminology and presented as two fl exible simulation
techniques, for particle systems and springs.

Motion simulation

To simulate physical phenomena in software, a mathematical model is required.
Newtonian physics, developed circa 1687 by Isaac Newton, provides an adequate model
based on velocity, acceleration, and friction. These terms are introduced and explained in
sequence through the examples that follow.
 The fi rst example to generate motion (code 31-01, p. 279) uses a variable named
speed to create movement. At each frame of animation, the variable named y is
updated by the speed variable:

 y = y + speed

Using this code, the position of a circle set by the variable y is changed by the same
amount every frame. The code does not take into account other forces that might be
exerted on the circle. For example, the circle might have a large mass, or gravity may
apply a strong force, or it might be moving across a rough surface so that high friction
slows it down. These forces are omnipresent in the physical world, but they affect a
software simulation only if they are included as parts of the design. They need to be
calculated at each frame to exert their infl uence.
 Instead of relying solely on a variable representing speed to mimic realistic motion,
variables are created to store the velocity and acceleration. The velocity changes the
position of the element, and acceleration changes the velocity.
 Velocity defi nes the speed and direction as one number. For example, a velocity
of -5 moves the position in a negative direction at a speed of 5. A velocity of 12 moves
the position in a positive direction at a speed of 12. Speed is defi ned as the magnitude
(absolute value) of the velocity.

Reas_08_395-518.indd Sec5:477Reas_08_395-518.indd Sec5:477 5/23/07 5:00:10 PM5/23/07 5:00:10 PM

478 Simulate 2: Physics

Acceleration defi nes the rate of change in the velocity. An acceleration value greater
than zero means the velocity will increase each frame, and an acceleration value
less than zero means the velocity will decrease each frame. Using the velocity and
acceleration values to control the position of a visual element causes it to change
direction and to increase or decrease its speed. The position of an object is updated with
two steps:

 velocity = velocity + acceleration

 y = y + velocity

The following example is similar to code 31-01, but uses velocity and acceleration
variables instead of a single speed variable. Because the acceleration value is 0.01, the
velocity increases, therefore moving the circle faster each frame.

 float y = 50.0;

 float radius = 15.0;

 float velocity = 0.0;

 float acceleration = 0.01;

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 ellipseMode(RADIUS);

 }

 void draw() {

 fill(0, 10);

 rect(0, 0, width, height);

 fill(255);

 ellipse(33, y, radius, radius);

 velocity += acceleration; // Increase the velocity

 y += velocity; // Update the position

 if (y > height+radius) { // If over the bottom edge,

 y = -radius; // move to the top

 }

 }

In the following example, the circle continually slows down until it eventually stops
and changes direction. This happens because the negative acceleration value gradually
decreases the velocity until it becomes negative.

50-01

Reas_08_395-518.indd Sec5:478Reas_08_395-518.indd Sec5:478 5/23/07 5:00:11 PM5/23/07 5:00:11 PM

479 Simulate 2: Physics

 float y = 50.0;

 float radius = 15.0;

 float velocity = 9.0;

 float acceleration = -0.05;

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 ellipseMode(RADIUS);

 }

 void draw() {

 fill(0, 12);

 rect(0, 0, width, height);

 fill(255);

 ellipse(33, y, radius, radius);

 velocity += acceleration;

 y += velocity;

 if (y > height+radius) {

 y = -radius;

 }

 }

Friction is a force that impacts velocity. The speed of a book pushed across a table is
affected by friction between the two surfaces. A paper airplane is affected by the friction
of the air. In code, friction is a number between 0.0 and 1.0 that decreases the velocity.
In the next example, the friction value is multiplied by the velocity value each frame to
gradually decrease the distance traveled by the circle each frame. Change the value of
the friction variable in the code below to see its effect on the ball’s movement.

 float y = 50.0;

 float radius = 15.0;

 float velocity = 8.0;

 float friction = 0.98;

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 ellipseMode(RADIUS);

 }

 void draw() {

50-02

50-03

Reas_08_395-518.indd Sec5:479Reas_08_395-518.indd Sec5:479 5/23/07 5:00:11 PM5/23/07 5:00:11 PM

480 Simulate 2: Physics

 fill(0, 12);

 rect(0, 0, width, height);

 fill(255);

 ellipse(33, y, radius, radius);

 velocity *= friction;

 y += velocity;

 if (y > height+radius) {

 y = -radius;

 }

 }

The direction and speed components of the velocity can be altered independently.
Reversing the direction of the velocity simulates bouncing. The following example
inverts the velocity when the edge of the circle touches the bottom of the display
window. The acceleration of 0.1 simulates gravity, and the friction gradually reduces
the velocity to stop the bouncing eventually.

 float x = 33;

 float y = 5;

 float velocity = 0.0;

 float radius = 15.0;

 float friction = 0.99;

 float acceleration = 0.3;

 void setup() {

 size(100, 100);

 smooth();

 noStroke();

 ellipseMode(RADIUS);

 }

 void draw() {

 fill(0, 12);

 rect(0, 0, width, height);

 fill(255);

 velocity += acceleration;

 velocity *= friction;

 y += velocity;

 if (y > (height-radius)) {

 y = height - radius;

 velocity = -velocity;

 }

 ellipse(x, y, radius, radius);

 }

50-03
cont.

50-04

Reas_08_395-518.indd Sec5:480Reas_08_395-518.indd Sec5:480 5/23/07 5:00:12 PM5/23/07 5:00:12 PM

481 Simulate 2: Physics

Particle systems

A particle system, an array of particles that responds to the environment or to other
particles, serves to simulate and render phenomena such as fi re, smoke, and dust.
Hollywood fi lms and video game companies frequently employ particle systems to
create realistic explosions and water effects. Particles are affected by forces and are
typically used to simulate physical laws for generating motion.
 Writing a simple Particle class can help manage the complexity of a particle
system. The Particle class has fi elds for the radius and gravity and pairs of fi elds to
store the position and velocity. Gravity acts like the acceleration variable in previous
examples. The class methods update the position and draw the particle to the display
window. The parameters to the constructor set the initial position, velocity, and radius.

class Particle {

 float x, y; // The x- and y-coordinates

 float vx, vy; // The x- and y-velocities

 float radius; // Particle radius

 float gravity = 0.1;

 Particle(int xpos, int ypos, float velx, float vely, float r) {

 x = xpos;

 y = ypos;

 vx = velx;

 vy = vely;

 radius = r;

 }

 void update() {

 vy = vy + gravity;

 y += vy;

 x += vx;

 }

 void display() {

 ellipse(x, y, radius*2, radius*2);

 }

}

The following example shows how to use the Particle class. Here, as in most examples
that use objects, an object variable is declared outside of setup() and draw() and
created within setup(), and its methods are run within draw(). The example throws a
particle across the display window from the lower-left to the upper-right corner. After the
particle moves off the screen, its values continue to update but it can no longer be seen.

50-05

Reas_08_395-518.indd Sec5:481Reas_08_395-518.indd Sec5:481 5/23/07 5:00:12 PM5/23/07 5:00:12 PM

482 Simulate 2: Physics

 // Requires Particle class

 Particle p;

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 p = new Particle(0, height, 2.2, -4.2, 20.0);

 }

 void draw() {

 fill(0, 12);

 rect(0, 0, width, height);

 fill(255);

 p.update();

 p.display();

 }

The Particle class is very limited, but allows the extension and creation of more
applicable behavior. The GenParticle class extends the Particle class so the
particle returns to its origin after it moves outside the display window. This allows for
a continuous fl ow of particles with a fi xed number of objects. In the example below,
the two variables originX and originY store the coordinates of the origin, and the
regenerate() method repositions the particle when it is outside the display window
and resets its velocity.

class GenParticle extends Particle {

 float originX, originY;

 GenParticle(int xIn, int yIn, float vxIn, float vyIn,

 float r, float ox, float oy) {

 super(xIn, yIn, vxIn, vyIn, r);

 originX = ox;

 originY = oy;

 }

 void regenerate() {

 if ((x > width+radius) || (x < -radius) ||

 (y > height+radius) || (y < -radius)) {

 x = originX;

 y = originY;

 vx = random(-1.0, 1.0);

50-06

50-07

Reas_08_395-518.indd Sec5:482Reas_08_395-518.indd Sec5:482 5/23/07 5:00:12 PM5/23/07 5:00:12 PM

483 Simulate 2: Physics

 vy = random(-4.0, -2.0);

 }

 }

}

The GenParticle object is used the same way as a Particle object, but the
regenerate() method also needs to be run to ensure an endless supply of fl owing
particles. In the following example, 200 particles are created within an array and
individually modifi ed.

 // Requires Particle and GenParticle classes

 int numParticles = 200;

 GenParticle[] p = new GenParticle[numParticles];

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 for (int i = 0; i < p.length; i++) {

 float velX = random(-1, 1);

 float velY = -i;

 // Inputs: x, y, x-velocity, y-velocity,

 // radius, origin x, origin y

 p[i] = new GenParticle(width/2, height/2, velX, velY,

 5.0, width/2, height/2);

 }

 }

 void draw() {

 fill(0, 36);

 rect(0, 0, width, height);

 fill(255, 60);

 for (int i = 0; i < p.length; i++) {

 p[i].update();

 p[i].regenerate();

 p[i].display();

 }

 }

The LimitedParticle class extends the Particle class to change the direction of the
velocity when a particle hits the bottom of the display window. It also introduces friction
so the motion of each particle is reduced each frame.

50-08

50-07
cont.

Reas_08_395-518.indd Sec5:483Reas_08_395-518.indd Sec5:483 5/23/07 5:00:13 PM5/23/07 5:00:13 PM

484 Simulate 2: Physics

class LimitedParticle extends Particle {

 float friction = 0.99;

 LimitedParticle(int ix, int iy, float ivx, float ivy, float ir) {

 super(ix, iy, ivx, ivy, ir);

 }

 void update() {

 vy *= friction;

 vx *= friction;

 super.update();

 limit();

 }

 void limit() {

 if (y > height-radius) {

 vy = -vy;

 y = constrain(y, -height*height, height-radius);

 }

 if ((x < radius) || (x > width-radius)) {

 vx = -vx;

 x = constrain(x, radius, width-radius);

 }

 }

}

The LimitedParticle class is used in the following examples to create a screen full of
small bouncing elements. Each starts with a different velocity, but they all slow down
and eventually come to rest at the bottom of the screen.

 // Requires Particle and LimitedParticle classes

 int num = 80;

 LimitedParticle[] p = new LimitedParticle[num];

 float radius = 1.2;

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 for (int i = 0; i < p.length; i++) {

 float velX = random(-2, 2);

 float velY = -i;

 // Inputs: x, y, x-velocity, y-velocity, radius

50-09

50-10

Reas_08_395-518.indd Sec5:484Reas_08_395-518.indd Sec5:484 5/23/07 5:00:13 PM5/23/07 5:00:13 PM

485 Simulate 2: Physics

 p[i] = new LimitedParticle(width/2, height/2,

 velX, velY, 2.2);

 }

 }

 void draw() {

 fill(0, 24);

 rect(0, 0, width, height);

 fill(255);

 for (int i = 0; i < p.length; i++) {

 p[i].update();

 p[i].display();

 }

 }

The particles in the previous examples are drawn as circles to make the code simple
to read. Particles can, however, be drawn as any shape. The following example makes
another class from the original Particle class. This ArrowParticle class uses
the fi elds and methods from its superclass to control the velocity and position of the
particle, but it adds code to calculate an angle and to draw an arrow shape. The atan2()
function is used to determine the current angle of the arrow. This value is used to set the
rotation value in line 11. The arrow is positioned horizontally, but the rotation changes it
to point up or down.

class ArrowParticle extends Particle {

 float angle = 0.0;

 float shaftLength = 20.0;

 ArrowParticle(int ix, int iy, float ivx, float ivy, float ir) {

 super(ix, iy, ivx, ivy, ir);

 }

 void update() {

 super.update();

 angle = atan2(vy, vx);

 }

 void display() {

 stroke(255);

 pushMatrix();

 translate(x, y);

 rotate(angle);

 scale(shaftLength);

 strokeWeight(1.0 / shaftLength);

50-10
cont.

50-11

Reas_08_395-518.indd Sec5:485Reas_08_395-518.indd Sec5:485 5/23/07 5:00:14 PM5/23/07 5:00:14 PM

486 Simulate 2: Physics

 line(0, 0, 1, 0);

 line(1, 0, 0.7, -0.3);

 line(1, 0, 0.7, 0.3);

 popMatrix();

 }

}

Each arrow is assigned a random value within a range. The x-velocity ranges from 1.0 to
8.0 and the y-velocity from -5 to -1. At each frame, the force of gravity is applied to each
particle and the angle of each arrow slowly turns toward the ground until it eventually
disappears off the bottom of the screen.

// Requires Particle, ArrowParticle classes

int num = 320;

ArrowParticle[] p = new ArrowParticle[num];

float radius = 1.2;

void setup() {

 size(600, 100);

 smooth();

 for (int i = 0; i < p.length; i++) {

 float velX = random(1, 8);

 float velY = random(-5, -1);

 // Parameters: x, y, x-velocity, y-velocity, radius

 p[i] = new ArrowParticle(0, height/2, velX, velY, 1.2);

 }

}

void draw() {

 background(0);

 for (int i = 0; i < p.length; i++) {

 p[i].update();

 p[i].display();

 }

}

50-11
cont.

50-12

Reas_08_395-518.indd Sec5:486Reas_08_395-518.indd Sec5:486 5/23/07 5:00:14 PM5/23/07 5:00:14 PM

487 Simulate 2: Physics

Springs

A spring is an elastic device, usually a coil of metal wire, that returns to its original shape
after it has been extended or compressed. Software simulations of springs approximate
the behavior of their physical analogs. The physics of a spring is simple and versatile.
Like gravity, a spring is represented as a force. The force is calculated based on how “stiff”
the spring is and how far it is stretched. The force of a spring is inversely proportional
to how far it is stretched. This is known as Hooke’s Law. The equation for calculating the
force of a spring is:

 f = -kx

In this equation, k is the spring stiffness constant, and the variable x is how far the
spring is stretched. The inverse of k is multiplied by x to yield the force. The value of k is
always between 0.0 and 1.0. This equation can be rewritten for clarity:

 springForce = -stiffness * stretch

The stretch variable is the difference between the position and the target position:

 springForce = -stiffness * (position - restPosition)

The equation can be simplifi ed slightly to remove the negation:

 springForce = stiffness * (restPosition - position)

A damping (frictional) force can be added to resist the motion. The value of the damping
variable is always between 0.0 (so much friction that there is no movement) and 1.0 (no
friction). The velocity of the spring is calculated by adding the spring force to the current
velocity and then multiplying by the damping constant:

 velocity = friction * (velocity + springForce)

These equations enable the writing of a simple spring simulation. The following
example uses them to set the position of a rectangle. The targetY variable is the resting
position and is the y variable is the current position of the spring. Try changing the
values for the stiffness and friction variables to see how they affect the behavior
of the rectangle. Both of these values should be in the range of 0.0 to 1.0.

 float stiffness = 0.1;

 float damping = 0.9;

 float velocity = 0.0;

 float targetY;

 float y;

 void setup() {

 size(100, 100);

 noStroke();

 } [

50-13

Reas_08_395-518.indd Sec5:487Reas_08_395-518.indd Sec5:487 5/23/07 5:00:14 PM5/23/07 5:00:14 PM

488 Simulate 2: Physics

 void draw() {

 fill(0, 12);

 rect(0, 0, width, height);

 fill(255);

 float force = stiffness * (targetY - y); // f = -kx

 velocity = damping * (velocity + force);

 y += velocity;

 rect(10, y, width-20, 12);

 targetY = mouseY;

 }

Mass is another component to simulate when working with springs. The mass of a
spring affects how much effect a force will have. Commonly confused with weight, mass
is the amount of matter an object consists of and is independent of the force of gravity;
weight is the force applied by gravity on an object. If an object has more matter, gravity
has a stronger effect on it and it therefore weighs more. Newton’s second law states that
the sum of the forces acting on an object is equal to the object’s mass multiplied by the
object’s acceleration:

 F = ma

This equation can be rearranged to solve for the acceleration:

 a = F/m

Using code notation we’ve introduced, the equation can be written as follows:

 acceleration = springForce / mass

This arrangement highlights the fact that an object with more mass will have less
acceleration than one with less.
 The following example is similar to code 50-13, but it positions two rectangles on the
screen and therefore requires additional variables. It demonstrates the effect of mass on
the spring equations. The rectangle on the right has a mass six times larger than that of
the rectangle on the right.

 float y1, y2;

 float velocity1, velocity2;

 float mass1 = 1.0;

 float mass2 = 6.0;

 float stiffness = 0.1;

 float damping = 0.9;

 void setup() {

 size(100, 100);

 noStroke();

 }

50-13
cont.

50-14

Reas_08_395-518.indd Sec5:488Reas_08_395-518.indd Sec5:488 5/23/07 5:00:15 PM5/23/07 5:00:15 PM

489 Simulate 2: Physics

 void draw() {

 fill(0, 12);

 rect(0, 0, width, height);

 fill(255);

 float targetY = mouseY;

 float forceA = stiffness * (targetY - y1);

 float accelerationY1 = forceA / mass1;

 velocity1 = damping * (velocity1 + accelerationY1);

 y1 += velocity1;

 rect(10, y1, 40, 15);

 float forceB = stiffness * (targetY - y2);

 float accelerationY2 = forceB / mass2;

 velocity2 = damping * (velocity2 + accelerationY2);

 y2 += velocity2;

 rect(50, y2, 40, 15);

 }

The Spring2D class encapsulates the concepts and equations from the previous
examples into a reusable code unit. It calculates the spring values separately for the
x- and y-axis and adds a gravitational force by combining the gravity value with
the forceY value.

class Spring2D {

 float vx, vy; // The x- and y-axis velocities

 float x, y; // The x- and y-coordinates

 float gravity;

 float mass;

 float radius = 10;

 float stiffness = 0.2;

 float damping = 0.7;

 Spring2D(float xpos, float ypos, float m, float g) {

 x = xpos;

 y = ypos;

 mass = m;

 gravity = g;

 }

 void update(float targetX, float targetY) {

 float forceX = (targetX - x) * stiffness;

 float ax = forceX / mass;

50-14
cont.

50-15

Reas_08_395-518.indd Sec5:489Reas_08_395-518.indd Sec5:489 5/23/07 5:00:15 PM5/23/07 5:00:15 PM

490 Simulate 2: Physics

 vx = damping * (vx + ax);

 x += vx;

 float forceY = (targetY - y) * stiffness;

 forceY += gravity;

 float ay = forceY / mass;

 vy = damping * (vy + ay);

 y += vy;

 }

 void display(float nx, float ny) {

 noStroke();

 ellipse(x, y, radius*2, radius*2);

 stroke(255);

 line(x, y, nx, ny);

 }

}

The following example has two Spring2D objects. The position of the top element in
the chain is controlled by the cursor, and the rest position of the bottom element is
controlled by the position of the top. Try changing the value of the gravity variable to
increase and decrease the space between the elements.

 // Requires Spring2D Class

 Spring2D s1, s2;

 float gravity = 5.0;

 float mass = 2.0;

 void setup() {

 size(100, 100);

 smooth();

 fill(0);

 // Inputs: x, y, mass, gravity

 s1 = new Spring2D(0.0, width/2, mass, gravity);

 s2 = new Spring2D(0.0, width/2, mass, gravity);

 }

 void draw() {

 background(204);

 s1.update(mouseX, mouseY);

 s1.display(mouseX, mouseY);

 s2.update(s1.x, s1.y);

 s2.display(s1.x, s1.y);

 }

50-15
cont.

50-16

Reas_08_395-518.indd Sec5:490Reas_08_395-518.indd Sec5:490 5/23/07 5:00:16 PM5/23/07 5:00:16 PM

491 Simulate 2: Physics

In the following example, an array is used to store more Spring2D objects. The rest
position for each object is set by the object that immediately precedes it in the chain.
The motion propagates through each element.

// Requires Spring2D Class

int numSprings = 30;

Spring2D[] s = new Spring2D[numSprings];

float gravity = 5.0;

float mass = 3.0;

void setup() {

 size(100, 900);

 smooth();

 fill(0);

 for (int i = 0; i < numSprings; i++) {

 s[i] = new Spring2D(width/2, i*(height/numSprings), mass, gravity);

 }

}

void draw() {

 background(204);

 s[0].update(mouseX, mouseY);

 s[0].display(mouseX, mouseY);

 for (int i = 1; i < numSprings; i++) {

 s[i].update(s[i-1].x, s[i-1].y);

 s[i].display(s[i-1].x, s[i-1].y);

 }

}

50-17

Reas_08_395-518.indd Sec5:491Reas_08_395-518.indd Sec5:491 5/23/07 5:00:16 PM5/23/07 5:00:16 PM

492 Simulate 2: Physics

Metal springs each have a length to which they return after being pulled or pushed.
In the spring simulations in this book, the fi nal step is to give the spring a fi xed
length. This makes the springs more like their counterparts in the physical world. The
FixedSpring class extends the Spring2D class to force the spring to have a specifi c
length. The distance between the elements in the previous examples was created by a
large gravitational force, but here the displacement is enforced by the springLength
variable.

class FixedSpring extends Spring2D {

 float springLength;

 FixedSpring (float xpos, float ypos, float m, float g, float s) {

 super(xpos, ypos, m, g);

 springLength = s;

 }

 void update(float newX, float newY) {

 // Calculate the target position

 float dx = x - newX;

 float dy = y - newY;

 float angle = atan2(dy, dx);

 float targetX = newX + cos(angle) * springLength;

 float targetY = newY + sin(angle) * springLength;

 // Activate update method from Spring2D

 super.update(targetX, targetY);

 // Constrain to display window

 x = constrain(x, radius, width-radius);

 y = constrain(y, radius, height-radius);

 }

}

The FixedSpring class was written to extend the Spring2D class, but it also could
have been written as its own class. It was written as a subclass to utilize the existing
code, but this decision meant that the default values for the stiffness and damping
fi elds introduced in Spring2D became the default values for FixedSpring. To
avoid this restriction, the class can be modifi ed to pass these values as parameters to
the constructor. When creating a class you decide which fi elds to pass through the
constructor by using your best judgment, but there is usually no single correct way
to structure a program. There are many ways to write any program, and while the
decisions about how to modularize the code should be made carefully, they can always
be changed.
 The following example calculates and draws one fi xed-length spring to the display
windows. Unlike the previous spring examples where the mass dangles from the cursor,

50-18

Reas_08_395-518.indd Sec5:492Reas_08_395-518.indd Sec5:492 5/23/07 5:00:17 PM5/23/07 5:00:17 PM

493 Simulate 2: Physics

a fi xed-length spring always tries to maintain its length. It can be balanced on top of the
cursor as well as hung from the end.

 // Requires Spring2D and FixedSpring classes

 FixedSpring s;

 float gravity = 0.5;

 void setup() {

 size(100, 100);

 smooth();

 fill(0);

 // Inputs: x, y, mass, gravity, length

 s = new FixedSpring(0.0, 50.0, 1.0, gravity, 40.0);

 }

 void draw() {

 background(204);

 s.update(mouseX, mouseY);

 s.display(mouseX, mouseY);

 }

Fixed springs can be connected to other springs to create new forms. In the following
example, two springs are joined so that the position of each spring affects the position
of the other. When they are pushed too close together or pulled too far apart, they return
to their defi ned distance from one another. Because a gravitational force is applied, they
always fall to the bottom of the display window, but the force that keeps them apart is
stronger, so they appear to move as a single, solid object.

 // Requires Spring2D and FixedSpring classes

 FixedSpring s1, s2;

 float gravity = 1.2;

 void setup() {

 size(100, 100);

 smooth();

 fill(0);

 // Inputs: x, y, mass, gravity, length

 s1 = new FixedSpring(45, 33, 1.5, gravity, 40.0);

 s2 = new FixedSpring(55, 66, 1.5, gravity, 40.0);

 }

50-19

50-20

Reas_08_395-518.indd Sec5:493Reas_08_395-518.indd Sec5:493 5/23/07 5:00:17 PM5/23/07 5:00:17 PM

494 Simulate 2: Physics

 void draw() {

 background(204);

 s1.update(s2.x, s2.y);

 s2.update(s1.x, s1.y);

 s1.display(s2.x, s2.y);

 s2.display(s1.x, s1.y);

 if (mousePressed == true) {

 s1.x = mouseX;

 s1.y = mouseY;

 }

 }

The method used for calculating spring values in these examples is called the Euler
(pronounced “oiler”) integration technique. This is the easiest way to calculate these
values, but its accuracy is limited. The Euler method works well for simple spring
simulations, but it can cause problems with more complex simulations as small
inaccuracies compound and cause the numbers to approach infi nity. When this happens,
people often say the simulation “exploded.” For instance, shapes controlled by an Euler
integrator might fl y off the screen. A more stable but more complicated technique is the
Runge-Kutta method. For sake of brevity, it is not covered here, but it can be found in
other texts.

 Exercises
1. Move a shape using velocity and acceleration.
2. Make your own extension to the Particle class and use it in an example.
3. Devise a physical simulation using one of the classes derived from Spring2D.

50-20
cont.

Reas_08_395-518.indd Sec5:494Reas_08_395-518.indd Sec5:494 5/23/07 5:00:17 PM5/23/07 5:00:17 PM

495

Synthesis 4: Structure and Interface
This unit presents examples that synthesize concepts from Structure 4 to Simulate 2.

The previous units introduced object-oriented programming, saving and importing
fi les, creating graphical user interfaces, and simulating biology and physics. This unit
focuses on integrating these concepts with an emphasis on object-oriented thinking.
As mentioned, object-oriented programming is an alternative way to think about
structuring programs. Knowing when to use object-oriented programming and how to
structure the objects is an ability that develops with time and experience. The programs
in this unit apply object-oriented thinking to previously introduced topics.
 It’s now possible to integrate elements of software including variables, control
structures, arrays, and objects in tandem with visual elements, motion, and response to
create exciting and inventive software. Because of space restrictions and our desire not
to overwhelm the reader, this book omits discussion of many programming concepts,
but the topics presented provide a solid foundation for diverse exploration.
 The programs presented in this unit are the most challenging in the book, but they
include only ideas and code that have been previously introduced. They’re challenging
in their composition, but all of the components are built from the concepts discussed
in this text. These programs include a game, drawing software, generative form, and
simulations.

The four programs presented here were written by different programmers. Unlike most of the other examples in the
book, which have been written in a similar style, each of these programs refl ects the personal programming style of
its author. Learning how to read programs written by other people is an important skill.
The software featured in this unit is longer than the brief examples that fi ll this book. It’s not practical to print it on
these pages, but the code is included in the Processing code download at www.processing.org/learning.

Reas_08_395-518.indd Sec5:495Reas_08_395-518.indd Sec5:495 5/23/07 5:00:18 PM5/23/07 5:00:18 PM

496 Synthesis 4: Structure and Interface

WithoutTitle. The images on this page were created with a sophisticated drawing
program that combines elements of code from Motion 2 (p. 291), Structure 5 (p. 453),
and Drawing 2 (p. 413). A dense thicket of lines circulates around the position of the
cursor; moving the position of the cursor affects the epicenter and how the lines
expand and contract.

Program written by Lia (http://lia.sil.at)

Reas_08_395-518.indd Sec5:496Reas_08_395-518.indd Sec5:496 5/23/07 5:00:18 PM5/23/07 5:00:18 PM

497 Synthesis 4: Structure and Interface

Pond. These images were generated from an implementation of Craig Reynolds’s Boids
rules, explained in Simulate 1 (p. 461). As each fi sh follows the rules, groups are formed
and disperse. Clicking the mouse sends a wave through the environment and lures the
creatures to the center. Each creature is an instance of the Fish class. The direction and
speed of each fi sh is determined by the rules. The undulating tail is drawn with Bézier
curves and moves from side to side in relation to the current direction and speed.

Program written by William Ngan (www.metaphorical.net)

Reas_08_395-518.indd Sec5:497Reas_08_395-518.indd Sec5:497 5/23/07 5:00:20 PM5/23/07 5:00:20 PM

498 Synthesis 4: Structure and Interface

Swingtree. This software simulates a tree swaying in the wind. Move the mouse left
and right to change the direction and move it up and down to change the size. The
connections between each branch are set by data stored in a text fi le. When the program
starts, the fi le is read and parsed. The values are used to create instances of the Branch
and Segment classes.

Program written by Andreas Schlegel (www.sojamo.de) at ART+COM (www.artcom.de)

Reas_08_395-518.indd Sec5:498Reas_08_395-518.indd Sec5:498 5/23/07 5:00:20 PM5/23/07 5:00:20 PM

499 Synthesis 4: Structure and Interface

SodaProcessing. The Sodaconstructor (p. 263) connects simulated springs and
masses to create fl uidly kinetic creatures. This example is a simplifi ed version of the
Sodaconstructor, translated from Java to Processing. It builds on the ideas introduced
in Simulate 2 (p. 477) and creates an interface from the ideas in Input 7 (p. 435). The
GUI allows the user to create models by adding and deleting masses. Once you start a
model, you can move each mass to see how the model reacts to force. The environmental
gravity, friction, and stiffness can be changed by moving a slider left and right. This
software integrates interface elements with spring and mass simulation.

Program written by Ed Burton (www.soda.co.uk)

Reas_08_395-518.indd Sec5:499Reas_08_395-518.indd Sec5:499 5/23/07 5:00:21 PM5/23/07 5:00:21 PM

Still image from Mini Movies, 2005. Image courtesy of the artists.

Reas_08_395-518.indd Sec5:500Reas_08_395-518.indd Sec5:500 5/24/07 9:15:16 AM5/24/07 9:15:16 AM

501

Interviews 4: Performance, Installation

 SUE.C. Mini Movies
 Chris Csikszentmihályi. DJ I, Robot Sound System
 Golan Levin, Zachary Lieberman. Messa di Voce
 Marc Hansen. Listening Post

Reas_08_395-518.indd Sec5:501Reas_08_395-518.indd Sec5:501 5/24/07 9:14:53 AM5/24/07 9:14:53 AM

Reas_08_395-518.indd Sec5:502Reas_08_395-518.indd Sec5:502 5/24/07 9:16:19 AM5/24/07 9:16:19 AM

503

Mini Movies (Interview with SUE.C)

 Creators AGF+SUE.C
 Year 2005
 Medium Performance, CD/DVD
 Software Max/MSP/Jitter, Radial
 URL www.minimoviemovement.com

 What is Mini Movies?
 Mini Movies is a CD/DVD collaboration between the musician Antye Greie and the visual
artist Sue Costabile. It is an audio visual collection of mini lives in an urban and political
context. The liberation of the still image. A breakaway of recorded music. Mini Movies is also
the current chapter in the live performance presented by AGF+SUE.C.
 Why did you create Mini Movies?
 We began performing live sound and image together several years ago in an entirely
improvisational fashion. Through the medium of live performance we discovered many
commonalities between Antye’s aural language and my visual language. Both of us see life as a
series of miniature movies, some silent, some only a soundtrack waiting for the image to appear.
The increasing consumability of the DVD format made it accessible to us as artists and we
decided to present our own abstraction of the Hollywood feeling. The movie industry has made
much of society accustomed to their mode of behavior and means of delivering entertainment.
This is our way of slipping our own observations of life and audiovisual memories into the
preestablished user interface and industry distribution network. In a live context our mini
movies become larger than life, projected onto a giant screen and filling all available space
with sound.
 What software tools were used?
 Our main studio production tools are Max/MSP/Jitter, Logic, Radial, and Final Cut Pro.
As performers we both improvise a great deal, using very little recorded media and relying
heavily on the human brain for interaction between sound and image. In our live performances
we use Max/MSP/Jitter and Radial, along with a MPC, microphones, photographs, drawings,
shiny objects, and many different miniature lighting rigs. These physical objects are an
augmentation of the software and serve as a means through which we can interact more
creatively with the tools.
 Why did you use these tools?
 Max/MSP/Jitter offers us the ability to create our own customized tools but also to easily
incorporate elements of other people’s tools. We were often meeting artists that were using
this software environment to do wonderful and interesting things, and that led to each of us
exploring and using it. We find the environment very flexible and open to experimentation.
There is a structure to the language but there is also a freedom to explore sound and image as
pure data. This leads fluidly to all kinds of manipulations, transformations, and translations.
Our focus has been on developing a software-based environment that responds readily to
human input and interaction. Antye uses her voice as the main input source and I use a live
camera pointed at various layers of physical objects and lights which are animated by my hands. St

ill
 im

ag
es

 fr
om

 M
in

i M
ov

ie
s,

20
05

. I
m

ag
es

 co
ur

te
sy

 o
f t

he
 a

rt
is

ts
.

Reas_08_395-518.indd Sec5:503Reas_08_395-518.indd Sec5:503 5/24/07 9:15:54 AM5/24/07 9:15:54 AM

504 Interviews 4: Performance, Installation

These analog inputs are processed by the software, which adds another layer of abstraction
and emotion.
 Why do you choose to work with software?
 It wasn’t an entirely conscious choice to work with software. We were both very intrigued
by computers, the Internet, and digital media in general but once we discovered how expressive
one could be with certain software products, we gravitated towards using them more and more.
It provides us with broad artistic freedom since there is very little aesthetic preconception in
the Max/MSP/Jitter environment. As artists we have been able to grow but not outgrow our
tools. This is due in large part to the fact that we can program our own software tools inside of
the environment. As our ideas change and expand the tools can do the same. As a video artist,
I found the popular VJ software and hardware setups to be quite restricting. The idea for using
a live camera as the only video signal input evolved out of frustration with working with a
confined set of video clips and combining them in a limited number of ways. Jitter allows for a
seemingly infinite array of compositing modes, and quite easily communicates with any digital
camera. After a long period of experimentation, the software has become an instrument that
I have learned to play. The program is a simple compositing machine but allows for complex
interactions and animations, and the flexibility of the programming environment means
that I can add and subtract features at will. Antye felt a similar restraint from popular live
performance tools for audio until she discovered Radial. This software allows her to control
samples of her voice in a very responsive way and leads to associations and multilayered
narratives with an organic character. We both appreciate the unpredictability that our software
brings to our live performance. It is an amplification of our live presence, which, as a performer,
lies at the heart of the show.

St
ill

 im
ag

es
 fr

om
 M

in
i M

ov
ie

s,
20

05
. I

m
ag

es
 co

ur
te

sy
 o

f t
he

 a
rt

is
ts

.

Reas_08_395-518.indd Sec5:504Reas_08_395-518.indd Sec5:504 5/24/07 9:17:23 AM5/24/07 9:17:23 AM

505

Reas_08_395-518.indd Sec5:505Reas_08_395-518.indd Sec5:505 5/24/07 9:17:47 AM5/24/07 9:17:47 AM

Reas_08_395-518.indd Sec5:506Reas_08_395-518.indd Sec5:506 5/24/07 9:19:06 AM5/24/07 9:19:06 AM

507

DJ I, Robot Sound System (Interview with Chris Csikszentmihályi)

 Creators Jonathan Girroir, Jeremi Sudol, Lucy Mendel, Galen Pickard,
 Andy Wong, and Chris Csikszentmihályi
 Year 2001
 Medium Robot
 Software C++
 URL www.dj-i-robot.com

 What is DJ I, Robot Sound System?
 The project started as “Funky Functions” in 1998 out on the West Coast, but then we were
Upstate and it was freezing cold so we had a lot of time, and we were reading our man Vonnegut
with his joint Player Piano and so it was all, like, unheimlich. So then we were looking at John
Henry and automation and labor and we were going to call it “the DJ killer app” but then we
sobered up because we’re all into peace and the crew kept growing so we got with “DJ I, Robot
Sound System” because of, you know, the prime directive. But the Vonnegut is about 1000 times
better than any Asimov; he just didn’t have any good hooks that we could bite. Get on it, Kurtis!
You gotta do for us like you did for Michael!
 Why did you create DJ I, Robot Sound System?
 [Laughing] Because DJs were all lazy! What with the picklz and the West Coast and the
DMC, skills were getting mad, yo, but it wasn’t really moving forward, just spinning faster. Then
on the other side there were these clowns like Richie Hawtin who were selling product, trying to
get rid of the vinyl. New devices for DJing that ignored the roots, that it started from a ghetto
misuse of consumer electronics. I mean, when Matsushita heard what folks were up to they
actually took the 1200 off the market! But now there were suits like Hawtin trying to replace the
wax, all getting like “it’s too heavy in the airports,” or “it degrades,” or “it takes too long to go
digging when you’ve got Napster.” (Yeah, that was back in the 00 when Napster was still from
the block.) But all these new systems—like the CD mixers, “Final Scratch,” and loads of mixing
software—it was all basically saying vinyl’s time had come.
 Now that didn’t make sense. There wasn’t a single DJ I’d ever met who didn’t love vinyl.
Vinyl was there like—in the beginning?—we were supposed to play it like it was the word, just
play it back, but then Selassie I told the systems in Jamaica “Cut it up, cheese!” and lo, they did
cut. He was all “Lay your hands on it, son of God.” It was like with the News, don’t just sit back,
read the truth, find the hidden word, and that’s how it all happened. So why were these chump-
ass marketers and engineers fronting on vinyl and saying it was time for being digital? It’s like
they were both “Love the caterpillar but do you have something more in a pirouette? and Love
the tag but do you have it in a TIFF?”
 So we were caught between fast and stupid, plus we hadn’t been clubbing enough. So we
got concentrated and stopped partying and bullshitting and started hacking and coding. It
was raw, and shit. In the coffin it was all steel pipes and honeycomb aluminum composite, and
old motors from a Xerox. But Technics represented with the tone arms, bless them, so we were
coming strong. Explosions more than once [laughing], and lots of needles exchanged. On the
laptop it was raw, right? Raw. Type conversions without casts, pointers to pointers to pointers, DJ

 I,
 R

ob
ot

 So
un

d
Sy

st
em

, 2
00

1.
Im

ag
es

 co
ur

te
sy

 o
f t

he
 a

rt
is

ts
.

Reas_08_395-518.indd Sec5:507Reas_08_395-518.indd Sec5:507 5/24/07 9:18:31 AM5/24/07 9:18:31 AM

508 Interviews 4: Performance, Installation

it was all raw. Raw! Plus, the software was only what got us to the door: there was this industrial
networking protocol (rs485) and two microcontrollers per deck. That’s what gave us the
flexibility, see, to add another, and another, up to 128 decks for wreck and effects. We stopped at
seven, though. That would have been too many stanky dollars, and we would’ve needed a semi.
Plus it was already the threat to the DMC at just three decks, calling ‘em out, saying, “What are
you going to do about it?” Raw.
 The very first time we had a human DJ in the lab—Bernard, a k a Flip 1—he was cool, no
sweat, not nervous. He saw the future but he was all, “That’s all it can do so far?” Cause he’d
been at the DMC when he was eighteen but the robot was just a peewee, a few months old. And
we were apologizing because one of our proportional integral derivatives was whack, K value
way too high and we’d coded it in a constant (our bad), so it would go to some spot on the track
and then pass it, then be like “whoa!” and go back but go too far. Sprung mass. So we were all
apologies but Flip, he was like, “No, that’s a feature. I’ve never heard that before.” [Laughs] And
he went back to his decks, and he practiced, and practiced, and it was a new sound. That’s when
we were all, “Gotta get up and be somebody!” We knew we weren’t just faking the funk. I mean,
the very first time a human heard the robot, he was changed.
 Why did you write your own software tools?
 We peaked at a little under 10K of C++, though we could have gone all Rocky and toned it
up, but it was flabby. Microsoft didn’t help anyway. Never again. Anyone interested in machine
control I’d tell her real-time Linux, period! Lot of versions, a little more code sprinkled here, there,
for each performance. We had an FFT function to machine listen to a human DJ then play back
their scratches right back at them. We had sequencers to record a performance and play it back.
We had motion capture to parse a scratch, .0000015625 of a second accurate. It was raw. We had
the gimmicks.
 Why do you choose to work with software?
 We worked with it all. Some mechanics, some software, some electronics, of course the
Jonzun Crew, and some sweat and tears. Software’s not interesting. Beats are interesting. If
software can help you find new beats, that’s great. But there are a lot of ways to find new beats.

DJ
 I,

 R
ob

ot
 So

un
d

Sy
st

em
, 2

00
1.

Im
ag

es
 co

ur
te

sy
 o

f t
he

 a
rt

is
ts

.

Reas_08_395-518.indd Sec5:508Reas_08_395-518.indd Sec5:508 5/24/07 9:21:02 AM5/24/07 9:21:02 AM

509 Interviews 4: Performance, Installation

Reas_08_395-518.indd Sec5:509Reas_08_395-518.indd Sec5:509 5/24/07 9:21:34 AM5/24/07 9:21:34 AM

Reas_08_395-518.indd Sec5:510Reas_08_395-518.indd Sec5:510 5/24/07 9:23:30 AM5/24/07 9:23:30 AM

511 Interviews 4: Performance, Installation

Messa di Voce (Interview with Golan Levin and Zachary Lieberman)

 Creators Tmema (Golan Levin and Zachary Lieberman),
 with Joan La Barbara and Jaap Blonk
 Year 2003
 Medium Interactive installation or performance with custom software
 Software Custom software for Windows, written in C++
 URL www.tmema.org/messa

 What is Messa di Voce?
 Messa di Voce is an audiovisual performance and installation in which the speech,
shouts, and songs produced by two vocalists are augmented in real time by custom interactive
visualization software. The project touches on themes of abstract communication, synesthetic
relationships, cartoon language, and writing and scoring systems, within the context of a
sophisticated and playful virtual world.
 Our software transforms every vocal nuance into correspondingly complex, subtly
differentiated and highly expressive graphics. These visuals not only depict the users’ voices,
but also serve as controls for their acoustic playback. While the voice-generated graphics thus
become an instrument with which the users can perform, body-based manipulations of these
graphics additionally replay the sounds of the users’ voices, creating a cycle of interaction
that fully integrates the visitors into an ambience consisting of sound, virtual objects, and
real-time processing.
 Messa di Voce lies at an intersection of human and technological performance extremes,
melding the unpredictable spontaneity of the unconstrained human voice with the latest in
computer vision and speech analysis technologies. Utterly wordless, yet profoundly verbal,
Messa di Voce is designed to provoke questions about the meaning and effects of speech sounds,
speech acts, and the immersive environment of language.
 Why did you create Messa di Voce?
 Messa di Voce grew out of two prior interactive installations that we developed in 2002:
RE:MARK, which explored the fiction that speech could cast visible shadows, and The Hidden
Worlds of Noise and Voice, a multiperson augmented reality in which the users’ speech
appeared to emanate visually from their mouths. These installations analyzed a user’s vocal
signal and, in response, synthesized computer-graphic shapes that were tightly coupled to the
user’s vocal performance. After making these pieces, we had the feeling that we hadn’t taken
full advantage of everything we had learned about analyzing vocal signals. Although RE:MARK
and Hidden Worlds were reasonably successful with a general audience, we wanted to step up
to a much greater challenge: could we develop voice-interactive software that could somehow
equal or keep pace with the expressivity of a professional voice artist?
 We invited the well-known experimental vocalist/composers Joan La Barbara and Jaap
Blonk to join us in creating the Messa di Voce performance. Although Joan and Jaap come
from very different backgrounds—she works in contemporary art music, while he comes from
a background in sound poetry—both of them share a practice in which they use their voices in
extremely unusual and highly sophisticated ways, and both use a visual language to describe Jo

an
 L

a
Ba

rb
ar

a
an

d
Ja

ap
 B

lo
nk

 p
er

fo
rm

 M
es

sa
 d

i V
oc

e.
Im

ag
es

 co
ur

te
sy

 o
f t

he
 a

rt
is

ts
.

Reas_08_395-518.indd Sec5:511Reas_08_395-518.indd Sec5:511 5/24/07 9:22:23 AM5/24/07 9:22:23 AM

512 Interviews 4: Performance, Installation

the sounds they make. The software was really designed in collaboration with them—there are
even specific sections or modules of the software that were directly inspired by improvisation
sessions that we held together. Once the performance was finished, we realized that some
sections could only ever be performed by trained experts like Joan and Jaap, but that other
software modules could actually be experienced by anyone uninhibited enough to get up and
yell or sing. We gathered up five or so of these—about a third of the original concert software—
and that’s how we redeveloped Messa di Voce into an installation. We’re proud that these
software pieces could be used to good effect by expert vocalists, but even more pleased, in a way,
that children can enjoy them too.
 What software tools were used?
 We developed Messa di Voce in C++, using the Metrowerks Codewarrior development
environment. Some of the sound analysis was accomplished with Intel’s commercial IPP library.
We also incorporated a large number of open source sound and graphics toolkits, including
OpenCV, OpenGL, and PortAudio.
 Why do you choose to work with software?
 Because software is the only medium, as far as we know, that can respond in real time
to input signals in ways that are continuous, linear or nonlinear as necessary, and—most
importantly—conditional. The medium that we’re interested in, to borrow a phrase from Myron
Krueger, is response itself, and only software is able to respond in such a rich manner and with
such a flexible repertoire.
 Why did you write your own software tools?
 There isn’t any other software that does what we want to do—and most importantly,
that does it in the way we imagine it could be done. In the specific example of Messa di Voce—
although a significant aspect of the project is entirely conceptual (the idea of visualizing the
voice in such a way that the graphics appear to emerge from the user’s mouth), an equally
important dimension is the quality and degree of craft that is applied to the creation of the
work, and which is evident in its execution. Although the idea of Messa di Voce could have been
implemented by any number of other artists (and indeed, systems illustrating related ideas
have been created by others, such as Toshio Iwai, Josh Nimoy, Mark Coniglio, and Steven Blyth),
we’d like to believe that nobody else could have created it with the particular character and
texture we did.
 That said, it would be a mistake to believe that we wrote Messa di Voce completely from
scratch. As we mentioned earlier, we made extensive use of both commercial and open source
software libraries in order to develop it. It’s not even clear what “completely from scratch” would
mean for our project, unless we were to somehow construct our own CPU and develop our own
assembly language for it! We incorporated features and functionality from the other software
libraries whenever we didn’t know how to do something ourselves, or could simply save time by
doing so. Our work was built on the efforts of probably thousands of other people.

Jo
an

 L
a

Ba
rb

ar
a

an
d

Ja
ap

 B
lo

nk
 p

er
fo

rm
 M

es
sa

 d
i V

oc
e.

Im
ag

es
 co

ur
te

sy
 o

f t
he

 a
rt

is
ts

.

Reas_08_395-518.indd Sec5:512Reas_08_395-518.indd Sec5:512 5/24/07 9:24:45 AM5/24/07 9:24:45 AM

513 Interviews 4: Performance, Installation

Reas_08_395-518.indd Sec5:513Reas_08_395-518.indd Sec5:513 5/24/07 9:25:16 AM5/24/07 9:25:16 AM

Reas_08_395-518.indd Sec5:514Reas_08_395-518.indd Sec5:514 5/24/07 9:28:47 AM5/24/07 9:28:47 AM

515 Interviews 4: Performance, Installation

Listening Post (Interview with Mark Hansen)

 Creators Mark Hansen and Ben Rubin
 Year 2001–2002
 Medium Installation
 Software Perl, C, Max/MSP, C++, sh/tcsh, R
 URL www.earstudio.com/projects/listeningPost.html

 What is Listening Post?
 Listening Post is an art installation that culls text fragments in real time from unrestricted
Internet chat rooms, bulletin boards, and other public forums. The texts are read (or sung) by a
voice synthesizer, and simultaneously displayed across a suspended grid of 231 small electronic
screens (11 rows and 21 columns). Listening Post cycles through a series of seven movements (or
scenes) each with a different arrangement of visual, aural, and musical elements and each with
its own data-processing logic.
 Why did you create Listening Post?
 Ben and I met in November of 1999 at an event sponsored by Lucent Technologies (my
former employer) and the Brooklyn Academy of Music. For our first project, we created a
“sonification” of the browsing activity across a large, corporate website. Sonification refers to
the use of sound to convey information about, or to uncover patterns in, data; it seemed like a
reasonable place to start for a sound artist (Ben) and a statistician (me). We spent several weeks
creating an algorithm that translated patterns of user requests into music. The mapping was
pretty direct, differentiating traffic through major areas within the site (defined by a handful
of top-level directories) and the depth to which people wandered (again, measured in terms of
the site’s directory structure). Unfortunately, it was tough to get anyone to take notice; even
the site’s content providers were hard-pressed to find a reason to listen. After a month or so
we decided that perhaps navigation statistics (a by-product of the actions people take on the
Web) were less interesting than the substance of their online transactions, the content being
exchanged. We also agreed that the act of Web browsing wasn’t very “expressive” in the sense
that our only glimpse of the users came from patterns of clicks, lengths of visits, and the circle of
pages they requested. These considerations led us to online forums like chat and bulletin boards.
(Of course, this was early 2000; had we started our collaboration today, blogs or YouTube.com or
even MySpace.com might have been more natural next steps.)
 In retrospect, it was pretty easy to create a data stream from these forums, sampling posts
from various places around the Web. Doing something with it, representing it in some way,
responding to its natural rhythms or cycles, proved to be much harder. Text as a kind of data
is difficult to describe (or model) mathematically. To make matters worse, online forums are
notoriously bad in terms of spelling and grammar and many of the other bread-and-butter
assumptions underlying techniques for statistical natural language processing. However, I think
our interest in online forums went beyond summarizing or distilling their content (reducing the
stream to a ticker of popular words or topics). Instead, we wanted to capture the moments of
human connection; and in most cases these refused to be mathematized. Early in our process, Li
st

en
in

g
Po

st
, 2

00
1-

20
02

. I
m

ag
es

 co
ur

te
sy

 o
f t

he
 a

rt
is

ts
.

Reas_08_395-518.indd Sec5:515Reas_08_395-518.indd Sec5:515 5/24/07 9:28:16 AM5/24/07 9:28:16 AM

516 Interviews 4: Performance, Installation

we decided to let the data speak for itself in some sense, creating scenes that organized (or,
formally, clustered) and subset the content in simple, legible ways.
 Building on our experience with the Web sonification project, our first experiments with
chat were sound pieces: A text-to-speech (TTS) engine gave the data a voice (or voices, as there
might be up to four speaking at one time), and we created different data-driven compositional
strategies to produce a supporting score. As we listened, however, we found ourselves constantly
referring to a text display I hacked together to monitor the data collection. While we were led
to this simple visual device to help make up for deficiencies in the TTS program (“Did someone
really type that?”), it soon became an important creative component. This visual element
evolved from a projection with four lines of text (at a live performance at the Kitchen in 2000),
to a 10 by 11 suspended flat grid of VFDs, vacuum fluorescent displays (the first installation of
Listening Post at the Brooklyn Academy of Music in 2001), and finally to the arched grid of 231
VFDs (first exhibited in 2002 at the Whitney Museum of American Art). Listening Post’s visual
expansion was accompanied by the introduction of a new TTS engine that let us literally fill the
room with voices (as many as a hundred at one time).
 What software tools were used?
 The behavior of each individual VFD is ultimately directed by an onboard microcontroller
running a custom C program written primarily by Will Pickering at Parallel Development.
The screens are then divided into 7 groups of 33 (each an 11 by 3 subset of the entire grid) and
are fed messages by 7 servers that listen for commands to display text along columns or on
particular screens. The basic screen server is written in Perl. One layer up, the arched VFD grid is
choreographed via a series of scene programs, again written in Perl.
 The audio portion of Listening Post involves dynamic musical composition orchestrated by
Max/MSP; messages are sent to Max from the scene programs via the Open Sound Control (OSC)
protocol. It’s worth noting that the programming interfaces for the audio and visual portions
of Listening Post are very different; while Max is a visual programming environment, meaning
that Ben directs output from one sound component to another by making connections in a
“patch,” I hack about in an Emacs window combining subroutines from a main scene module.
The last major piece of software directly involved in the presentation of Listening Post is the TTS
engine. Like Max, the TTS engine receives messages from the scene programs; unlike with Max,
however, we had to write a custom C++ wrapper to handle the network communication. Aside
from Max and the TTS engine, there are also other, perhaps less obvious, software components
hidden in the system. The installation itself involves eight speakers and, during each scene, the
voices and other musical elements move around the room. While Max handles much of this
motion, a Yamaha Digital Mixing Engine (DME) is also used, which in turn requires a separate
program for each of the scenes.
 Finally, we made use of a slightly different set of software tools during scene development.
At a practical level, each new scene consists of a Perl program orchestrating the visual elements
and controlling the overall scene structure and a Max patch/DME program pair creating the
scene-specific audio. (At this point, we treat the VFD grid and the TTS engine as fixed-output
devices whose programming does not change with scene; they respond to a predetermined
set of commands.) The design of each scene emerged through an iterative process that cycled
between making observations about the data and an evolving set of basic compositional scene
elements. To make sense of our stream of text data, we relied on Perl for text parsing and feature

Reas_08_395-518.indd Sec5:516Reas_08_395-518.indd Sec5:516 5/23/07 5:00:40 PM5/23/07 5:00:40 PM

517 Interviews 4: Performance, Installation

extraction, some flavor of UNIX shell for process control, and the R programming environment
for data analysis, modeling, and statistical graphics.
 Why did you write your own software tools?
 Given that the display “device” (the combined audio and visual components of the
installation) was entirely new, we had little choice but to write our own software to control it.
 For the most part, the software side of Listening Post is constructed from what could be
best described as “scripting languages.” While it’s a bit hard to pin down a precise definition for
this term, it is often the case that such languages let you build up projects (programs or scripts)
quickly in a fluid, interactive process that is distinct from programming in a “systems language”
like C. For example, Perl is, by design, great for manipulating text (taking inspiration from
previous UNIX shell facilities like awk); and over the years programmers and developers have
created a stunning number of extensions to the language, including extensive tools for network
programming. By working with Perl, I can output data to the VFD grid and quickly experiment
with different scene dynamics, many of which involve parsing and computing with text. Using
OSC, this same Perl program can also coordinate audio by sending messages to a Max/MSP
process and to the TTS engine. Authoring scenes for Listening Post is an exercise in interprocess
communication.
 Since 2000, the language Python has emerged as a strong competitor to Perl in this kind
of application; Python even runs on many Nokia phones! If our development were taking
place today, we would have to think seriously about programming in Python instead of Perl.
The lesson here is that programming tools, and information technologies in general, are
constantly in flux. If you choose software as a medium, your practice has to keep up with these
changes. You need to be able to “read” a new language, assess its strengths and weaknesses,
and determine which computations are “natural” (those that its designers have made easy to
perform) and (if possible) why.
 Why do you choose to work with software?
 Software, or perhaps more generically computing, is the way I have come to know data.

Reas_08_395-518.indd Sec5:517Reas_08_395-518.indd Sec5:517 5/23/07 5:00:40 PM5/23/07 5:00:40 PM

Reas_08_395-518.indd Sec5:518Reas_08_395-518.indd Sec5:518 5/24/07 9:30:03 AM5/24/07 9:30:03 AM

519

Extension 1: Continuing...

It often takes a few years to become comfortable expressing ideas through software. The
concepts are not diffi cult, but they represent a different way of thinking unfamiliar to
most people. This book introduces elements of software within the context of the arts,
with the aim of bringing ideas from computer programming within reach of a new
audience. People have different aptitudes for learning computer programming, and the
context in which it is introduced affects how well individuals learn it. The way into
computer programming introduced in this book has proved effective for many people,
but others interested in programming prefer a different path. The core software
principles introduced in this text are applicable to many different programming
languages and contexts.
 This book is not about a specifi c programming language. It strives to make clear the
abstract and obscure concepts behind programing, but to do this it’s necessary to use
examples from a language. The Processing Language and environment was chosen for
this book because it was developed expressly for the purpose of teaching fundamentals
of programming to the audience of designers and artists, and doing so in a way that
fosters their future exploration of diverse programming contexts. You can explore
programming further using Processing, and there are many other programming
languages and environments to try. A programming language is usually designed for a
specifi c context, and depending on the nature of your work, some languages will be
more appropriate than others.
 If this book has piqued your interest in programming, it is probably not the only
book you’ll want or need on the topic. While this book has discussed many of the ideas
that are essential to writing software, it presents only the fi rst steps. Everyone must
decide for themselves how far they will proceed in learning more about the technical
aspects of writing software. Some people will fi nd the material covered in this book
suffi cient to realize their goals, and others will want to go further. One of the aims of this
book is to enable the reader to benefi t from more advanced and complete programming
texts. There are many excellent books about programming, but the overwhelming
majority of them assume some prior programming knowledge. This text covers the
basics so as to make those more advanced texts accessible.

Extending Processing

The programming elements introduced and discussed in this book comprise a subset of
the entire Processing language. This book covers all of the features found in the abridged
reference, which is about half the Processing language. The complete reference offers Ka

rs
te

n
Sc

hm
id

t.
Su

nfl
 o

w
, 2

00
7.

So
ft

w
ar

e.
 Im

ag
e

co
ur

te
sy

 o
f t

he
 a

rt
is

t.

Reas_09_519-710.indd Sec6:519Reas_09_519-710.indd Sec6:519 5/23/07 1:07:21 PM5/23/07 1:07:21 PM

520 Extension 1: Continuing...

more areas to explore; you can access it by selecting the “Reference” option from the
Help menu or by visiting www.processing.org/reference. The complete reference includes
functions for more advanced drawing techniques, 3D geometry, and data manipulation.
The additional functions are demonstrated with examples in the reference and in the
examples included with the Processing software.
 By design, the Processing language has a narrow focus. It was built for creating
images, motion, and responses to common input devices like the mouse and keyboard.
Also by design, Processing can be extended beyond these areas. Processing libraries
extend Processing to sound generation, networking, video input, and many other topics
of media programming. Libraries are classifi ed into two groups: core libraries and
contributed libraries. The core libraries, including Video, Net, Serial, OpenGL, PDF Export,
DXF Export, XML Import, and Candy SVG Import are distributed with the software and
documented on the Processing website. Contributed libraries are created and
documented by members of the Processing community. The contributed libraries range
from physics simulations to computer vision to tools for facilitating data transfer. Newly
contributed libraries are continually added, and it’s hard to predict what will be
developed in the future. A list of libraries is included with your software and is online at
www.processing.org/reference/libraries. The OpenGL, Video, Net, Ess, and PDF Export
libraries are explored in the following extension units.
 A reference, or link, to a library must be added to a program before the library can be
used. This link is one line of code that points to the location of the library’s code. The line
can be added by selecting the “Import Library” option from the Sketch menu, or it can be
typed. For example, to use the PDF library, add this line to a program:

 import processing.pdf.*;

This code tells the program to import all of the classes in the processing.pdf package.
The asterisk (*) symbol is not used as the multiplication operator; it specifi es that all the
classes in the package should be imported.
 The Processing libraries have been and will continue to be an exciting area of
growth for the Processing environment. Rather than continual incorporation of new
features within Processing, libraries will remain the primary way to extend the
software. In a similar way a library is used to extend the core API in Processing, a tool can
be used to extend the Processing Development Environment. Standard tools include a
color selector and an autoformatter for code, but other developers have contributed tools
that support features like formatting code to post to the Processing discussion board.
Information about contributed libraries and tools can be found on the Processing
development website: http://dev.processing.org.
 The Processing Development Environment is intentionally minimal so that it is easy
to use, but advanced users will fi nd that it lacks some of the features included in many
professional programming environments. Processing was designed for software
sketches that consist of one to a dozen source fi les plus, maybe a library or two, and that
draw to a display component. A larger project may become cumbersome to develop
within the Processing Development Environment and can be loaded instead into a

Reas_09_519-710.indd Sec6:520Reas_09_519-710.indd Sec6:520 5/23/07 1:07:24 PM5/23/07 1:07:24 PM

521 Extension 1: Continuing...

different programming environment with more features. Eclipse (www.eclipse.org) is
an open source development environment, primarily used for Java, that integrates well
with Processing. Instructions on porting Processing projects to Eclipse can be found
on the Processing site, and questions can be asked in the “Integration” section of
www.processing.org/discourse. Most Java development environments should work,
and the bridge between Processing and Java application development gets easier as
members of the community contribute documentation and examples.
 Beyond libraries and using other development environments with Processing, the
software has also been extended into different domains through related but separate
initiatives. Using the Processing Development Environment and similar programming
languages, the Wiring and Arduino projects make it possible to program
microcontrollers (the small computers found in electronic devices and toys), and the
Mobile Processing project makes it possible to program mobile phones. The practice of
programming is rapidly moving into these areas as computers become increasingly
smaller and faster. The skills learned through using Processing can easily be transferred
into these areas through Mobile Processing, Wiring, and Arduino. These projects are
linked from the URLs http://mobile.processing.org and http://hardware.processing.org.
They are introduced in more depth in Extension 7 (p. 617) and Extension 8 (p. 633).
 We encourage you to actively participate in Processing. The software’s success
depends on the participation of community members. If you write a library for
Processing, please consider sharing your code, in keeping with the way that Processing
and its code are shared. If you write programs for your own enjoyment, as a part of your
studies, or for professional practice, please upload them to the Web and share your
discoveries. The community thrives when people share what they’ve learned and help
answer questions for others.

Processing and Java

The Processing application is written in Java, a programming language introduced by
Sun Microsystems in 1994. The language was originally designed for set-top boxes and
was later adapted for the Web and named Java. In the years since, the focus of Java
development broadened to include server-side applications, stand-alone desktop
applications, and applications for smaller devices such as mobile phones.
 When a Processing program is run, it is translated into Java and then run as a Java
program. This relationship enables Processing programs to be run through the Web as
Java applets or to run as applications for Linux, Macintosh, and Windows operating
systems. It also allows Processing to make use of the extensive existing software
components for Java.
 Processing has a simplifi ed programming style that allows users to program initially
without understanding more advanced concepts like object-oriented programming,
double-buffering, and threading, while still making those tools accessible for advanced
users. These technical details must be specifi cally programmed in Java, but they are
integrated into Processing, making its programs shorter and easier to read. While

Reas_09_519-710.indd Sec6:521Reas_09_519-710.indd Sec6:521 5/23/07 1:07:24 PM5/23/07 1:07:24 PM

522 Extension 1: Continuing...

Processing makes it possible to omit some elements of the Java language, it’s also fi ne to
leave them in. More information about the relationship between the two languages is
shown in Appendix G (p. 686).

Other programming languages

If this book was your fi rst introduction to computer programming, you’re probably not
aware of the many different language environments available for writing software. It’s
very common for a person to know how to program in a few different languages; new
languages skills are often acquired, through knowledge of previously learned languages
fades. Ben and Casey, for example, have written programs in languages including
ActionScript, AutoLISP, BASIC, C, C++, DBN, Fortran, HyperTalk, JavaScript, Lingo, Logo,
MATLAB, MAX, Pascal, PHP, Perl, Postscript, Python, and Scheme. This list may sound
exotic and impressive, but it’s not. After years of programming, one fi nds that different
projects with different needs require diverse languages. In fact, many projects require
a few languages to get the job done. For example, Ben’s projects often use Perl to fi rst
manipulate text data, and then use Processing to display this data to the screen. There
is no “best” language for programming, any more than a pencil is better than a pen or
a brush; rather, it’s important to use the tools that best suit your task. If you continue
programming, you’ll certainly learn a few different programming languages.
Fortunately, after you have learned one language, learning others comes more easily.
 A myriad of programming languages have been invented since people fi rst started
to program digital computers in the 1940s. In the 1950s, the fi rst computer-generated
images were created by scientists and engineers. These individuals were the only people
with access to the scarce, expensive, and complex technology needed to make this work.
Even in 1969, Jasia Reichardt, then a curator at the Institute of Contemporary Arts in
London, wrote, “So far only three artists that I know have actually produced computer
graphics, the rest to date having been made by scientists.”1 The works created during
this time were typically made as collaborations between technicians at research labs
and invited artists. The number of artists writing their own software has increased
signifi cantly in the last 35 years, especially since the introduction of the personal
computer. Another increase in software literacy was engendered by the rapid adoption
of the Internet in the mid-1990s.
 Many programming languages have been appropriated by artists and designers to
serve their own needs, and specialized languages have been written to fulfi ll the unique
desires of this audience. The programming elements introduced in this book are relevant
to many popular programming languages. The basic concepts of variables, arrays, objects,
and control structures are shared with most other languages, but the ActionScript, C, C++,
JavaScript, PHP, and Perl languages in particular share many specifi c syntax elements
with Processing. ActionScript and JavaScript are the most similar because they are both
based on a programming standard that is inspired by Java. The Java language was heavily
infl uenced by C, and because C++, PHP, and Perl were all designed with references to C,
they share similarities with Java and therefore with Processing.

Reas_09_519-710.indd Sec6:522Reas_09_519-710.indd Sec6:522 5/23/07 1:07:25 PM5/23/07 1:07:25 PM

523 Extension 1: Continuing...

 This book and the Processing website contain information about additional
programming languages. Appendix F (p. 679) introduces features of different
programming languages and includes a brief description of selected languages
commonly used within the arts. Appendix G (p. 686) compares Processing with Java,
ActionScript and Lingo, two languages commonly used by artists and designers.
Comparisons between Processing and Java, ActionScript, Lingo, Python, and Design by
Numbers are published on the Processing website: www.processing.org/reference/
compare.

 Notes

1. Jasia Reichardt. “Computer Art,” in Cybernetic Serendipity, edited by Jasia Reichardt (Praeger, 1969), p. 71.

Reas_09_519-710.indd Sec6:523Reas_09_519-710.indd Sec6:523 5/23/07 1:07:25 PM5/23/07 1:07:25 PM

Reas_09_519-710.indd Sec6:524Reas_09_519-710.indd Sec6:524 5/24/07 9:48:29 AM5/24/07 9:48:29 AM

525

Extension 2: 3D
Text by Simon Greenwold

For as long as people have represented the three-dimensional world on two-dimensional
surfaces, they have invoked the help of machines. The 3D graphics we know today have
their origin in the theory of linear perspective, developed less than 600 years ago by the
Florentine architect Filippo Brunelleschi. He used a variety of optical devices to
determine that all sets of parallel lines appear to the eye to converge at a single
“vanishing point” on the horizon. Shortly after the technique was codifi ed, artists such as
Albrecht Dürer began devising machines to help produce convincing representations of
3D scenes on 2D picture planes. Anticipating modern methods such as ray-tracing, these
devices are the ancestors of today’s cheap graphics cards, which are capable of displaying
more than a billion vertices per second on screen. Today, artists, designers, engineers, and
architects all make use of computers to create, manipulate, and output 3D form.

A short history of 3D software

The earliest on-screen 3D graphics appeared in the 1950s, not on digital computers but
using oscilloscopes, machines designed to trace voltages in electronic circuits. It took
thirty more years for 3D graphics to enter the home by way of games for personal
computers. A survey of the history of 3D graphics shows that the earliest adoption of
many new technologies and practices came from gaming. A quick look at 3D graphics in
popular games of the twentieth century is not a bad way to track the state of the art.
 Among the earliest 3D games, Flight Simulator was released fi rst in 1980 and
survives as a Microsoft-owned franchise to this day. Early 3D graphics used the
wireframe rendering technique to show all of the edges that make up a 3D form. This is
the simplest method of rendering, but it results in a world that appears to be made
entirely of pipe cleaners. Graphical adventure games like King’s Quest (1983) advanced
the discipline with detailed environments, occluding layers, and motion parallax—a
perceptual depth cue whereby objects close to an observer move more quickly across the
visual fi eld than those far away. Games like Marble Madness, Crystal Castle, and Q*bert
continued to draw on simple orthographic 3D representations without a great deal of
innovation until John Carmack introduced Wolfenstein 3D in 1992, the original fi rst-
person shooter game. Since its introduction, this class of games has driven the consumer
3D market more than any other because of the tremendous computational demands
involved in producing a convincing, real-time, immersive environment. At the same time
that the fi rst-person games began taxing real-time systems, games like Myst introduced
richly rendered photorealistic imagery. The gameplay consisted solely in moving from
one static image of a location to another, solving puzzles.M

ic
ha

el
 R

ee
s.

Pu
tt

o8
 2.

2.
2.

2,
20

03
, 2

00
3.

Fi
be

rg
la

ss
, p

ai
nt

. 7
8”

 *
 6

2”
 *

 72
”.

Ed
iti

on
 o

f 3
. I

m
ag

e
co

ur
te

sy
 o

f t
he

 b
itf

or
m

s g
al

le
ry

 , n
yc

.

Reas_09_519-710.indd Sec6:525Reas_09_519-710.indd Sec6:525 5/24/07 9:47:32 AM5/24/07 9:47:32 AM

526 Extension 2: 3D

 As researchers, game companies, and artists strive to bring users a more completely
immersive experience, they have moved graphics off the screen into a variety of
architectural or wearable devices. Graphics departments in many universities now have
“caves,” giant inhabitable cubes with projected images covering every surface. Head-
mounted displays, helmets, or glasses with screens directly in front of the eyes have
been used by researchers since 1968. In Char Davies’ 1995 artwork Osmose, an
“immersant” wears a head-mounted display that allows her to navigate a real-time
virtual environment consisting of twelve worlds simply by tilting her head and
breathing. In contrast to such virtual reality systems, “augmented” reality suggests that
rather than replacing an experienced reality with a virtual substitute, we can add to
reality with virtual constructs. These systems often employ a handheld screen with 3D
graphics overlaid onto a live video feed. In Simon Greenwold’s Installation (2001), users
can create virtual forms with a stylus and then “install” them into the real space of a
room. The camera is attached to the back of the screen, resulting in an “eye-in-hand”
experience in which the screen becomes a window into a world that contains a mix of
real and virtual elements.
 As full citizens of 3D space, computers are increasingly called upon to produce
physical 3D artifacts. 3D printing technologies are currently a focus of research and
product development. There are several common techniques for 3D printing, all of which
are becoming faster, cheaper, and more widely available. One family of 3D printers, such
as those from Z-Corp, works by depositing layer after layer of material (either itself
molten or mixed with a fi xative) and building up a form in a series of slices, a process
called stereolithography. These techniques are used by architects for making models and
by artists for producing sculpture. In Putto8 2.2.2.2 (2003), the artist Michael Rees used 3D
scanning, printing, and animation to produce grotesque, fanciful creatures formed
through digital manipulation of scanned human body parts.

3D form

Form making is the fi rst job in a typical 3D graphics workfl ow. This has traditionally
been the responsibility of computer-aided design (CAD) software. The kinds of form that
a piece of software helps users create and the kinds of manipulation it allows are tied
directly to its internal representation of 3D form. There is active debate over which
representation is best for each discipline. The only consensus is that the appropriate
representation depends on the application. A mathematically exact representation of
curved surfaces such as NURBS (Non-uniform Rational B-splines) makes a lot of sense for
engineering applications because exact solutions are possible when the software does
not need to approximate the curves. However, for 3D graphics, polygonal mesh
representations allow for freer manipulation since the mesh need not be expressible as a
pure mathematical formula. While a mesh can theoretically be made from any set of
polygons, it is often convenient to work with meshes that consist entirely of triangles.
Fortunately, since any polygon can be decomposed into a set of triangles, this does not

Reas_09_519-710.indd Sec6:526Reas_09_519-710.indd Sec6:526 5/23/07 1:07:27 PM5/23/07 1:07:27 PM

527 Extension 2: 3D

represent a geometric limitation. The process of turning some input form into a
triangulated mesh is called triangulation.
 Both NURBS and mesh representations are surface representations, meaning that
objects are defi ned exclusively in terms of their boundaries. This skin-deep
representation is adequate for most 3D graphics applications, but may not be complete
for engineering applications in which objects must be treated as true volumetric entities
with properties such as density and center of mass. Common volumetric representations
include Voxel, octree, constructive solid geometry (CSG), and binary space partition (BSP).
 Most commercial 3D packages offer a library of simple forms such as boxes,
cylinders, cones, and spheres. Each of these primitives has parameters to determine its
shape and dimensions. A sphere has only one parameter to set its size, and a box has
three, to set the width, height, and depth. Working with primitives is a bit like working
with Lego blocks. A surprising amount of 3D work can be done simply by composing
primitives. The level of detail possible is limited only by the scale of the building block
relative to the scale of the composite.
 These shapes are positioned into the 3D coordinate system. It builds on the 2D
coordinate system of x-coordinates and y-coordinates and extends it with z-coordinates.
Processing uses a coordinate system with the origin (0,0,0) in the front upper left with
the z-coordinates decreasing as they move back from the front of the image:

Shapes are placed within the 3D coordinate system by defi nition of their coordinates and
with the transformation functions. In Processing, the point(), line(), and vertex()
functions have additional parameters to set coordinates in 3D, but other shapes must be
positioned with transformations. The discussion of 2D transformations in Transform 2
(p. 137) applies to 3D with the addition of extra parameters. The translate() and
scale() functions work the same way, with an added parameter for the z-dimension,
but the rotate() function is replaced by three separate functions: rotateX(),
rotateY(), and rotateZ(). The rotateZ() function is identical to the rotate()
function, but rotateX() and rotateY() are unique to working in 3D. Each rotates the
coordinates around the axis for which it is named:

(100,100,0)

(0,0,-100)

(100,100,-100)

(100,0,-100)

(0,0,0)

+Y

+X

-Z

(100,0,0)

(0,100,0)

Reas_09_519-710.indd Sec6:527Reas_09_519-710.indd Sec6:527 5/23/07 1:07:27 PM5/23/07 1:07:27 PM

528 Extension 2: 3D

The pushMatrix() and popMatrix() functions also work identically in 3D. Pushing
and popping the transformation matrix is particularly useful in 3D graphics to establish
a place of operation and then restore an old one. Use the pushMatrix() function to
push a transform onto the stack and set up the coordinate transform as you want it,
including scaling, translations, and rotations. Create the local geometry, and then use
popMatrix() to return to the previous coordinate system.
 Before drawing 3D form in Processing, it’s necessary to tell the software to draw
with a 3D renderer. The default renderer in Processing draws only two-dimensional
shapes, but there are additional options (P3D and OPENGL) to render 3D form. P3D is the
simplest and most compatible renderer, and it requires no additional libraries. To use
P3D, specify it as a third parameter to the size() function. For example:

 size(600, 600, P3D);

The OPENGL renderer allows a sketch to make use of the OpenGL library, which is
designed for high-performance graphics, particularly when an accelerated graphics card,
such as those used for gaming, is installed on the computer. This makes it possible for
programs to run more quickly than P3D does when lots of geometry or a large display
size is used. Programs utilizing the OPENGL renderer can also be viewed online, but the
download may take longer and may require a newer version of Java to be installed on
the user’s computer. To use the OPENGL renderer, select “Import Library” from the Sketch
menu to add this line to the top of the program:

 import processing.opengl.*;

and then change the size() function to read

 size(600, 600, OPENGL);

After a 3D renderer is selected, it’s possible to start drawing in 3D.

Example 1, 2: Drawing in 3D (p. 539)
When an object moves or rotates in 2D, its shape does not change. A 3D shape, on the
other hand, grows larger or appears to spin away from the viewer as it is rotated and

Reas_09_519-710.indd Sec6:528Reas_09_519-710.indd Sec6:528 5/23/07 1:07:29 PM5/23/07 1:07:29 PM

529 Extension 2: 3D

moved because the three-dimensional space is drawn with a simulated perspective.
Example 1 demonstrates rotating a rectangle around the x- and y-axis. As the mouse
movement continuously changes the rotation values, the form appears as a square,
a line, and a range of parallelograms. Example 2 changes the position of a sphere, box,
and a word with mouseX, mouseY, and translate(). As their position changes, the
rectangle and word appear differently, but the sphere looks the same. Pressing a mouse
button runs the lights() function to illuminate the scene and shade the volumes.
The sides of a shape are each at a different angle in relation to the lights and refl ect
them differently.

Example 3: Constructing 3D form (p. 540)
3D form is created with vertex points similarly to the way 2D shapes were created in
Shape 2 (p. 69), but the extra z-coordinate makes it possible to defi ne volumetric surfaces.
This example demonstrates a function for generating a parameterized cylindrical shape
and controls its orientation with the mouse. The drawCylinder() function has four
parameters to set the top and bottom radius, the height, and the number of sizes. When
the parameters are changed, the function can create different forms including a
pyramid, cone, or cylinder of variable resolutions and sizes. The beginShape() function
is used with values from sin() and cos() to construct these extruded circular forms.

After the form-making process is complete, if a user wishes to save the generated form a
fi le format must be chosen. Every commercial package has its own preferred fi le format,
some of which have become de facto industry standards and each of which has pros and
cons. Many of the 3D fi le formats are proprietary, and information about them comes
purely from reverse-engineering their contents. Two frequently used formats are DXF
and OBJ, and each is used for different reasons.
 DXF is one of the native formats of AutoCAD and is a hassle to read or write. It is
useful only because practically everything supports it, AutoCAD being a dominant
standard. DXF is a poorly structured and enormous format. It has been around since 1982,
becoming more complicated with every release of AutoCAD. There is a small set of DXF
that is only moderately onerous to write out, so it is possible to use DXF as an export
format. However, because other software may write fi les that use parts of the DXF
specifi cation that are hard to interpret, it is not useful as a general method of importing
shape data.
 OBJ, developed initially by Silicon Graphics, is useful for exactly the opposite
reasons. Unlike DXF, it is not supported everywhere, but it is a dream to read and write.
OBJ also has some sections that are not totally straightforward, but it is easy to confi gure
exporters not to write that kind of data, so it becomes useful as both an import and
export format.

Example 4, 5: DXF export and OBJ import (p. 541, 452)
For these examples, the Processing DXF library is used to export a DXF fi le and the OBJ
Loader library, written by Tatsuya Saito, is used to load an OBJ model. The DXF library is
used to write triangle-based graphics (polygons, boxes, spheres, etc.) to a fi le. The OBJ

Reas_09_519-710.indd Sec6:529Reas_09_519-710.indd Sec6:529 5/23/07 1:07:29 PM5/23/07 1:07:29 PM

530 Extension 2: 3D

Example 1
The mouseX and mouseY
values determine the
rotation around the
x-axis and y-axis.

Example 2
 Draw a box and sphere.
The objects move with
the cursor. A mouse click
 turns the lights on.

Example 3
Shapes are constructed
from triangles. The
parameters for this shape
can transform it into a
cylinder, cone, pyramid,
 and many shapes in
between.

Example 4
 The geometry on screen
is exported as a DXF fi le.

Example 5
 Load a pre-constructed
OBJ fi le and the mouse
moves it from left to right.

Reas_09_519-710.indd Sec6:530Reas_09_519-710.indd Sec6:530 5/23/07 1:07:30 PM5/23/07 1:07:30 PM

531 Extension 2: 3D

Loader library can load the coordinates and material data from an OBJ fi le and then
render this data in different ways. The DXF library is included with Processing, but the
OBJ Loader library is linked from www.processing.org/reference/libraries. Each library
must be added to a program before it is used. This is explained on page 520. Example 4
uses the beginRaw() function tell the program to start recording geometry and
endRaw() fi nish the fi le. It is saved into the fi le output.dxf, which is saved in the current
program’s folder. Example 5 loads a simple OBJ object and the mouse is used to change
its rotation. The load() method reads the model into an OBJModel object, and the
draw() method displays it to the screen.

Camera

All renderings rely on a model of a scene and a camera (eye) that observes it. Processing
offers an explicit mapping of the camera analogy in its API, which is derived from
OpenGL. The OpenGL documentation (available online; search for “OpenGL Red Book”)
offers an excellent explanation of the workings of its camera model. The perspective
camera as modeled by OpenGL and Processing can be defi ned with just a few
parameters: focal length, and near and far clip planes. The camera contains the “picture
plane,” the theoretical membrane at which the image is captured. In a real camera, the
fi lm (or digital sensor) forms the picture plane. The focal length is a property that
determines the fi eld of view of a camera. It represents the distance behind the picture
plane at which all the light coming into the camera converges. The longer the focal
length, the tighter the fi eld of view—it is just like zooming in with a telephoto lens.

Rendering requires three transformations. The fi rst transformation is called the view
transformation. This transformation positions and orients the camera in the world.
Establishing a view transformation (expressed as a 4 * 4 matrix) implicitly defi nes
“camera space,” in which the focal point is the origin (the upper-left corner of the display
window), the positive z-axis points out of the screen, the y-axis points straight down,
and the x-axis points to the right. In Processing, the easiest way to establish a view
transformation is with the camera() function. On top of the view transformation is the
model transformation. Generally these two transformations are multiplied into each
other and considered to be a unit known as the model-view matrix. The model
transformation positions the scene relative to the camera. Finally there is the projection
transformation, which is based on the camera’s internal characteristics, such as focal
length. The projection matrix is the matrix that actually maps 3D into 2D.

Eye

Perspective viewing volume

Reas_09_519-710.indd Sec6:531Reas_09_519-710.indd Sec6:531 5/23/07 1:07:30 PM5/23/07 1:07:30 PM

532 Extension 2: 3D

 Processing by default establishes a set of transformations (stored internally as
PMatrix objects called projection and modelview) that make the picture plane in 3D
coincide with the default 2D coordinate system. Essentially it is possible to forget
entirely that you are in 3D and draw (keeping z-coordinate equal to zero) as though it
were a 2D canvas. This is useful because of the integration of 2D and 3D in Processing,
although it differs from the default of other 3D environments. It also means that the
model’s origin is translated signifi cantly in front of the picture plane so that it can often
be viewed without further transformation.

Materials and lights

After 3D form is constructed and transformed, it is typically rendered into static images
or animations. The state of the art advances so quickly that even graphics produced three
years ago look crude today. The primary goal of software rendering has been
photorealism—the images produced should be indistinguishable from photographs.
Recently, however, there have been signifi cant innovations in nonphotorealistic
rendering, which attempts to produce stylized images. Cartoon, charcoal, or painterly
renderers attempt to mimic the effects of a human hand and natural materials. Cartoon
rendering, in which the edges of objects are identifi ed and heavily outlined, is now used
in some in real-time 3D games.
 The work of 3D rendering is primarily the mathematical modeling and effi cient
computation of the interaction of light and surface. Ray-tracing and more advanced
variants are the basis of most popular methods of rendering. Ray-tracing models rays of
light emerging from a light source and bouncing around the surfaces of a scene until
they hit the picture plane. This is computationally costly and fails to predict certain
important phenomena of natural lighting such as the “color bleed” when one colored
surface refl ects onto another. Techniques like radiosity model “global illumination,”
which accounts not only for light that comes directly from predefi ned light sources but
also light refl ected off of the regular surfaces in a scene.
 There are three methods of rendering that do not require calculating lighting:
wireframe, hidden-line, and fl at-shaded:

Wireframe is the simplest rendering model. It renders lines and the edges of polygons in
their basic color. This is achieved in Processing by drawing with a stroke color and
without a fi ll. Next in complexity is hidden-line. In this model only edges are drawn, but
they are not visible where they would be occluded by solid faces. Processing does not
support this directly, but it is easy to simulate by using a fi ll identical to the background

Wireframe Hidden line Flat shading

Reas_09_519-710.indd Sec6:532Reas_09_519-710.indd Sec6:532 5/23/07 1:07:31 PM5/23/07 1:07:31 PM

533 Extension 2: 3D

color. The last unlit model is fl at-shaded, in which faces of objects are colored, but only
using their base fi ll color.
 Lighting and surface materials must be modeled for images to look more realistic.
The techniques used for calculating real-time lighting are different from the ray-tracing
and radiosity methods discussed above. Those are far too computationally expensive for
fast rendering, although it is a safe bet that the processing power available in the future
will be able to supply it. Instead, several common simplifi ed lighting techniques are used
for real-time graphics. In order to understand them, we need to introduce the model of
light and surface-material interaction that nearly all real-time 3D uses.
 The fi rst type of light interaction with a surface has no direction and is called
ambient. It is meant to model light in the environment that has bounced around so
much it is impossible to know where it originally came from. All natural daytime scenes
have a considerable amount of ambient light. Ambient lights are specifi ed with the
ambientLight() function, and they interact with the ambient color of a shape. The
ambient color of a shape is specifi ed with the ambient() function, which takes the
same parameters as fill() and stroke(). A material with an ambient color of white
(255, 255, 255) will refl ect all of the ambient light that comes into it. A face with an
ambient color of dark green (0, 128, 0) will refl ect half of the green light it receives but
none of the red or blue.
 Shapes are treated as a set of faces. For example, each of the six sides of a cube is a
single face. Each face has a normal, a direction vector that sticks straight out of it, like an
arrow that extends perpendicularly from the center of the face. The normal is used to
calculate the angle of a light relative to the object, so that objects facing the light are
brighter and objects at an angle are less so. Ambient light, since it is without direction, is
not affected by a surface’s normal, but all other types of light are. The material refl ects
light in two ways. First is diffuse refl ection. A materials has a diffuse color that affects
the amount of light that scatters in all directions when it is hit by light. When light hits
the surface head-on (in line with the normal), the surface refl ects all of its diffuse color;
when the light is at 90 degrees to the normal, the surface refl ects none. The closer to the
normal a light hits a surface, the more diffuse light it will refl ect (this is calculated using
the cosine of the angle between the incoming light and the normal). The more diffuse a
surface is, the rougher and less shiny it appears.
 Often the ambient and diffuse components of a material are manipulated together.
Physically, they are essentially the same quantity. The fill() function in Processing
sets both together, but the ambient color can be controlled separately with the
ambient() function.
 The second directional component of light is specular refl ection. This is light that is
bounced off of the surface refl ected across the normal. The more specular refl ection a
material has, the more refl ective it appears. A perfect mirror, for example, has no diffuse
refl ection and all specular refl ection. Another parameter called shininess also factors into
specular refl ection. Shininess is the rate of decay of specular refl ection as the incoming
ray deviates further from the normal. A high shininess will produce very intense bright
spots on materials, as on shiny metal. Lower shininess will still allow for specular
refl ection, but the highlights will be softer.

Reas_09_519-710.indd Sec6:533Reas_09_519-710.indd Sec6:533 5/23/07 1:07:31 PM5/23/07 1:07:31 PM

534 Extension 2: 3D

 The last component in surface lighting is emissive color. This is color that is not tied
to any incoming light source. It is the color with which a surface glows on its own. Since
emissive faces are not themselves light sources, they do not glow in a very realistic way,
so emissive color is not often useful. Mostly they are used in very dark scenes when
something must show up brightly, like a headlight.
 There are several different types of light that can be added to a scene: directional,
ambient, point, and spot. Directional lights are the only kind that do not have a position
within the scene. These lights closely approximate a light source located infi nitely far
from the scene. They hit the scene at a specifi c direction irrespective of location, so they
are a good way to simulate sunlight. Other light types have positions and are therefore
subject to falloff, the diminishing of light intensity with distance. In the real world, light
intensity falls off proportionally to the square of the distance to the source. In 3D scenes,
it is common to use little or no falloff so that fewer light sources are needed, which is
more computationally effi cient. Also, the extra light is needed because light doesn’t
bounce around a simulated scene the way it does in real life.
 The simplest positioned lights are ambient lights. These are wholly nondirectional,
and their position is used only to determine their range (falloff). Point lights model a
bare bulb hanging in a room. They have a position, and their directionality radiates
outward from that position. They shine equally in all directions—but only in a specifi c
direction relative to any other point in the scene. Spot lights have the most parameters:
position, direction, falloff, angle, and concentration. The angle affects how wide the spot
light is open. A tiny angle casts a very narrow cone of light, while a wider one lights
more of the scene. The concentration parameter affects how the light falls off near the
edge of the cone angle. Light in the center is brighter, and the edges of the cone are
darker. Spot lights require more calculations than other types of lights and can therefore
slow a program down.
 The texture of materials is an important component in a 3D scene’s realism.
Processing allows images to be mapped as textures onto the faces of objects. The
textures deform as the objects deform, stretching the images with them. In order for a
face to have an image mapped to it, the vertices of the face need to be given 2D texture
coordinates:

These coordinates tell the 3D graphics system how to stretch the images to fi t the faces.
Good texture mapping is an art. Most 3D fi le formats support the saving of texture
coordinates with object geometry. Textures are mapped to geometry using a version of
the the vertex() function with two additional parameters, u and v. These two values
are the x-coordinates and y-coordinates from the texture image and are used to map the
vertex position with which they are paired.

Geometry Texture Texture mapped to geometry

Reas_09_519-710.indd Sec6:534Reas_09_519-710.indd Sec6:534 5/23/07 1:07:31 PM5/23/07 1:07:31 PM

535 Extension 2: 3D

Example 6
The mouse moves the
 camera position.

Example 7
The mouse position
controls the specular
quality of the sphere’s
material.

Example 8
 Many types of lights
are simulated. As the
box moves with the
cursor, it catches light
from different sources.

Example 9
Textures are applied
to geometry.

Reas_09_519-710.indd Sec6:535Reas_09_519-710.indd Sec6:535 5/23/07 1:07:31 PM5/23/07 1:07:31 PM

536 Extension 2: 3D

Example 6: Camera manipulation (p. 542)
The position and orientation of the camera is set with the camera() function. There are
nine parameters, arranged in groups of three, to control the camera’s position, the
location it’s pointing to, and the orientation. In this example, the camera stays pointed at
the center of a cube, while mouseY controls its height. The result is a cube that recedes
into the distance when the mouse moves down.

Example 7: Material (p. 543)
The lightSpecular() function sets the specular color for lights. The specular quality
of a light interacts with the specular material qualities set through the specular()
function. The specular() function sets the specular color of materials, which sets the color
of the highlights. In this example, the parameters to specular() change in relation
to mouseX.

Example 8: Lighting (p. 543)
The functions that create each type of light have different parameters because each light
is unique. The pointLight() function has six parameters. The fi rst three set the color
and the last three set the light’s position. The directionalLight() function also has
six parameters, but they are different. The fi rst three set the color and the last three set
the direction the light is pointing. The spotLight() function is the most complicated,
with eleven parameters to set the color, position, direction, angle, and concentration.
This example demonstrates each of these lights as seen through their refl ection off a
cube. Lights are always reset at the end of draw() and need to be recalculated each time
through the function.

Example 9: Texture mapping (p. 544)
This example shows how to apply a texture to a fl at surface and how to apply a texture
to a series of fl at surfaces to create a curved shape. The texture() function sets the
texture that is applied through the vertex() function. A version of vertex() with fi ve
parameters uses the fi rst three to defi ne the (x,y,z) coordinate and the last two to defi ne
the (x,y) coordinate of the texture image that maps to this point in 3D. The sine and
cosine values that defi ne the geometry to which the texture is applied are predefi ned
within setup() so they don’t have to be recalculated each time through draw().

Tools for 3D

The computational engines that perform most of the work of transforming 3D scenes
into 2D representations on modern computers are either software running on a
computer’s CPU or specialized graphics processing units (GPUs), the processors on
graphics cards. There is a race among the top manufacturers of graphics chipsets—
driven largely by the demands of the video-game industry—to produce the fastest and
most highly featured hardware renderers that relieve the computer’s central processor of
most of the work of representing real-time 3D graphics. It is not uncommon for a cheap

Reas_09_519-710.indd Sec6:536Reas_09_519-710.indd Sec6:536 5/23/07 1:07:32 PM5/23/07 1:07:32 PM

537 Extension 2: 3D

GPU to be more powerful than the main processor on its host machine. For instance,
gaming consoles often use advanced GPUs alongside CPUs that are just adequate.
 At this stage in the development of consumer 3D graphics, there are only two major
standards for the description of 3D scenes to graphics hardware. One, Direct3D, is
proprietary to Microsoft and powers its gaming consoles. The other, OpenGL, is an open
standard that spun off of work from Silicon Graphics in the early 1990s and is now
maintained by a large consortium of companies and industry groups including Apple
Computer, IBM, ATI, nVidia, and Sun Microsystems. Many of the 3D language elements
implemented in Processing were infl uenced by OpenGL, and the OpenGL renderer for
Processing maps the commands from the Processing API into OpenGL commands.
 Befi tting their roles in industrial design, engineering, and architecture, today’s CAD
packages such as AutoCAD, Rhino, and Solidworks focus on precision and constraints in
the formation of their geometry. The descriptions they produce are suitable as technical
documents or even as the basis for 3D production. An important development in CAD has
been the advent of parametric design, in which designers are allowed to express abstract
relationships between elements that remain invariant even as they change other parts
of the design. For example, an architect may specify that an opening in a wall is to be a
quarter of the length of the wall. If she later changes the length of the wall, the opening
changes size as well. This becomes truly powerful when multiple relationships are
established. The length of the wall, for example, may somehow be tied to the path of the
sun, and the size of the opening will simply follow. Parametric design, as offered by
high-end CAD packages, is standard in many engineering disciplines, and is now
beginning to take hold in architecture with software like Bentley Systems’
GenerativeComponents and AutoDesk’s Revit.
 The level of precision found in CAD applications comes at the cost of sketch-like
freedom. 3D graphics for entertainment seldom requires this level of control. Animators
tend to choose packages that allow for freer form, such as Maya, 3D Studio Max, or
Blender. The designs they produce are not as amenable to analysis as CAD drawings, but
they are easier to manipulate for image making.
 There is a surprising level of similarity in the interfaces of most major 3D packages.
A user is typically offered a multipane view of a scene, in which she can see a top, front,
side workplanes, and a perspective projection simultaneously:

Y

Z

Z

Z

X

X

Y

X

Y

Top

Front

Perspective

Right

Reas_09_519-710.indd Sec6:537Reas_09_519-710.indd Sec6:537 5/23/07 1:07:32 PM5/23/07 1:07:32 PM

538 Extension 2: 3D

When operating in any of the top, front, or side planes, the software maps the mouse
position into 3D space on the appropriate plane. When operating in the perspective
projection it is harder to pick a reference plane; software varies in its solution to this
problem, but a plane will be implicitly or explicitly specifi ed.
 There are a few notable exceptions to the standard techniques for 3D interfaces.
Takeo Igarashi’s research project Teddy (1999) allows a user to sketch freely in 2D. The
resulting form is interpreted based on a few simple rules as though it were a sketch of
the 2D projection of a bulbous form. Subsequent operations on this form are similarly
sketch-based and interpreted. Users can slice, erase, or join portions of 3D objects. Teddy
is effective because it operates inside a highly constrained formal vocabulary. It would
not work as a CAD tool, but it is a highly convincing and evocative interface for 3D
sketching. The commercial software SketchUp uses a somewhat less radical but quite
ingenious way to solve the 2D input problem. As soon as a user places a base form into
the scene, all other operations are interpreted relative to workplanes implied by the
faces of existing objects. For instance, a user can select the surface of a wall, and then
subsequent mouse input will be interpreted as a projection onto that wall. This is a
particularly convenient assumption for architects since so much of the form that makes
sense can be described as extruded forms attached at right angles to others.

Conclusion

3D graphics is far too large a topic to cover thoroughly in such a small space. The goal of
this section has been to point out landmarks in the disciplines and bodies of technique
that surround 3D graphics so that the interested reader can pursue further research.
Processing provides a very good practical foundation for this kind of exploration in
interactive 3D environments. A phenomenal amount of commercial and academic
activity is occurring in computational 3D, not merely for games but also for medicine,
architecture, art, engineering, and industrial design. Almost any fi eld that deals with the
physical world has call for computational models of it, and our ability to produce
evocative simulated objects and environments is the domain of 3D graphics. Where we
will take ourselves in our new artifi cial worlds—or whether we even retain the power to
control them—is the subject of much speculation. There has never been a better time to
get involved.

Reas_09_519-710.indd Sec6:538Reas_09_519-710.indd Sec6:538 5/23/07 1:07:32 PM5/23/07 1:07:32 PM

539 Extension 2: 3D

Code

Example 1: Drawing in 3D (Transformation)

// Rotate a rectangle around the y-axis and x-axis

void setup() {

 size(400, 400, P3D);

 fill(204);

}

void draw() {

 background(0);

 translate(width/2, height/2, -width);

 rotateY(map(mouseX, 0, width, -PI, PI));

 rotateX(map(mouseY, 0, height, -PI, PI));

 noStroke();

 rect(-200, -200, 400, 400);

 stroke(255);

 line(0, 0, -200, 0, 0, 200);

}

Example 2: Drawing in 3D (Lights and 3D Shapes)

// Draw a sphere on top of a box and move the coordinates with the mouse

// Press a mouse button to turn on the lights

void setup() {

 size(400, 400, P3D);

}

void draw() {

 background(0);

 if (mousePressed == true) { // If the mouse is pressed,

 lights(); // turn on lights

 }

 noStroke();

 pushMatrix();

 translate(mouseX, mouseY, -500);

 rotateY(PI/6); // Rotate around y-axis

 box(400, 100, 400); // Draw box

 pushMatrix();

 popMatrix();

 translate(0, -200, 0); // Position the sphere

 sphere(150); // Draw sphere on top of box

 popMatrix();

}

Reas_09_519-710.indd Sec6:539Reas_09_519-710.indd Sec6:539 5/23/07 1:07:33 PM5/23/07 1:07:33 PM

540 Extension 2: 3D

Example 3: Constructing 3D form

// Draw a cylinder centered on the y-axis, going down from y=0 to y=height.

// The radius at the top can be different from the radius at the bottom,

// and the number of sides drawn is variable.

void setup() {

 size(400, 400, P3D);

}

void draw() {

 background(0);

 lights();

 translate(width/2, height/2);

 rotateY(map(mouseX, 0, width, 0, PI));

 rotateZ(map(mouseY, 0, height, 0, -PI));

 noStroke();

 fill(255, 255, 255);

 translate(0, -40, 0);

 drawCylinder(10, 180, 200, 16); // Draw a mix between a cylinder and a cone

 //drawCylinder(70, 70, 120, 64); // Draw a cylinder

 //drawCylinder(0, 180, 200, 4); // Draw a pyramid

}

void drawCylinder(float topRadius, float bottomRadius, float tall, int sides) {

 float angle = 0;

 float angleIncrement = TWO_PI / sides;

 beginShape(QUAD_STRIP);

 for (int i = 0; i < sides + 1; ++i) {

 vertex(topRadius*cos(angle), 0, topRadius*sin(angle));

 vertex(bottomRadius*cos(angle), tall, bottomRadius*sin(angle));

 angle += angleIncrement;

 }

 endShape();

 // If it is not a cone, draw the circular top cap

 if (topRadius != 0) {

 angle = 0;

 beginShape(TRIANGLE_FAN);

 // Center point

 vertex(0, 0, 0);

 for (int i = 0; i < sides + 1; i++) {

 vertex(topRadius * cos(angle), 0, topRadius * sin(angle));

 angle += angleIncrement;

 }

 endShape();

 }

 // If it is not a cone, draw the circular bottom cap

 if (bottomRadius != 0) {

 angle = 0;

 beginShape(TRIANGLE_FAN);

 // Center point

Reas_09_519-710.indd Sec6:540Reas_09_519-710.indd Sec6:540 5/23/07 1:07:33 PM5/23/07 1:07:33 PM

541 Extension 2: 3D

 vertex(0, tall, 0);

 for (int i = 0; i < sides+1; i++) {

 vertex(bottomRadius * cos(angle), tall, bottomRadius * sin(angle));

 angle += angleIncrement;

 }

 endShape();

 }

}

Example 4: DXF export

// Export a DXF file when the R key is pressed

import processing.dxf.*;

boolean record = false;

void setup() {

 size(400, 400, P3D);

 noStroke();

 sphereDetail(12);

}

void draw() {

 if (record == true) {

 beginRaw(DXF, "output.dxf"); // Start recording to the file

 }

 lights();

 background(0);

 translate(width/3, height/3, -200);

 rotateZ(map(mouseY, 0, height, 0, PI));

 rotateY(map(mouseX, 0, width, 0, HALF_PI));

 for (int y = -2; y < 2; y++) {

 for (int x = -2; x < 2; x++) {

 for (int z = -2; z < 2; z++) {

 pushMatrix();

 translate(120*x, 120*y, -120*z);

 sphere(30);

 popMatrix();

 }

 }

 }

 if (record == true) {

 endRaw();

 record = false; // Stop recording to the file

 }

}

void keyPressed() {

 if (key == 'R' || key == 'r') { // Press R to save the file

 record = true;

 }

}

Reas_09_519-710.indd Sec6:541Reas_09_519-710.indd Sec6:541 5/23/07 1:07:33 PM5/23/07 1:07:33 PM

542 Extension 2: 3D

Example 5: OBJ import

// Import and display an OBJ model

import saito.objloader.*;

OBJModel model;

void setup() {

 size(400, 400, P3D);

 model = new OBJModel(this);

 model.load("chair.obj"); // Model must be in the data directory

 model.drawMode(POLYGON);

 noStroke();

}

void draw() {

 background(0);

 lights();

 pushMatrix();

 translate(width/2, height, -width);

 rotateY(map(mouseX, 0, width, -PI, PI));

 rotateX(PI/4);

 scale(6.0);

 model.draw();

 popMatrix();

}

Example 6: Camera manipulation

// The camera lifts up while looking at the same point

void setup() {

 size(400, 400, P3D);

 fill(204);

}

void draw() {

 lights();

 background(0);

 // Change height of the camera with mouseY

 camera(30.0, mouseY, 220.0, // eyeX, eyeY, eyeZ

 0.0, 0.0, 0.0, // centerX, centerY, centerZ

 0.0, 1.0, 0.0); // upX, upY, upZ

 noStroke();

 box(90);

 stroke(255);

 line(-100, 0, 0, 100, 0, 0);

 line(0, -100, 0, 0, 100, 0);

 line(0, 0, -100, 0, 0, 100);

}

Reas_09_519-710.indd Sec6:542Reas_09_519-710.indd Sec6:542 5/23/07 1:07:33 PM5/23/07 1:07:33 PM

543 Extension 2: 3D

Example 7: Material

// Vary the specular reflection component of a material

// with vertical position of the mouse

void setup() {

 size(400, 400, P3D);

 noStroke();

 colorMode(RGB, 1);

 fill(0.4);

}

void draw() {

 background(0);

 translate(width/2, height/2);

 // Set the specular color of lights that follow

 lightSpecular(1, 1, 1);

 directionalLight(0.8, 0.8, 0.8, 0, 0, -1);

 float s = mouseX / float(width);

 specular(s, s, s);

 sphere(100);

}

Example 8: Lighting

// Draw a box with three different kinds of lights

void setup() {

 size(400, 400, P3D);

 noStroke();

}

void draw() {

 background(0);

 translate(width/2, height/2);

 // Orange point light on the right

 pointLight(150, 100, 0, // Color

 200, -150, 0); // Position

 // Blue directional light from the left

 directionalLight(0, 102, 255, // Color

 1, 0, 0); // The x-, y-, z-axis direction

 // Yellow spotlight from the front

 spotLight(255, 255, 109, // Color

 0, 40, 200, // Position

 0, -0.5, -0.5, // Direction

 PI/2, 2); // Angle, concentration

 rotateY(map(mouseX, 0, width, 0, PI));

 rotateX(map(mouseY, 0, height, 0, PI));

 box(200);

}

Reas_09_519-710.indd Sec6:543Reas_09_519-710.indd Sec6:543 5/23/07 1:07:33 PM5/23/07 1:07:33 PM

544 Extension 2: 3D

Example 9: Texture mapping

// Load an image and draw it onto a cylinder and a quad

int tubeRes = 32;

float[] tubeX = new float[tubeRes];

float[] tubeY = new float[tubeRes];

PImage img;

void setup() {

 size(400, 400, P3D);

 img = loadImage("berlin-1.jpg");

 float angle = 270.0 / tubeRes;

 for (int i = 0; i < tubeRes; i++) {

 tubeX[i] = cos(radians(i * angle));

 tubeY[i] = sin(radians(i * angle));

 }

 noStroke();

}

void draw() {

 background(0);

 translate(width/2, height/2);

 rotateX(map(mouseY, 0, height, -PI, PI));

 rotateY(map(mouseX, 0, width, -PI, PI));

 beginShape(QUAD_STRIP);

 texture(img);

 for (int i = 0; i < tubeRes; i++) {

 float x = tubeX[i] * 100;

 float z = tubeY[i] * 100;

 float u = img.width / tubeRes * i;

 vertex(x, -100, z, u, 0);

 vertex(x, 100, z, u, img.height);

 }

 endShape();

 beginShape(QUADS);

 texture(img);

 vertex(0, -100, 0, 0, 0);

 vertex(100,-100, 0, 100, 0);

 vertex(100, 100, 0, 100, 100);

 vertex(0, 100, 0, 0, 100);

 endShape();

}

Reas_09_519-710.indd Sec6:544Reas_09_519-710.indd Sec6:544 5/23/07 1:07:33 PM5/23/07 1:07:33 PM

545 Extension 2: 3D

Resources

Books and online resources
Hearn, Donald, and M. Pauline Baker. Computer Graphics: C Version. Second edition.

 Upper Saddle Prentice Hall, 1986.

Foley, James D., and Andries van Dam et al. Computer Graphics: Principles and Practice in C. Second edition.

 Addison-Wesley, 1995.

Greenwold, Simon. “Spatial Computing.” Master’s thesis, MIT Media Lab, 2003.

 http://acg.media.mit.edu/people/simong.

OpenGL Architecture Review Board. OpenGL Programming Guide. Fourth edition. Addison-Wesley, 2003.

 An earlier edition is available free, online at http://www.opengl.org/documentation/red_book.

OpenGL Architecture Review Board. OpenGL Reference Manual. Fourth edition. Addison-Wesley, 2004.

 An earlier edition is available free, online at http://www.opengl.org/documentation/blue_book.

Silicon Graphics Inc. (SGI). Computer graphics pioneer. http://en.wikipedia.org/wiki/Silicon_Graphics.

Wotsit’s Format. Web resource documenting fi le formats. http://www.wotsit.org.

Software
Blender. Open source 3D modeling and animation software. http://www.blender.org.

OpenGL. 3D Graphics format. http://www.opengl.org, http://en.wikipedia.org/wiki/Opengl.

DirectX. Microsoft’s 3D Graphics format. http://www.microsoft.com/windows/directx.

Z Corporation. Manufacturer of 3D printers. http://www.zcorp.com.

AutoCAD. 2D, 3D drafting software.

 http://www.autodesk.com/autocad, http://en.wikipedia.org/wiki/AutoCAD.

Rivit Building. Building information modeling software. http://www.autodesk.com/revitbuilding.

DXF. Widely supported 3D fi le format introduced in AutoCAD 1.0.

 http://www.autodesk.com/dxf/, http://en.wikipedia.org/wiki/DXF.

OBJ. Open 3D fi le format. http://en.wikipedia.org/wiki/Obj.

Rhino. 3D modeling software. http://www.rhino3d.com.

Solidworks. 3D modeling software. http://www.solidworks.com.

Maya. 3D modeling and animation software. http://www.autodesk.com/maya.

3D Studio Max. 3D modeling and animation software. http://www.autodesk.com/3dsmax.

GenerativeComponents. 3D Parametric design software. http://www.bentley.com.

Teddy: 3D Freeform Sketching. http://www-ui.is.s.u-tokyo.ac.jp/~takeo/teddy/teddy.htm.

SketchUp. http://www.sketchup.com.

Artworks and games
Microsoft. Flight Simulator. Documented at Flight Simulator History:

 http://fshistory.simfl ight.com/fsh/index.htm.

Sierra Entertainment. King’s Quest. Documented at Vintage-Sierra:

 http://www.vintage-sierra.com/kingsquest.html.

id Software. Wolfenstein 3D. http://en.wikipedia.org/wiki/Wolfenstein_3D.

Davies, Char. Osmose. 1995. http://www.immersence.com.

Greenwold, Simon. Installation. 2004. http://acg.media.mit.edu/people/simong/installationNew/cover.html.

Rees, Michael. Large Small and Moving. 2004. http://www.michaelrees.com/sacksmo/catalogue.html.

Reas_09_519-710.indd Sec6:545Reas_09_519-710.indd Sec6:545 5/23/07 1:07:33 PM5/23/07 1:07:33 PM

Reas_09_519-710.indd Sec6:546Reas_09_519-710.indd Sec6:546 5/24/07 9:53:18 AM5/24/07 9:53:18 AM

547

Extension 3: Vision
Text by Golan Levin

A well-known anecdote relates how, sometime in 1966, the legendary artifi cial intelli-
gence pioneer Marvin Minsky directed an undergraduate student to solve “the problem
of computer vision” as a summer project.1 This anecdote is often resuscitated to
illustrate how egregiously the diffi culty of computational vision has been
underestimated. Indeed, nearly forty years later the discipline continues to confront
numerous unsolved (and perhaps unsolvable) challenges, particularly with respect to
high-level “image understanding” issues such as pattern recognition and feature
recognition. Nevertheless, the intervening decades of research have yielded a great
wealth of well-understood, low-level techniques that are able, under controlled
circumstances, to extract meaningful information from a camera scene. These
techniques are indeed elementary enough to be implemented by novice programmers at
the undergraduate or even high-school level.

Computer vision in interactive art

The fi rst interactive artwork to incorporate computer vision was, interestingly enough,
also one of the fi rst interactive artworks. Myron Krueger’s legendary Videoplace,
developed between 1969 and 1975, was motivated by his deeply felt belief that the entire
human body ought to have a role in our interactions with computers. In the Videoplace
installation, a participant stands in front of a backlit wall and faces a video projection
screen. The participant’s silhouette is then digitized and its posture, shape, and gestural
movements analyzed. In response, Videoplace synthesizes graphics such as small
“critters” that climb up the participant’s projected silhouette, or colored loops drawn
between the participant’s fi ngers. Krueger also allowed participants to paint lines with
their fi ngers, and, indeed, entire shapes with their bodies; eventually, Videoplace offered
more than fi fty compositions and interactions. Videoplace is notable for many “fi rsts” in
the history of human-computer interaction. Some of its interaction modules allowed two
participants in mutually remote locations to participate in the same shared video space,
connected across the network—an implementation of the fi rst multiperson virtual
reality, or, as Krueger termed it, an “artifi cial reality.” Videoplace, it should be noted, was
developed before the mouse became the ubiquitous desktop device it is today, and was
(in part) created to demonstrate interface alternatives to the keyboard terminals that
dominated computing so completely in the early 1970s.
 Messa di Voce (p. 511), created by this text’s author in collaboration with Zachary
Lieberman, uses whole-body vision-based interactions similar to Krueger’s, but combines
them with speech analysis and situates them within a kind of projection-based Ra

fa
el

 L
oz

an
o-

H
em

m
er

. S
ta

nd
ar

ds
 a

nd
 D

ou
bl

e
St

an
da

rd
s,

20
04

. I
m

ag
es

 co
ur

te
sy

 o
f t

he
 b

itf
or

m
s g

al
le

ry
, n

yc
.

Reas_09_519-710.indd Sec6:547Reas_09_519-710.indd Sec6:547 5/24/07 9:52:49 AM5/24/07 9:52:49 AM

548 Extension 3: Vision

augmented reality. In this audiovisual performance, the speech, shouts, and songs
produced by two abstract vocalists are visualized and augmented in real time by
synthetic graphics. To accomplish this, a computer uses a set of vision algorithms to
track the locations of the performers’ heads; this computer also analyzes the audio
signals coming from the performers’ microphones. In response, the system displays
various kinds of visualizations on a projection screen located just behind the performers;
these visualizations are synthesized in ways that are tightly coupled to the sounds being
spoken and sung. With the help of the head-tracking system, moreover, these
visualizations are projected such that they appear to emerge directly from the
performers’ mouths.
 Rafael Lozano-Hemmer’s installation Standards and Double Standards (2004)
incorporates full-body input in a less direct, more metaphorical context. This work
consists of fi fty leather belts, suspended at waist height from robotic servomotors
mounted on the ceiling of the exhibition room. Controlled by a computer vision-based
tracking system, the belts rotate automatically to follow the public, turning their buckles
slowly to face passers-by. Lozano-Hemmer’s piece “turns a condition of pure surveillance
into an ‘absent crowd’ using a fetish of paternal authority: the belt.”2

 The theme of surveillance plays a foreground role in David Rokeby’s Sorting Daemon
(2003). Motivated by the artist’s concerns about the increasing use of automated systems
for profi ling people as part of the “war on terrorism,” this site-specifi c installation works
toward the automatic construction of a diagnostic portrait of its social (and racial)
environment. Rokeby writes: “The system looks out onto the street, panning, tilting and
zooming, looking for moving things that might be people. When it fi nds what it thinks
might be a person, it removes the person’s image from the background. The extracted
person is then divided up according to areas of similar colour. The resulting swatches of
colour are then organized [by hue, saturation and size] within the arbitrary context of
the composite image” projected onsite at the installation’s host location.3

 Another project themed around issues of surveillance is Suicide Box, by the Bureau
of Inverse Technology (Natalie Jeremijenko and Kate Rich). Presented as a device for
measuring the hypothetical “despondency index” of a given locale, the Suicide Box
nevertheless records very real data regarding suicide jumpers from the Golden Gate
Bridge. According to the artists, “The Suicide Box is a motion-detection video system,
positioned in range of the Golden Gate Bridge, San Francisco, in 1996. It watched the
bridge constantly and when it recognized vertical motion, captured it to a video record.
The resulting footage displays as a continuous stream the trickle of people who jump off
the bridge. The Golden Gate Bridge is the premiere suicide destination in the United
States; a 100-day initial deployment period of the Suicide Box recorded 17 suicides.
During the same time period the Port Authority counted only 13.”4 Elsewhere,
Jeremijenko has explained that “the idea was to track a tragic social phenomenon which
was not being counted—that is, doesn’t count.”5 The Suicide Box has met with
considerable controversy, ranging from ethical questions about recording the suicides to
disbelief that the recordings could be real. Jeremijenko, whose aim is to address the
hidden politics of technology, has pointed out that such attitudes express a recurrent
theme—“the inherent suspicion of artists working with material evidence”—evidence

Reas_09_519-710.indd Sec6:548Reas_09_519-710.indd Sec6:548 5/23/07 1:07:36 PM5/23/07 1:07:36 PM

549 Extension 3: Vision

obtained, in this case, with the help of machine vision-based surveillance.
 Considerably less macabre is Christian Möller’s clever Cheese installation (2003),
which the artist developed in collaboration with the California Institute of Technology
and the Machine Perception Laboratories of the University of California, San Diego.
Motivated, perhaps, by the culture shock of his relocation to Hollywood, the German-
born Möller directed “six actresses to hold a smile for as long as they could, up to one and
a half hours. Each ongoing smile is scrutinized by an emotion recognition system, and
whenever the display of happiness fell below a certain threshold, an alarm alerted them
to show more sincerity.”6 The installation replays recordings of the analyzed video on
six fl at-panel monitors, with the addition of a fl uctuating graphic level-meter to indicate
the strength of each actress’ smile. The technical implementation of this artwork’s
vision-based emotion recognition system is quite sophisticated.
 As can be seen from these examples, artworks employing computer vision range
from the highly formal and abstract to the humorous and sociopolitical. They concern
themselves with the activities of willing participants, paid volunteers, or unaware
strangers. They track people of interest at a wide variety of spatial scales, from extremely
intimate studies of their facial expressions, to the gestures of their limbs, to the
movements of entire bodies. The examples above represent just a small selection of
notable works in the fi eld and of the ways in which people (and objects) have been
tracked and dissected by video analysis. Other noteworthy artworks that use machine
vision include Marie Sester’s Access; Joachim Sauter and Dirk Lüsebrink’s Zerseher and
Bodymover; Scott Snibbe’s Boundary Functions and Screen Series; Camille Utterback and
Romy Achituv’s TextRain; Jim Campbell’s Solstice; Christa Sommerer and Laurent
Mignonneau’s A-Volve; Danny Rozin’s Wooden Mirror; Chico MacMurtrie’s Skeletal
Refl ection, and various works by Simon Penny, Toshio Iwai, and numerous others. No
doubt many more vision-based artworks remain to be created, especially as these
techniques gradually become incorporated into developing fi elds like physical
computing and robotics.

Elementary computer vision techniques

To understand how novel forms of interactive media can take advantage of computer
vision techniques, it is helpful to begin with an understanding of the kinds of problems
that vision algorithms have been developed to address, and of their basic mechanisms of
operation. The fundamental challenge presented by digital video is that it is
computationally “opaque.” Unlike text, digital video data in its basic form—stored solely
as a stream of rectangular pixel buffers—contains no intrinsic semantic or symbolic
information. There is no widely agreed upon standard for representing the content of
video, in a manner analogous to HTML, XML, or even ASCII for text (though some new
initiatives, notably the MPEG-7 description language, may evolve into such a standard in
the future). As a result, a computer, without additional programming, is unable to
answer even the most elementary questions about whether a video stream contains a
person or object, or whether an outdoor video scene shows daytime or nighttime, et

Reas_09_519-710.indd Sec6:549Reas_09_519-710.indd Sec6:549 5/23/07 1:07:36 PM5/23/07 1:07:36 PM

550 Extension 3: Vision

cetera. The discipline of computer vision has developed to address this need.
 Many low-level computer vision algorithms are geared to the task of distinguishing
which pixels, if any, belong to people or other objects of interest in the scene. Three
elementary techniques for accomplishing this are frame differencing, which attempts to
locate features by detecting their movements; background subtraction, which locates
visitor pixels according to their difference from a known background scene; and
brightness thresholding, which uses hoped-for differences in luminosity between
foreground people and their background environment. These algorithms, described in
the following examples, are extremely simple to implement and help constitute a base
of detection schemes from which sophisticated interactive systems may be built.

Example 1: Detecting motion (p. 556)
The movements of people (or other objects) within the video frame can be detected and
quantifi ed using a straightforward method called frame differencing. In this technique,
each pixel in a video frame F1 is compared with its corresponding pixel in the
subsequent frame F2. The difference in color and/or brightness between these two pixels
is a measure of the amount of movement in that particular location. These differences
can be summed across all of the pixels’ locations to provide a single measurement of the
aggregate movement within the video frame. In some motion detection
implementations, the video frame is spatially subdivided into a grid of cells, and the
values derived from frame differencing are reported for each of the individual cells. For
accuracy, the frame differencing algorithm depends on relatively stable environmental
lighting, and on having a stationary camera (unless it is the motion of the camera that is
being measured).

Example 2: Detecting presence (p. 557)
A technique called background subtraction makes it possible to detect the presence of
people or other objects in a scene, and to distinguish the pixels that belong to them from
those that do not. The technique operates by comparing each frame of video with a
stored image of the scene’s background, captured at a point in time when the scene was
known to be empty. For every pixel in the frame, the absolute difference is computed
between its color and that of its corresponding pixel in the stored background image;
areas that are very different from the background are likely to represent objects of
interest. Background subtraction works well in heterogeneous environments, but it is
very sensitive to changes in lighting conditions and depends on objects of interest
having suffi cient contrast against the background scene.

Example 3: Detection through brightness thresholding (p. 559)
With the aid of controlled illumination (such as backlighting) and/or surface treatments
(such as high-contrast paints), it is possible to ensure that objects are considerably
darker or lighter than their surroundings. In such cases objects of interest can be
distinguished based on their brightness alone. To do this, each video pixel’s brightness is
compared to a threshold value and tagged accordingly as foreground or background.

Reas_09_519-710.indd Sec6:550Reas_09_519-710.indd Sec6:550 5/23/07 1:07:36 PM5/23/07 1:07:36 PM

551 Extension 3: Vision

Example 1. Detects motion by comparing each video frame to the previous frame. The change is visualized
and is calculated as a number.

Example 2. Detects the presence of someone or something in front of the camera by comparing each video
frame with a previously saved frame. The change is visualized and is calculated as a number.

Example 3. Distinguishes the silhouette of people or objects in each video frame by comparing each pixel
to a threshold value. The circle is fi lled with white when it is within the silhouette.

Example 4. Tracks the brightest object in each video frame by calculating the brightest pixel. The light from
the fl ashlight is the brightest element in the frame; therefore, the circle follows it.

Reas_09_519-710.indd Sec6:551Reas_09_519-710.indd Sec6:551 5/23/07 1:07:37 PM5/23/07 1:07:37 PM

552 Extension 3: Vision

Example 4: Brightness tracking (p. 560)
A rudimentary scheme for object tracking, ideal for tracking the location of a single
illuminated point (such as a fl ashlight), fi nds the location of the single brightest pixel in
every fresh frame of video. In this algorithm, the brightness of each pixel in the
incoming video frame is compared with the brightest value yet encountered in that
frame; if a pixel is brighter than the brightest value yet encountered, then the location
and brightness of that pixel are stored. After all of the pixels have been examined, then
the brightest location in the video frame is known. This technique relies on an
operational assumption that there is only one such object of interest. With trivial
modifi cations, it can equivalently locate and track the darkest pixel in the scene, or track
multiple and differently colored objects.

Of course, many more software techniques exist, at every level of sophistication, for
detecting, recognizing, and interacting with people and other objects of interest. Each of
the tracking algorithms described above, for example, can be found in elaborated
versions that amend its various limitations. Other easy-to-implement algorithms can
compute specifi c features of a tracked object, such as its area, center of mass, angular
orientation, compactness, edge pixels, and contour features such as corners and cavities.
On the other hand, some of the most diffi cult to implement algorithms, representing the
cutting edge of computer vision research today, are able (within limits) to recognize
unique people, track the orientation of a person’s gaze, or correctly identify facial
expressions. Pseudocodes, source codes, or ready-to-use implementations of all of these
techniques can be found on the Internet in excellent resources like Daniel Huber’s
Computer Vision Homepage, Robert Fisher’s HIPR (Hypermedia Image Processing
Reference), or in the software toolkits discussed on pages 554-555.

Computer vision in the physical world

Unlike the human eye and brain, no computer vision algorithm is completely general,
which is to say, able to perform its intended function given any possible video input.
Instead, each software tracking or detection algorithm is critically dependent on certain
unique assumptions about the real-world video scene it is expected to analyze. If any of
these expectations are not met, then the algorithm can produce poor or ambiguous
results or even fail altogether. For this reason, it is essential to design physical conditions
in tandem with the development of computer vision code, and to select the software
techniques that are most compatible with the available physical conditions.
 Background subtraction and brightness thresholding, for example, can fail if the
people in the scene are too close in color or brightness to their surroundings. For these
algorithms to work well, it is greatly benefi cial to prepare physical circumstances that
naturally emphasize the contrast between people and their environments. This can be
achieved with lighting situations that silhouette the people, or through the use of
specially colored costumes. The frame-differencing technique, likewise, fails to detect
people if they are stationary. It will therefore have very different degrees of success

Reas_09_519-710.indd Sec6:552Reas_09_519-710.indd Sec6:552 5/23/07 1:07:37 PM5/23/07 1:07:37 PM

553 Extension 3: Vision

detecting people in videos of offi ce waiting rooms compared with videos of the Tour de
France bicycle race.
 A wealth of other methods exist for optimizing physical conditions in order to
enhance the robustness, accuracy, and effectiveness of computer vision software. Most
are geared toward ensuring a high-contrast, low-noise input image. Under low-light
conditions, for example, one of the most helpful such techniques is the use of infrared
(IR) illumination. Infrared, which is invisible to the human eye, can supplement the light
detected by conventional black-and-white security cameras. Using IR signifi cantly
improves the signal-to-noise ratio of video captured in low-light circumstances and can
even permit vision systems to operate in (apparently) complete darkness. Another
physical optimization technique is the use of retrorefl ective marking materials, such as
those manufactured by 3M Corporation for safety uniforms. These materials are
remarkably effi cient at refl ecting light back toward their source of illumination and are
ideal aids for ensuring high-contrast video of tracked objects. If a small light is placed
coincident with the camera’s axis, objects with retrorefl ective markers will be detected
with tremendous reliability.
 Finally, some of the most powerful physical optimizations for machine vision can be
made without intervening in the observed environment at all, through well-informed
selections of the imaging system’s camera, lens, and frame-grabber components. To take
one example, the use of a “telecentric” lens can signifi cantly improve the performance of
certain kinds of shape-based or size-based object recognition algorithms. For this type of
lens, which has an effectively infi nite focal length, magnifi cation is nearly independent
of object distance. As one manufacturer describes it, “an object moved from far away to
near the lens goes into and out of sharp focus, but its image size is constant. This
property is very important for gauging three-dimensional objects, or objects whose
distance from the lens is not known precisely.”7 Likewise, polarizing fi lters offer a
simple, nonintrusive solution to another common problem in video systems, namely
glare from refl ective surfaces. And a wide range of video cameras are available,
optimized for conditions like high-resolution capture, high-frame-rate capture, short
exposure times, dim light, ultraviolet light, and thermal imaging. It pays to research
imaging components carefully.
 As we have seen, computer vision algorithms can be selected to negotiate best the
physical conditions presented by the world, and physical conditions can be modifi ed to
be more easily legible to vision algorithms. But even the most sophisticated algorithms
and the highest-quality hardware cannot help us fi nd meaning where there is none, or
track an object that cannot be described in code. It is therefore worth emphasizing that
some visual features contain more information about the world, and are also more
easily detected by the computer, than others. In designing systems to “see for us,” we
must not only become freshly awakened to the many things about the world that make
it visually intelligible to us, but also develop a keen intuition about their ease of
computability. The sun is the brightest point in the sky, and by its height also indicates
the time of day. The mouth cavity is easily segmentable as a dark region, and the
circularity of its shape is also closely linked to vowel sound. The pupils of the eyes emit
an easy-to-track infrared retrorefl ection, and they also indicate a person’s direction of

Reas_09_519-710.indd Sec6:553Reas_09_519-710.indd Sec6:553 5/23/07 1:07:38 PM5/23/07 1:07:38 PM

554 Extension 3: Vision

gaze. Simple frame differencing makes it easy to track motion in a video. The Suicide Box
(p. 548) uses this technique to dramatic effect.

Tools for computer vision

It can be a rewarding experience to implement machine vision techniques from scratch
using code such as the examples provided in this section. To make this possible, the only
requirement of one’s software development environment is that it should provide direct
read-access to the array of video pixels obtained by the computer’s frame-grabber.
Hopefully, the example algorithms discussed earlier illustrate that creating low-level
vision algorithms from fi rst principles isn’t so hard. Of course, a vast range of
functionality can also be obtained immediately from readily available solutions. Some of
the most popular machine vision toolkits take the form of plug-ins or extension libraries
for commercial authoring environments geared toward the creation of interactive
media. Such plug-ins simplify the developer’s problem of connecting the results of the
vision-based analysis to the audio, visual, and textual affordances generally provided by
such authoring systems.
 Many vision plug-ins have been developed for Max/MSP/Jitter, a visual
programming environment that is widely used by electronic musicians and VJs.
Originally developed at the Parisian IRCAM research center in the mid-1980s and now
marketed commercially by the California-based Cycling’74 company, this extensible
environment offers powerful control of (and connectivity between) MIDI devices, real-
time sound synthesis and analysis, OpenGL-based 3D graphics, video fi ltering, network
communications, and serial control of hardware devices. The various computer vision
plug-ins for Max/MSP/Jitter, such as David Rokeby’s SoftVNS, Eric Singer’s Cyclops, and
Jean-Marc Pelletier’s CV.Jit, can be used to trigger any Max processes or control any
system parameters. Pelletier’s toolkit, which is the most feature-rich of the three, is also
the only one that is freeware. CV.Jit provides abstractions to assist users in tasks such as
image segmentation, shape and gesture recognition, and motion tracking, as well as
educational tools that outline the basics of computer vision techniques.
 Some computer vision toolkits take the form of stand-alone applications and are
designed to communicate the results of their analyses to other environments (such as
Processing, Director, or Max) through protocols like MIDI, serial RS-232, UDP, or TCP/IP
networks. BigEye, developed by the STEIM (Studio for Electro-Instrumental Music) group
in Holland, is a simple and inexpensive example. BigEye can track up to 16 objects of
interest simultaneously, according to their brightness, color, and size. The software
allows for a simple mode of operation in which the user can quickly link MIDI messages
to many object parameters, such as position, speed, and size. Another example is the
powerful EyesWeb open platform, a free system developed at the University of Genoa.
Designed with a special focus on the analysis and processing of expressive gesture,
EyesWeb includes a collection of modules for real-time motion tracking and extraction of
movement cues from human full-body movement; a collection of modules for analysis of
occupation of 2D space; and a collection of modules for extraction of features from

Reas_09_519-710.indd Sec6:554Reas_09_519-710.indd Sec6:554 5/23/07 1:07:38 PM5/23/07 1:07:38 PM

555 Extension 3: Vision

trajectories in 2D space. EyesWeb’s extensive vision affordances make it highly
recommended for students.
 The most sophisticated toolkits for computer vision generally demand greater
familiarity with digital signal processing, and they require developers to program in
compiled languages like C++ rather than languages like Java, Lingo, or Max. The Intel
Integrated Performance Primitives (IPP) library, for example, is among the most general
commercial solutions available for computers with Intel-based CPUs. The OpenCV
library, by contrast, is a free, open source toolkit with nearly similar capabilities and a
tighter focus on commonplace computer vision tasks. The capabilities of these tools, as
well as all of those mentioned above, are continually evolving.
 Processing includes a basic video library that handles getting pixel information
from a camera or movie fi le as demonstrated in the examples included with this text.
The computer vision capabilities of Processing are extended by libraries like Myron,
which handles video input and has basic image processing capabilities. Other libraries
connect Processing to EyesWeb and OpenCV. They can be found on the libraries page of
the Processing website: www.processing.org/reference/libraries.

Conclusion

Computer vision algorithms are increasingly used in interactive and other computer-
based artworks to track people’s activities. Techniques exist that can create real-time
reports about people’s identities, locations, gestural movements, facial expressions, gait
characteristics, gaze directions, and other attributes. Although the implementation of
some vision algorithms requires advanced understanding of image processing and
statistics, a number of widely used and highly effective techniques can be implemented
by novice programmers in as little as an afternoon. For artists and designers who are
familiar with popular multimedia authoring systems like Macromedia Director and
Max/MSP/Jitter, a wide range of free and commercial toolkits are also available that
provide ready access to more advanced vision functionalities.
 Since the reliability of computer vision algorithms is limited according to the
quality of the incoming video scene and the defi nition of a scene’s quality is determined
by the specifi c algorithms that are used to analyze it, students approaching computer
vision for the fi rst time are encouraged to apply as much effort to optimizing their
physical scenario as they do their software code. In many cases, a cleverly designed
physical environment can permit the tracking of phenomena that might otherwise
require much more sophisticated software. As computers and video hardware become
more available, and software-authoring tools continue to improve, we can expect to see
the use of computer vision techniques increasingly incorporated into media-art
education and into the creation of games, artworks, and many other applications.

 Notes

1. http://mechanism.ucsd.edu/~bill/research/mercier/2ndlecture.pdf.

2. http://www.fundacion.telefonica.com/at/rlh/eproyecto.html.

Reas_09_519-710.indd Sec6:555Reas_09_519-710.indd Sec6:555 5/23/07 1:07:38 PM5/23/07 1:07:38 PM

556 Extension 3: Vision

3. http://homepage.mac.com/davidrokeby/sorting.html.

4. http://www.bureauit.org/sbox.

5. http://www.wired.com/news/culture/0,1284,64720,00.html.

6. http://www.christian-moeller.com.

7. http://www.mellesgriot.com/pdf/pg11-19.pdf.

Code

Video can be captured into Processing from USB cameras, IEEE 1394 cameras, or video
cards with composite or S-video input devices. The examples that follow assume you
already have a camera working with Processing. Before trying these examples, fi rst get
the examples included with the Processing software to work. Sometimes you can plug a
camera into your computer and it will work immediately. Other times it’s a diffi cult
process involving trial-and-error changes. It depends on the operating system, the
camera, and how the computer is confi gured. For the most up-to-date information, refer
to the Video reference on the Processing website: www.processing.org/reference/libraries.

Example 1: Detecting motion

// Quantify the amount of movement in the video frame using frame-differencing

import processing.video.*;

int numPixels;

int[] previousFrame;

Capture video;

void setup(){

 size(640, 480); // Change size to 320 x 240 if too slow at 640 x 480

 video = new Capture(this, width, height, 24);

 numPixels = video.width * video.height;

 // Create an array to store the previously captured frame

 previousFrame = new int[numPixels];

}

void draw() {

 if (video.available()) {

 // When using video to manipulate the screen, use video.available() and

 // video.read() inside the draw() method so that it's safe to draw to the screen

 video.read(); // Read the new frame from the camera

 video.loadPixels(); // Make its pixels[] array available

 int movementSum = 0; // Amount of movement in the frame

 loadPixels();

 for (int i = 0; i < numPixels; i++) { // For each pixel in the video frame...

Reas_09_519-710.indd Sec6:556Reas_09_519-710.indd Sec6:556 5/23/07 1:07:38 PM5/23/07 1:07:38 PM

557 Extension 3: Vision

 color currColor = video.pixels[i];

 color prevColor = previousFrame[i];

 // Extract the red, green, and blue components from current pixel

 int currR = (currColor >> 16) & 0xFF; // Like red(), but faster (see p. 673)

 int currG = (currColor >> 8) & 0xFF;

 int currB = currColor & 0xFF;

 // Extract red, green, and blue components from previous pixel

 int prevR = (prevColor >> 16) & 0xFF;

 int prevG = (prevColor >> 8) & 0xFF;

 int prevB = prevColor & 0xFF;

 // Compute the difference of the red, green, and blue values

 int diffR = abs(currR - prevR);

 int diffG = abs(currG - prevG);

 int diffB = abs(currB - prevB);

 // Add these differences to the running tally

 movementSum += diffR + diffG + diffB;

 // Render the difference image to the screen

 pixels[i] = color(diffR, diffG, diffB);

 // The following line is much faster, but more confusing to read

 //pixels[i] = 0xff000000 | (diffR << 16) | (diffG << 8) | diffB;

 // Save the current color into the 'previous' buffer

 previousFrame[i] = currColor;

 }

 // To prevent flicker from frames that are all black (no movement),

 // only update the screen if the image has changed.

 if (movementSum > 0) {

 updatePixels();

 println(movementSum); // Print the total amount of movement to the console

 }

 }

}

Example 2: Detecting presence

// Detect the presence of people and objects in the frame using a simple

// background-subtraction technique. To initialize the background, press a key.

import processing.video.*;

int numPixels;

int[] backgroundPixels;

Capture video;

void setup() {

 size(640, 480); // Change size to 320 x 240 if too slow at 640 x 480

 video = new Capture(this, width, height, 24);

 numPixels = video.width * video.height;

Reas_09_519-710.indd Sec6:557Reas_09_519-710.indd Sec6:557 5/23/07 1:07:38 PM5/23/07 1:07:38 PM

558 Extension 3: Vision

 // Create array to store the background image

 backgroundPixels = new int[numPixels];

 // Make the pixels[] array available for direct manipulation

 loadPixels();

}

void draw() {

 if (video.available()) {

 video.read(); // Read a new video frame

 video.loadPixels(); // Make the pixels of video available

 // Difference between the current frame and the stored background

 int presenceSum = 0;

 for (int i = 0; i < numPixels; i++) { // For each pixel in the video frame...

 // Fetch the current color in that location, and also the color

 // of the background in that spot

 color currColor = video.pixels[i];

 color bkgdColor = backgroundPixels[i];

 // Extract the red, green, and blue components of the current pixel’s color

 int currR = (currColor >> 16) & 0xFF;

 int currG = (currColor >> 8) & 0xFF;

 int currB = currColor & 0xFF;

 // Extract the red, green, and blue components of the background pixel’s color

 int bkgdR = (bkgdColor >> 16) & 0xFF;

 int bkgdG = (bkgdColor >> 8) & 0xFF;

 int bkgdB = bkgdColor & 0xFF;

 // Compute the difference of the red, green, and blue values

 int diffR = abs(currR - bkgdR);

 int diffG = abs(currG - bkgdG);

 int diffB = abs(currB - bkgdB);

 // Add these differences to the running tally

 presenceSum += diffR + diffG + diffB;

 // Render the difference image to the screen

 pixels[i] = color(diffR, diffG, diffB);

 // The following line does the same thing much faster, but is more technical

 //pixels[i] = 0xFF000000 | (diffR << 16) | (diffG << 8) | diffB;

 }

 updatePixels(); // Notify that the pixels[] array has changed

 println(presenceSum); // Print out the total amount of movement

 }

}

// When a key is pressed, capture the background image into the backgroundPixels

// buffer by copying each of the current frame’s pixels into it.

void keyPressed() {

 video.loadPixels();

 arraycopy(video.pixels, backgroundPixels);

}

Reas_09_519-710.indd Sec6:558Reas_09_519-710.indd Sec6:558 5/23/07 1:07:38 PM5/23/07 1:07:38 PM

559 Extension 3: Vision

Example 3: Detection through brightness thresholding

// Determines whether a test location (such as the cursor) is contained within

// the silhouette of a dark object

import processing.video.*;

color black = color(0);

color white = color(255);

int numPixels;

Capture video;

void setup() {

 size(640, 480); // Change size to 320 x 240 if too slow at 640 x 480

 strokeWeight(5);

 video = new Capture(this, width, height, 24);

 numPixels = video.width * video.height;

 noCursor();

 smooth();

}

void draw() {

 if (video.available()) {

 video.read();

 video.loadPixels();

 int threshold = 127; // Set the threshold value

 float pixelBrightness; // Declare variable to store a pixel's color

 // Turn each pixel in the video frame black or white depending on its brightness

 loadPixels();

 for (int i = 0; i < numPixels; i++) {

 pixelBrightness = brightness(video.pixels[i]);

 if (pixelBrightness > threshold) { // If the pixel is brighter than the

 pixels[i] = white; // threshold value, make it white

 } else { // Otherwise,

 pixels[i] = black; // make it black

 }

 }

 updatePixels();

 // Test a location to see where it is contained. Fetch the pixel at the test

 // location (the cursor), and compute its brightness

 int testValue = get(mouseX, mouseY);

 float testBrightness = brightness(testValue);

 if (testBrightness > threshold) { // If the test location is brighter than

 fill(black); // the threshold set the fill to black

 } else { // Otherwise,

 fill(white); // set the fill to white

 }

 ellipse(mouseX, mouseY, 20, 20);

 }

}

Reas_09_519-710.indd Sec6:559Reas_09_519-710.indd Sec6:559 5/23/07 1:07:39 PM5/23/07 1:07:39 PM

560 Extension 3: Vision

Example 4: Brightness tracking

// Tracks the brightest pixel in a live video signal

import processing.video.*;

Capture video;

void setup(){

 size(640, 480); // Change size to 320 x 240 if too slow at 640 x 480

 video = new Capture(this, width, height, 30);

 noStroke();

 smooth();

}

void draw() {

 if (video.available()) {

 video.read();

 image(video, 0, 0, width, height); // Draw the webcam video onto the screen

 int brightestX = 0; // X-coordinate of the brightest video pixel

 int brightestY = 0; // Y-coordinate of the brightest video pixel

 float brightestValue = 0; // Brightness of the brightest video pixel

 // Search for the brightest pixel: For each row of pixels in the video image and

 // for each pixel in the yth row, compute each pixel's index in the video

 video.loadPixels();

 int index = 0;

 for (int y = 0; y < video.height; y++) {

 for (int x = 0; x < video.width; x++) {

 // Get the color stored in the pixel

 int pixelValue = video.pixels[index];

 // Determine the brightness of the pixel

 float pixelBrightness = brightness(pixelValue);

 // If that value is brighter than any previous, then store the

 // brightness of that pixel, as well as its (x,y) location

 if (pixelBrightness > brightestValue){

 brightestValue = pixelBrightness;

 brightestY = y;

 brightestX = x;

 }

 index++;

 }

 }

 // Draw a large, yellow circle at the brightest pixel

 fill(255, 204, 0, 128);

 ellipse(brightestX, brightestY, 200, 200);

 }

}

Reas_09_519-710.indd Sec6:560Reas_09_519-710.indd Sec6:560 5/23/07 1:07:39 PM5/23/07 1:07:39 PM

561 Extension 3: Vision

Resources

Computer vision software toolkits
Camurri, Antonio, et al. Eyesweb. Vision-oriented software development environment. http://www.eyesweb.org.

Cycling’74 Inc. Max/MSP/Jitter. Graphic software development environment. http://www.cycling74.com.

Davies, Bob, et al. OpenCV. Open source computer vision library. http://sourceforge.net/projects/opencvlibrary.

Nimoy, Joshua. Myron (WebCamXtra). Library (plug-in) for Macromedia Director and Processing.

 http://webcamxtra.sourceforge.net.

Pelletier, Jean-Marc. CV.Jit. Extension library for Max/MSP/Jitter. http://www.iamas.ac.jp/~jovan02/cv.

Rokeby, David. SoftVNS. Extension library for Max/MSP/Jitter.

 http://homepage.mac.com/davidrokeby/softVNS.html.

Singer, Eric. Cyclops. Extension library for Max/MSP/Jitter. http://www.cycling74.com/products/cyclops.html.

STEIM (Studio for Electro-Instrumental Music). BigEye. Video analysis software. http://www.steim.org

Texts and artworks
Bureau of Inverse Technology. Suicide Box. http://www.bureauit.org/sbox.

Bechtel, William. The Cardinal Mercier Lectures at the Catholic University of Louvain. Lecture 2, An Exemplar.

Neural Mechanism: The Brain’s Visual Processing System. 2003, p.1.

 http://mechanism.ucsd.edu/~bill/research/mercier/2ndlecture.pdf.

Fisher, Robert, et. al. HIPR (The Hypermedia Image Processing Reference).

 http://homepages.inf.ed.ac.uk/rbf/HIPR2/index.htm.

Fisher, Robert, et al. CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of

 Computer Vision. http://homepages.inf.ed.ac.uk/rbf/CVonline.

Huber, Daniel, et al. The Computer Vision Homepage. http://www-2.cs.cmu.edu/~cil/vision.html.

Krueger, Myron. Artifi cial Reality II. Addison-Wesley Professional, 1991.

Levin, Golan and Lieberman, Zachary. Messa di Voce. Interactive installation, 2003.

 http://www.tmema.org/messa.

Levin, Golan, and Zachary Lieberman. “In-Situ Speech Visualization in Real-Time Interactive Installation

 and Performance.” Proceedings of the Third International Symposium on Non-Photorealistic Animation and

 Rendering. Annecy, France, June 7-9, 2004. http://www.fl ong.com/writings/pdf/messa_NPAR_2004_150dpi.pdf.

Lozano-Hemmer, Rafael. Standards and Double Standards. Interactive installation.

 http://www.fundacion.telefonica.com/at/rlh/eproyecto.html.

Melles Griot Corporation. Machine Vision Lens Fundamentals. http://www.mellesgriot.com/pdf/pg11-19.pdf.

Möller, Christian. Cheese. Installation artwork, 2003. http://www.christian-moeller.com.

Rokeby, David. Sorting Daemon. Computer-based installation, 2003.

 http://homepage.mac.com/davidrokeby/sorting.html.

Shachtman, Noah. “Tech and Art Mix at RNC Protest.” Wired News, 27 August 2004.

 http://www.wired.com/news/culture/0,1284,64720,00.html.

Sparacino, Flavia. “(Some) computer vision based interfaces for interactive art and entertainment installations.”

 INTER_FACE Body Boundaries, issue edited by Emanuele Quinz. Anomalie no. 2. Anomos, 2001.

 http://www.sensingplaces.com/papers/Flavia_isea2000.pdf.

Reas_09_519-710.indd Sec6:561Reas_09_519-710.indd Sec6:561 5/23/07 1:07:39 PM5/23/07 1:07:39 PM

Reas_09_519-710.indd Sec6:562Reas_09_519-710.indd Sec6:562 5/24/07 9:55:54 AM5/24/07 9:55:54 AM

563

Extension 4: Network
Text by Alexander R. Galloway

Networks are complex organizational forms. They bring into association discrete entities
or nodes, allowing these nodes to connect to other nodes and indeed to other networks.
Networks exist in the world in a vast variety of forms and in even more contexts:
political, social, biological, and otherwise. While artists have used networks in many
ways—from postal networks used to disseminate work to informal networks of artistic
collaborators and larger aesthetic movements—this section looks specifi cally at a single
instance of network technology, the Internet, and how artists have incorporated this
technology into their work. There are two general trends: art making where the Internet
is used as a tool for quick and easy dissemination of the work, and art making where the
Internet is the actual medium of the work. These two trends are not mutually exclusive,
however. Some of the most interesting online work weaves the two techniques together
into exciting new forms that surpass the affordances of either technique.

The Internet and the arts

“In December 1995 Vuk Cosic got a message . . .” or so begins the tale of how “net.art,” the
niche art movement concerned with making art in and of the Internet, got its start and
its name. As Alexei Shulgin explains in a posting to the Nettime Email list two years
later, Cosic, a Slovenian artist, received an Email posted from an anonymous mailer.
Apparently mangled in transit, the message was barely legible. “The only fragment of it
that made any sense looked something like: […] J8~g#|\;Net. Art{-^s1 […].”1

 Anonymous, accidental, glitchy, and slightly apocryphal—these are all distinctive
characteristics of the net.art style, as seen in Web-based work from Cosic, Shulgin, Olia
Lialina, Jodi, Heath Bunting, and many others. As Marina Grzinic writes, the “delays in
transmission-time, busy signals from service providers, [and] crashing web browsers”
contributed greatly to the way artists envisioned the aesthetic potential of the Web, a
tendency that ran counter to the prevailing wisdom at the time of dot-com go, go, go.2
Indeed many unsuspecting users assume that Jodi’s Web-based and downloadable
software projects have as their primary goal the immediate infection and ruin of one’s
personal computer. (Upon greater scrutiny it must be granted that this is only a
secondary goal.) Perhaps peaking in 1998 with the absurd, anarchist experiments
shoveled out on the 7-11 Email list—spoofs and shenanigans were par for the course due
to the fact that the list administration tool, including subscriptions, header and footer
variables, and moderation rules, was world read-writable by any Web surfer—the net.art
movement is today viewable in captivity in such catchall publications as the hundred-
contributor-strong anthology Readme!, edited in several cities simultaneously and Sc

ho
en

er
w

is
se

n/
O

fC
D.

 M
in

ita
sk

in
g,

 2
00

2.
 Im

ag
e

co
ur

te
sy

 o
f S

ch
oe

ne
rw

is
se

n/
O

fC
D.

Reas_09_519-710.indd Sec6:563Reas_09_519-710.indd Sec6:563 5/24/07 9:54:08 AM5/24/07 9:54:08 AM

564 Extension 4: Network

published by Autonomedia in 1999; the equally ecumenical anthology NTNTNT
that emerged from CalArts in 2003; or Tilman Baumgärtel’s two volumes of interviews,
net.art (1999) and net.art 2.0 (2001).
 At the same time, buoyed by the dynamism of programming environments like Java
and Flash, artists and designers began making online work that not only was “in and of”
the Internet, but leveraged the net as a tool for quick and easy dissemination of
executable code, both browser-based and otherwise. John Maeda created a number of
sketches and games dating from the mid-1990s, including a series of interactive
calendars using visual motifs borrowed from both nature and mathematics. Joshua
Davis also emerged as an important fi gure through his online works Praystation and
Once-Upon-A-Forest. Like Maeda, Davis fused algorithmic drawing techniques with an
organic sense of composition.
 It is worth recalling the profound sense of optimism and liberation that the Web
brought to art and culture in the middle 1990s. All of a sudden tattooed skaters like
Davis were being shuttled around the globe to speak to bespectacled venture capitalists
about the possibilities of networking, generative code, and open software projects. And
bespectacled philosophers like Geert Lovink were being shuttled around the globe to
speak to tattooed skaters about—what else—the possibilities of networking, generative
code, and open software projects. Everything was topsy-turvy. Even the net.art
movement, which was in part infl uenced by Lovink’s suspicion of all things “wired” and
Californian, was nonetheless propelled by the utopian promise of networks, no matter
that sometimes those networks had to be slashed and hacked in the process. Networks
have, for several decades, acted as tonics for and inoculations against all things
centralized and authoritarian, be they Paul Baran’s 1964 schematics for routing around
both the AT&T/Bell national telephone network and the then impending sorties of
Soviet ICBMs; or the grassroots networks of the 1960s new social movements, which
would later gain the status of art in Deleuze and Guattari’s emblematic literary concept
of the “rhizome,” quite literally a grassroots model of networked being; or indeed the
much earlier and oft-cited remarks from Bertolt Brecht on the early revolutionary
potential of radio networks (reprised, famously, in Hans Magnus Enzensberger’s 1974
essay on new media “Constituents for a Theory of the Media”). In other words, the arrival
of the Web in the middle to late 1990s generated much excitement in both art and
culture, for it seemed like a harbinger for the coming of some new and quite possibly
revolutionary mode of social interaction. Or, as Cosic said once, with typical bravado,
“all art to now has been merely a substitute for the Internet.”
 It is also helpful to contextualize these remarks through reference to the different
software practices of various artists and movements. Each software environment is a
distinct medium. Each grants particular aesthetic affordances to the artist and
diminishes others. Each comes with a number of side effects that may be accentuated or
avoided, given the proclivities of the artist. So, while acknowledging that digital artists’
tools and materials tend to vary widely, it is perhaps helpful to observe that the net.art
scene (Bunting, Shulgin, Lialina, Jodi, et al.), particularly during the period 1995–2000,
coded primarily in browser-based markup languages such as HTML, with the addition of
Javascript for the execution of basic algorithms. A stripped-down, “text only” format was

Reas_09_519-710.indd Sec6:564Reas_09_519-710.indd Sec6:564 5/23/07 1:07:40 PM5/23/07 1:07:40 PM

565 Extension 4: Network

distinctive of this period. One gag used by a number of different artists was not to have a
proper homepage at all, but instead to use Apache’s default directory index of fi les and
folders. The stripped-down approach did not always deliver simplicity to the user,
however, as in the case of Jodi’s early homepage (now archived at http://wwwwwwwww.
jodi.org) in which they neglected a crucial <pre> tag and then, in an apparent attempt to
overcompensate for the fi rst glitch, encircled the page in a <blink> tag no less prickly on
the eyes as the missing <pre> tag is disorienting. The blinking page throbbed obscenely
in the browser window, one glitch thus compounding the other. Created as an
unauthorized addition to HTML by Netscape Navigator, the blink tag essentially
vanished from the Internet as Internet Explorer became more dominant in the late
1990s. So today the Jodi page doesn’t blink. One wonders which exactly is the work: the
op-art, strobe effect that appeared in the Netscape browser window during the years
when people used Netscape, or the HTML source still online today in which the work is
“explained” to any sleuth willing to trace the narrative of markup tags missing and
misplaced?
 While artists had used fi xed-width ASCII fonts and ANSI characters as design
elements long before the popularization of the Web in the mid-1990s, it was the creation
of HTML in 1993 (synchronized with its use in the newly invented Web servers and Web
browsers like Netscape) that transformed the Internet into a space for the visual arts.
HTML established itself quickly as the most infl uential mark-up language and graphic
design protocol for two reasons: fi rst, the text-only nature of HTML made it low-
bandwidth-friendly during a time when most users connected via modems and phone
lines; and second, HTML is a protocol, meaning that it acts as a common denominator
(the <blink> tag notwithstanding) bridging a wide variety of dissimilar technical
platforms. But, as seen in the work of Davis, which gravitates toward Flash but also
includes Web, print, and video, one must not overemphasize HTML as an aesthetic
medium. During this same period the network delivery of executable code (Java applets,
Flash, Shockwave, and so on) also became more and more exciting as a medium for art-
making, as did CUSeeMe, Web radio, video, and other streaming content that operates
outside of the normal bounds of the browser frame. John Simon’s 1997 Every Icon was
written as a Java applet and therefore easily deliverable online as executable code. In
what Lev Manovich has dubbed “Generation Flash,” a whole new community sprang up,
involving artists like Yugo Nakamura, Matt Owens, and James Paterson and intersecting
with both dot-com startups like i|o 360° and Razorfi sh (or the artist’s own design shops)
and indie youth culture. Their medium is not solely the text-only markup codes of HTML
but also the more sophisticated Macromedia languages (ActionScript and Lingo) as well
as Javascript, Java, and server-side languages like Perl and PHP.

Internet protocols and concepts

In order to understand how online works are made and viewed, it will be useful to
address a number of key concepts in the area of computer networking. A computer
network consists of two or more machines connected via a data link. If a networked

Reas_09_519-710.indd Sec6:565Reas_09_519-710.indd Sec6:565 5/23/07 1:07:40 PM5/23/07 1:07:40 PM

566 Extension 4: Network

computer acts primarily as a source of data, it is called a server. A server typically has a
fi xed address, is online continuously, and functions as a repository for fi les which are
transmitted back to any other computers on the network that request them. If a
networked computer acts primarily as a solicitor of information, it is called a client. For
example, in checking one’s Email, one acts as a client. Likewise, the machine where the
Email is stored (the machine named after the @ sign in the Email address) acts as a
server. These terms are fl exible; a machine may act as a server in one context and as a
client in another.
 Any machine connected to the Internet, be it client or server, is obligated to have an
address. On the Internet these addresses are called IP addresses and come in the form
123.45.67.89. (A new addressing standard is currently being rolled out that makes the
addresses slightly longer.) Since IP addresses change from time to time and are diffi cult
to remember, a system of natural-language shortcuts called the Domain Name System
(DNS) allows IP addresses to be substituted by domain names such as “processing.org” or
“google.com.” In a Web address the word immediately preceding the domain name is the
host name; for Web servers it is customary to name the host machine “www” after the
World Wide Web. But this is only customary. In fact a Web server’s host name can be
most anything at all.
 One of the main ways in which visual artists have used the Internet in their work is
to conceive of the network as one giant database, an input stream that may be spidered,
scanned, and parsed using automated clients. This is an artistic methodology that
acknowledges the fundamental mutability of data (what programmers call “casting” a
variable from one data type to another) and uses various data sources as input streams
to power animations, to populate arrays of numbers with pseudo-random values, to
track behavior, or quite simply for “content.” Lisa Jevbratt’s work 1:1 does this through the
premise that every IP address might be represented by a single pixel. Her work scans the
IP address namespace, number by number, pinging each address to determine whether a
machine is online at that location. The results are visualized as pixels in a gigantic
bitmap that, quite literally, represents the entire Internet (or at least all those machines
with fi xed IP addresses). In a very different way, Mark Napier’s two works Shredder and
Digital Landfi ll rely on a seemingly endless infl ux of online data, rearranging and
overlaying source material in ways unintended by the original creators. Works like
Carnivore (more on this below) and Minitasking approach the network itself as a data
source, the former tapping into real-time Web traffi c, and the latter tapping into real-
time traffi c on the Gnutella peer-to-peer network. Earlier works such as I/O/D 4 (known
as “The Webstalker”), or Jodi’s Wrongbrowser series of alternative Web browsers also
illustrate this approach, that the network itself is the art. All of these works automate
the process of grabbing data from the Internet and manipulating it in some way. One of
the most common types is a Web client, a piece of software that automates the process of
requesting and receiving remote fi les on the World Wide Web.

Reas_09_519-710.indd Sec6:566Reas_09_519-710.indd Sec6:566 5/23/07 1:07:40 PM5/23/07 1:07:40 PM

567 Extension 4: Network

Example 1: Web client (p. 572)
Processing’s Net library includes ready-made classes for both servers and clients. In order
to fetch a page from the Web, fi rst one creates a client and connects to the address of the
remote server. Using a simple call-and-response technique, the client requests the fi le,
and the fi le is returned by the server. This call-and-response is defi ned by a protocol
called Hypertext Transfer Protocol (HTTP). HTTP consists of a handful of simple
commands that are used to describe the state of the server and client, to request fi les,
and to post data back to the server if necessary. The most basic HTTP command is GET.
This command is similar to fi lling out a book request form in a library: the client
requests a fi le by name, the server “gets” that fi le and returns it to the client. HTTP also
includes a number of response codes to indicate that the fi le was found successfully, or
to indicate if any errors were encountered (for example, if the requested fi le doesn’t
exist). The command GET / HTTP/1.0\n means that the client is requesting the default
fi le in the root web directory (/) and that the client is able to communicate using HTTP
version 1.0. The trailing \n is the newline character, or roughly equivalent to hitting the
return key. If the default fi le exists, the server transmits it back to the client.

While most computers have only a single Ethernet port (or wireless connection), the
entire connectivity of each machine is able to sustain more connections than a single
input or output, because the concept of a port is abstracted into software and the
functionality of the port is thus duplicated many times over. In this way each networked
computer is able to multitask its single network connection across scores of different
connections (there are 1,024 well-known ports, and 65,535 ports in all). Thus ports allow a
networked computer to communicate simultaneously on a large number of “channels”
without blocking other channels or impeding the data fl ow of applications. For example,
it is possible to read Email and surf the Web simultaneously because Email arrives
through one port while Web pages use another. The union of IP address and port number
(example: 123.45.67.89:80) is called a socket. Socket connections are the bread and butter
of networking.

Example 2: Shared drawing canvas (p. 572)
Using the Processing Net library, it is possible to create a simple server. The example
shows a server that shares a drawing canvas between two computers. In order to open a
socket connection, a server must select a port on which to listen for incoming clients and
through which to communicate. Although any port number may be used, it is best
practice to avoid using port numbers already assigned to other network applications and
protocols. Once the socket is established, a client may connect to the server and send or
receive commands and data.
 Paired with this server, the Processing Client class is instantiated by specifying a
remote address and port number to which the socket connection should be made. Once
the connection is made, the client may read (or write) data to the server. Because clients
and servers are two sides of the same coin, the code examples are nearly identical for
both. For this example, current and previous mouse coordinates are sent between client
and server several times per second.

Reas_09_519-710.indd Sec6:567Reas_09_519-710.indd Sec6:567 5/23/07 1:07:40 PM5/23/07 1:07:40 PM

568 Extension 4: Network

Example 3: Yahoo! Search SDK (p. 574)
As the Internet evolves from a relatively simple network of fi les and servers into a
network where data is vended in more customized and focused ways, the capability of
Web clients to target specifi c data sources on the net will become more and more
prevalent. Consider the difference between surfi ng to a weather website to learn the
current temperature, versus pinging a Web service with a ZIP code and having that server
reply with a single number referring to the Fahrenheit temperature for that ZIP code. For
the Web programmer, this evolution is welcome because it greatly simplifi es the act of
fetching and parsing online data by uncoupling those data from the sea of unnecessary
HTML text that surrounds them on any typical Web page. One such Web service is the
Yahoo! search engine. Using the Yahoo! Search SDK, it is possible to issue search queries
programmatically. (This circumvents the former technique of using an HTTP client to
post and receive search engine queries, which then must be stripped of HTML and parsed
as variables.) The Yahoo! Search SDK essentially black-boxes the Web connection. This
example uses the SDK to connect to the Yahoo! server and search for “processing.org.” By
default it returns the fi rst twenty results, but that number can be adjusted. For each
result, the web page title and its URL are printed to the console.

Example 4: Carnivore client (p. 575)
If a lower-level examination of the fl ows of data networks is desired, the Carnivore
library for Processing allows the programmer to run a packet sniffer from within the
Processing environment. A packet sniffer is any application that is able to
indiscriminately eavesdrop on data traffi c traveling through a local area network (LAN),
even traffi c not addressed to the machine running the sniffer. While this might sound
unorthodox, and indeed a machine running a sniffer is described as being in
“promiscuous mode,” packet-sniffi ng technologies are as ubiquitous as the Internet
itself and just as old. Systems administrators use packet sniffers to troubleshoot
networking bugs. All Macintosh machines ship with the packet sniffer tcpdump
preinstalled, while Windows and Linux users have an assortment of free sniffers
(including tcpdump and its variants) to choose from. The Carnivore library for Processing
merely simplifi es the act of sniffi ng packets, making real-time traffi c monitoring simple
and easy to implement for any artist wishing to do so. Packets captured via Carnivore
can be visualized in map form, parsed for keywords, or simply used for any type of
algorithm that requires a steady stream of nonrandom event triggers.

Carnivore is a good stepping stone into the fi nal area of computer networking discussed
here, the Internet protocols. A protocol is a technological standard. The Internet protocols
are a series of documents that describe how to implement standard Internet
technologies such as data routing, handshaking between two machines, network
addressing, and many other technologies. Two protocols have already been discussed—
HTML, which is the language protocol for hypertext layout and design; and HTTP, which
is the protocol for accessing Web-accessible fi les—but there are a few other protocols
worth discussing in this context.

Reas_09_519-710.indd Sec6:568Reas_09_519-710.indd Sec6:568 5/23/07 1:07:41 PM5/23/07 1:07:41 PM

569 Extension 4: Network

 Protocols are abstract concepts, but they are also quite material and manifest
themselves in the form of structured data headers that prepend and encapsulate all
content traveling through the Internet. For example, in order for a typical HTML page to
travel from server to client, the page is prepended by an HTTP header (a few lines of text
similar to the GET command referenced previously). This glob of data is itself prepended
by two additional headers, fi rst a Transmission Control Protocol (TCP) header and next
by an Internet Protocol (IP) header. Upon arrival at its destination, the message is
unwrapped: the IP header is removed, followed by the TCP header, and fi nally the HTTP
header is removed to reveal the original HTML page. All of this is done in the blink of an
eye. All headers contain useful information about the packet. But perhaps the four most
useful pieces of information are the sender IP address, receiver IP address, sender port,
and receiver port. These four pieces are signifi cant because they indicate the network
addresses of the machines in question, plus, via a reverse lookup of the port numbers,
the type of data being transferred (port 80 indicating Web data, port 23 indicating a
Telnet connection, and so on). See the /etc/services fi le on any Macintosh, Linux, or UNIX
machine, or browse IANA’s registry for a complete listing of port numbers. The addresses
are contained in the IP header from byte 12 to byte 29 (counting from 0), while the ports
are contained in bytes zero through three of the TCP header.
 The two elements of the socket connection (IP address and port) are separated into
two different protocols because of the different nature of IP and TCP. The IP protocol is
concerned with routing data from one place to another and hence requires having an IP
address in order to route correctly but cares little about the type of data in its payload.
TCP is concerned with establishing a virtual circuit between server and client and thus
requires slightly more information about the type of Internet communication being
attempted. IP and TCP work so closely together that they are often described in one
breath as the “TCP/IP suite.”
 While most data on the Internet relies on the TCP/IP suite to get around, certain
forms of networked communication are better suited to the UDP/IP combination. User
Datagram Protocol (UDP) has a much leaner implementation than TCP, and while it
therefore sacrifi ces many of the features of TCP it is nevertheless useful for stateless data
connections and connections that require a high throughput of packets per second, such
as online games.

Network tools

There are a number of existing network tools that a programmer may use beyond the
Processing environment. Carnivore and tcpdump, two different types of packet sniffers
that allow one to receive LAN packets in real time, have already been mentioned. The
process of scanning networks for available hosts, called network discovery, is also
possible using port scanner tools such as Nmap. These tools use a variety of methods for
looping through a numerical set of IP addresses (example: 192.168.1.x where x is
incremented from 0 to 255), testing to see if a machine responds at that address. Then if a
machine is known to be online, the port scanner is used to loop through a range of ports

Reas_09_519-710.indd Sec6:569Reas_09_519-710.indd Sec6:569 5/23/07 1:07:41 PM5/23/07 1:07:41 PM

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Version| IHL |Type of Service| Total Length |
+-+
| Identification |Flags| Fragment Offset |
+-+
| Time to Live | Protocol | Header Checksum |
+-+
| Source Address |
+-+
| Destination Address |
+-+
| Options | Padding |
+-+
Internet Datagram Header (Source: RFC 791, Sept 1981)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
+-+
TCP Header (Source: RFC 793, Sept 1981)

Headers
These diagrams specify how information in the IP and TCP headers are organized.
IP addresses for sender and receiver are indicated, as well as other vital information
such as the packet’s “time to live” and checksums to ensure the integrity of the payload.

Reas_09_519-710.indd Sec6:570Reas_09_519-710.indd Sec6:570 5/23/07 1:07:41 PM5/23/07 1:07:41 PM

571 Extension 4: Network

on the machine (example: 192.168.1.1:x where x is a port number incremented from 1 to
1024) in order to determine which ports are open, thereby determining which
application services are available. Port scans can also be used to obtain “fi ngerprints” for
remote machines, which aid in the identifi cation of the machine’s current operating
system and type and version information for known application services.
 Perhaps the most signifi cant advance in popular networking since the emergence of
the Web in the mid-1990s was the development of the Gnutella protocol in 2000. Coming
on the heels of Napster, Gnutella fully distributed the process of fi le sharing and transfer,
but also fully distributed the network’s search algorithm, a detail that had created
bottlenecks (not to mention legal liabilities) for the more centralized Napster. With a
distributed search algorithm, search queries hopscotch from node to node, just like the
“hot potato” method used in IP routing; they do not pass through any centralized server.
The Gnutella protocol has been implemented in dozens of peer-to-peer applications.
Several open source Gnutella “cores” are also available for use by developers, including
the Java core for Limewire, which with a little ingenuity could easily be linked to
Processing.
 More recently, Bittorent, a peer-to-peer application that allows fi le transfers to
happen simultaneously between large numbers of users, has been in wide use,
particularly for transfers of large fi les such as video and software.
 Many software projects requiring networked audio have come to rely on the Open
Sound Control (OSC) protocol. OSC is a protocol for communication between multimedia
devices such as computers and synthesizers. OSC has been integrated into SuperCollider
and Max/MSP and has been ported to most modern languages including Perl and Java.
Andreas Schlegel’s “oscP5” is an OSC extension library for Processing.

Conclusion

Programmers are often required to consider interconnections between webs of objects
and events. Because of this, programming for networks is a natural extension of
programming for a single machine. Classes send messages to other classes just like hosts
send messages to other hosts. An object has an interface, and so does an Ethernet
adapter. The algorithmic construction of entities in dialog—pixels, bits, frames, nodes—
is central to what Processing is all about. Networking these entities by moving some of
them to one machine and some to another is but a small additional step. What is
required, however, is a knowledge of the various standards and techniques at play when
bona fi de networking takes place.
 Historically, there have been two basic strands of networked art: art where the
network is used as the actual medium of art-making, or art where the network is used as
the transportation medium for dissemination of the work. The former might be
understood as art of the Internet, while the latter as art for the Internet. The goal of this
text has been to introduce some of the basic conditions, both technological and aesthetic,
for making networked art, in the hopes that entirely new techniques and approaches
will spring forth in the future as both strands blend together into exciting new forms.

Reas_09_519-710.indd Sec6:571Reas_09_519-710.indd Sec6:571 5/23/07 1:07:41 PM5/23/07 1:07:41 PM

572 Extension 4: Network

 Notes

1. Alexei Shulgin, “Net.Art - the origin,” Nettime mailing list archives, 18 March 1997,

 http://nettime.org/Lists-Archives/nettime-l-9703/msg00094.html.

2. Marina Grzinic, “Exposure Time, the Aura, and Telerobotics,” in The Robot in the Garden: Telerobotics and

 Telepistemology in the Age of the Internet, edited by Ken Goldberg (MIT Press, 2000), p. 215.

Code

Example 1: Web client

// A simple Web client using HTTP

import processing.net.*;

Client c;

String data;

void setup() {

 size(200, 200);

 background(50);

 fill(200);

 c = new Client(this, "www.processing.org", 80); // Connect to server on port 80

 c.write("GET / HTTP/1.0\n"); // Use the HTTP "GET" command to ask for a Web page

 c.write("Host: my_domain_name.com\n\n”); // Be polite and say who we are

}

void draw() {

 if (c.available() > 0) { // If there's incoming data from the client...

 data += c.readString(); // ...then grab it and print it

 println(data);

 }

}

Example 2A: Shared drawing canvas (server)

import processing.net.*;

Server s;

Client c;

String input;

int data[];

void setup() {

 size(450, 255);

 background(204);

 stroke(0);

 frameRate(5); // Slow it down a little

 s = new Server(this, 12345); // Start a simple server on a port

}

Reas_09_519-710.indd Sec6:572Reas_09_519-710.indd Sec6:572 5/23/07 1:07:41 PM5/23/07 1:07:41 PM

573 Extension 4: Network

void draw() {

 if (mousePressed == true) {

 // Draw our line

 stroke(255);

 line(pmouseX, pmouseY, mouseX, mouseY);

 // Send mouse coords to other person

 s.write(pmouseX + " " + pmouseY + " " + mouseX + " " + mouseY + "\n");

 }

 // Receive data from client

 c = s.available();

 if (c != null) {

 input = c.readString();

 input = input.substring(0, input.indexOf("\n")); // Only up to the newline

 data = int(split(input, ' ')); // Split values into an array

 // Draw line using received coords

 stroke(0);

 line(data[0], data[1], data[2], data[3]);

 }

}

Example 2B: Shared drawing canvas (client)

import processing.net.*;

Client c;

String input;

int data[];

void setup() {

 size(450, 255);

 background(204);

 stroke(0);

 frameRate(5); // Slow it down a little

 // Connect to the server’s IP address and port

 c = new Client(this, "127.0.0.1", 12345); // Replace with your server’s IP and port

}

void draw() {

 if (mousePressed == true) {

 // Draw our line

 stroke(255);

 line(pmouseX, pmouseY, mouseX, mouseY);

 // Send mouse coords to other person

 c.write(pmouseX + " " + pmouseY + " " + mouseX + " " + mouseY + "\n");

 }

 // Receive data from server

 if (c.available() > 0) {

 input = c.readString();

 input = input.substring(0,input.indexOf("\n")); // Only up to the newline

 data = int(split(input, ' ')); // Split values into an array

 // Draw line using received coords

Reas_09_519-710.indd Sec6:573Reas_09_519-710.indd Sec6:573 5/23/07 1:07:42 PM5/23/07 1:07:42 PM

574 Extension 4: Network

 stroke(0);

 line(data[0], data[1], data[2], data[3]);

 }

}

Example 3: Yahoo! API

// Download the Yahoo! Search SDK from http://developer.yahoo.com/download

// Inside the download, find the yahoo_search-2.X.X.jar file somewhere inside

// the "Java" subdirectory. Drag the jar file to your sketch and it will be

// added to your 'code' folder for use.

// This example is based on the Yahoo! API example

// Replace this with a developer key from http://developer.yahoo.com

String appid = "YOUR_DEVELOPER_KEY_HERE";

SearchClient client = new SearchClient(appid);

String query = "processing.org";

WebSearchRequest request = new WebSearchRequest(query);

// (Optional) Set the maximum number of results to download

//request.setResults(30);

try {

 WebSearchResults results = client.webSearch(request);

 // Print out how many hits were found

 println("Displaying " + results.getTotalResultsReturned() +

 " out of " + results.getTotalResultsAvailable() + " hits.");

 println();

 // Get a list of the search results

 WebSearchResult[] resultList = results.listResults();

 // Loop through the results and print them to the console

 for (int i = 0; i < resultList.length; i++) {

 // Print out the document title and URL.

 println((i + 1) + ".");

 println(resultList[i].getTitle());

 println(resultList[i].getUrl());

 println();

 }

// Error handling below; see the documentation of the Yahoo! API for details

} catch (IOException e) {

 println("Error calling Yahoo! Search Service: " + e.toString());

 e.printStackTrace();

} catch (SearchException e) {

 println("Error calling Yahoo! Search Service: " + e.toString());

 e.printStackTrace();

}

Reas_09_519-710.indd Sec6:574Reas_09_519-710.indd Sec6:574 5/23/07 1:07:42 PM5/23/07 1:07:42 PM

575 Extension 4: Network

Example 4: Carnivore client

// Note: requires Carnivore Library for Processing v2.2 (http://r-s-g.org/carnivore)

// Windows, first install winpcap (http://winpcap.org)

// Mac, first open a Terminal and execute this commmand: sudo chmod 777 /dev/bpf*

// (must be done each time you reboot your Mac)

import java.util.Iterator;

import org.rsg.carnivore.*;

import org.rsg.carnivore.net.*;

HashMap nodes = new HashMap();

float startDiameter = 100.0;

float shrinkSpeed = 0.97;

int splitter, x, y;

PFont font;

void setup(){

 size(800, 600);

 background(255);

 frameRate(10);

 Log.setDebug(true); // Uncomment this for verbose mode

 CarnivoreP5 c = new CarnivoreP5(this);

 //c.setVolumeLimit(4);

 // Use the "Create Font" tool to add a 12 point font to your sketch,

 // then use its name as the parameter to loadFont().

 font = loadFont("CourierNew-12.vlw");

 textFont(font);

}

void draw() {

 background(255);

 drawNodes();

}

// Iterate through each node

synchronized void drawNodes() {

 Iterator it = nodes.keySet().iterator();

 while (it.hasNext()){

 String ip = (String)it.next();

 float d = float(nodes.get(ip).toString());

 // Use last two IP address bytes for x/y coords

 splitter = ip.lastIndexOf(".");

 y = int(ip.substring(splitter+1)) * height / 255; // Scale to applet size

 String tmp = ip.substring(0,splitter);

 splitter = tmp.lastIndexOf(".");

 x = int(tmp.substring(splitter+1)) * width / 255; // Scale to applet size

 // Draw the node

 stroke(0);

 fill(color(100, 200)); // Rim

Reas_09_519-710.indd Sec6:575Reas_09_519-710.indd Sec6:575 5/23/07 1:07:42 PM5/23/07 1:07:42 PM

576 Extension 4: Network

 ellipse(x, y, d, d); // Node circle

 noStroke();

 fill(color(100, 50)); // Halo

 ellipse(x, y, d + 20, d + 20);

 // Draw the text

 fill(0);

 text(ip, x, y);

 // Shrink the nodes a little

 nodes.put(ip, str(d * shrinkSpeed));

 }

}

// Called each time a new packet arrives

synchronized void packetEvent(CarnivorePacket packet){

 println("[PDE] packetEvent: " + packet);

 // Remember these nodes in our hash map

 nodes.put(packet.receiverAddress.toString(), str(startDiameter));

 nodes.put(packet.senderAddress.toString(), str(startDiameter));

}

Resources

Network software toolkits
Fenner, Bill, et al. Tcpdump. Packet sniffer, 1991. http://www.tcpdump.org.

Frankel, Justin, Tom Pepper, et al. Gnutella. Peer-to-peer network protocol, 2000.

 http://rfc-gnutella.sourceforge.net.

Google. Google Web APIs. Web service, 2004. http://www.google.com/apis.

Saito, Tatsuya. Google API Processing library, Extension library for Processing, 2005.

 http://www.processing.org/reference/libraries.

Internet Engineering Task Force (IETF). Standards-making organization. http://www.ietf.org.

Fyodor. Nmap. Port scanner, 1997. http://www.insecure.org/nmap.

RSG. Carnivore. Data monitoring toolkit, 2001. http://r-s-g.org/carnivore.

RSG. Carnivore Library for Processing. Extension library for Processing, 2005.

 http://r-s-g.org/carnivore/processing.php.

World Wide Web Consortium (W3C). Standards-making organization. http://www.w3.org.

Wright, Matt, et al. Open Sound Control (OSC). Audio networking protocol, 1997.

 http://www.cnmat.berkeley.edu/OpenSoundControl.

Schlegel, Andreas. oscP5. OSC extension library for Processing, 2004. http://www.sojamo.de/iv/index.php?n=11.

Texts and artworks
Baumgärtel, Tilman, ed. Net.art 2.0: New Materials towards Net Art. Verlag Für Moderne Kunst Nürnberg, 2001.

Baumgärtel, Tilman, ed. Net.art: Materialien zur Netzkunst. Verlag Für Moderne Kunst Nürnberg, 1999.

Bosma, Josephine, et al., eds., Readme! Autonomedia, 1999.

Reas_09_519-710.indd Sec6:576Reas_09_519-710.indd Sec6:576 5/23/07 1:07:42 PM5/23/07 1:07:42 PM

577 Extension 4: Network

Brown, Jason, ed., NTNTNT. CalArts School of Art, 2003.

Davis, Joshua. Praystation.com. Website, 1999. http://praystation.com.

Davis, Joshua. Praystation Harddrive (CD-ROM). Systems Design Limited, 2001.

Hall, Eric. Internet Core Protocols: The Defi nitive Guide. O’Reilly, 2000.

Escape. I/O/D 4: “The Web Stalker.” Software application, 1997. http://www.backspace.org/iod.

Grzinic, Marina. “Exposure Time, the Aura, and Telerobotics,” in The Robot in the Garden: Telerobotics and

 Telepistemology in the Age of the Internet, edited by Ken Goldberg. MIT Press, 2000.

Internet Assigned Numbers Authority (IANA). List of port numbers.

 http://www.iana.org/assignments/port-numbers.

Jodi. %Location | http://wwwwwwwww.jodi.org. Website, 1995. http://wwwwwwwww.jodi.org.

Jodi. Wrongbrowser. Software application, 2001. http://www.wrongbrowser.com.

Jevbratt, Lisa. 1:1. Website, 1999. http://www.c5corp.com/1to1.

Nakamura, Yugo. Yugop.com. Website, 1999. http://yugop.com.

Napier, Mark. The Digital Landfi ll. Website, 1998. http://www.potatoland.org/landfi ll.

Napier, Mark. Shredder. Website, 1998. http://www.potatoland.org/shredder.

Owens, Matt. Volumeone. Website and design studio, 1997. http://www.volumeone.com.

Paterson, James. Presstube. Website, 2002. http://www.presstube.com.

Postel, Jonathan, et al. “Internet Protocol.” RFC 791, September 1981.

Postel, Jonathan, et al. “Transmission Control Protocol.” RFC 793, September 1981.

Shulgin, Alexei. “Net.Art – the origin.” Netttime mailing list archives, 18 March 1997.

 http://amsterdam.nettime.org/Lists-Archives/nettime-l-9703/msg00094.html.

Simon, John F. Jr. Every Icon. Java applet, 1997. http://www.numeral.com/everyicon.html.

Schoenerwissen/OfCD. Minitasking. Software application, 2002. http://minitasking.com.

Stevens, W. Richard. TCP/IP Illustrated. Volume 1, The Protocols. Addison-Wesley, 1994.

Reas_09_519-710.indd Sec6:577Reas_09_519-710.indd Sec6:577 5/23/07 1:07:42 PM5/23/07 1:07:42 PM

Reas_09_519-710.indd Sec6:578Reas_09_519-710.indd Sec6:578 5/24/07 10:43:13 AM5/24/07 10:43:13 AM

579

Extension 5: Sound
Text by R. Luke DuBois

The history of music is, in many ways, the history of technology. From developments in
the writing and transcription of music (notation) to the design of spaces for the
performance of music (acoustics) to the creation of musical instruments, composers and
musicians have availed themselves of advances in human understanding to perfect and
advance their professions. Unsurprisingly, therefore, we fi nd that in the machine age
these same people found themselves fi rst in line to take advantage of the new
techniques and possibilities offered by electricity, telecommunications, and, in the last
century, digital computers to leverage all of these systems to create new and expressive
forms of sonic art. Indeed, the development of phonography (the ability to reproduce
sound mechanically) has, by itself, had such a transformative effect on aural culture that
it seems inconceivable now to step back to an age where sound could emanate only from
its original source.1 The ability to create, manipulate, and losslessly reproduce sound by
digital means is having, at the time of this writing, an equally revolutionary effect on
how we listen. As a result, the artist today working with sound has not only a huge array
of tools to work with, but also a medium exceptionally well suited to technological
experimentation.

Music and sound programming in the arts

Thomas Edison’s 1857 invention of the phonograph and Nikola Tesla’s wireless radio
demonstration of 1893 paved the way for what was to be a century of innovation in the
electromechanical transmission and reproduction of sound. Emile Berliner’s
gramophone record (1887) and the advent of AM radio broadcasting under Guglielmo
Marconi (1922) democratized and popularized the consumption of music, initiating a
process by which popular music quickly transformed from an art of minstrelsy into a
commodifi ed industry worth tens of billions of dollars worldwide.2 New electronic
musical instruments, from the large and impractical telharmonium to the simple and
elegant theremin multiplied in tandem with recording and broadcast technologies and
prefi gured the synthesizers, sequencers, and samplers of today. Many composers of the
time were, not unreasonably, entranced by the potential of these new mediums of
transcription, transmission, and performance. Luigi Russolo, the futurist composer,
wrote in his 1913 manifesto The Art of Noises of a futurist orchestra harnessing the power
of mechanical noisemaking (and phonographic reproduction) to “liberate” sound from
the tyranny of the merely musical. John Cage, in his 1937 monograph Credo: The Future of
Music, wrote this elliptical doctrine:

Reas_09_519-710.indd Sec6:579Reas_09_519-710.indd Sec6:579 5/24/07 10:42:50 AM5/24/07 10:42:50 AM

580 Extension 5: Sound

The use of noise to make music will continue and increase until we reach a music produced through the aid of

electrical instruments which will make available for musical purposes any and all sounds that can be heard.

Photoelectric, fi lm, and mechanical mediums for the synthetic production of music will be explored. Whereas, in

the past, the point of disagreement has been between dissonance and consonance, it will be, in the immediate

future, between noise and so-called musical sounds.3

The invention and wide adoption of magnetic tape as a medium for the recording of
audio signals provided a breakthrough for composers waiting to compose purely with
sound. In the early postwar period, the fi rst electronic music studios fl ourished at radio
stations in Paris (ORTF) and Cologne (WDR). The composers at the Paris studio, most
notably Pierre Henry and Pierre Schaeffer, developed the early compositional technique
of musique concrète, working directly with recordings of sound on phonographs and
magnetic tape to construct compositions through a process akin to what we would now
recognize as sampling. Schaeffer’s Étude aux chemins de fer (1948) and Henry and
Schaeffer’s Symphonie pour un homme seul are classics of the genre. Meanwhile, in
Cologne, composers such as Herbert Eimart and Karlheinz Stockhausen were
investigating the use of electromechanical oscillators to produce pure sound waves that
could be mixed and sequenced with a high degree of precision. This classic elektronische
music was closely tied to the serial techniques of the contemporary modernist avant-
garde, who were particularly well suited aesthetically to become crucial advocates for the
formal quantifi cation and automation offered by electronic and, later, computer music.4
The Columbia-Princeton Electronic Music Center, founded by Vladimir Ussachevsky, Otto
Luening, Milton Babbitt, and Roger Sessions in New York in 1957, staked its reputation on
the massive RCA Mark II Sound Synthesizer, a room-sized machine capable of producing
and sequencing electronically generated tones with an unprecedented degree of
precision and control. In the realm of popular music, pioneering steps were taken in the
fi eld of recording engineering, such as the invention of multitrack tape recording by the
guitarist Les Paul in 1954. This technology, enabling a single performer to “overdub” her/
himself onto multiple individual “tracks” that could later be mixed into a composite,
fi lled a crucial gap in the technology of recording and would empower the incredible
boom in recording-studio experimentation that permanently cemented the commercial
viability of the studio recording in popular music.
 Composers adopted digital computers slowly as a creative tool because of their
initial lack of real-time responsiveness and intuitive interface. Although the fi rst
documented use of the computer to make music occurred in 1951 on the CSIRAC machine
in Sydney, Australia, the genesis of most foundational technology in computer music as
we know it today came when Max Mathews, a researcher at Bell Labs in the United
States, developed a piece of software for the IBM 704 mainframe called MUSIC. In 1957,
the MUSIC program rendered a 17-second composition by Newmann Guttmann called
“In the Silver Scale”. Originally tasked with the development of human-comprehensible
synthesized speech, Mathews developed a system for encoding and decoding sound
waves digitally, as well as a system for designing and implementing digital audio
processes computationally. His assumptions about these representational schemes are
still largely in use and will be described later in this text. The advent of faster machines,

Reas_09_519-710.indd Sec6:580Reas_09_519-710.indd Sec6:580 5/23/07 1:07:43 PM5/23/07 1:07:43 PM

581 Extension 5: Sound

computer music programming languages, and digital systems capable of real-time
interactivity brought about a rapid transition from analog to computer technology for
the creation and manipulation of sound, a process that by the 1990s was largely
comprehensive.5
 Sound programmers (composers, sound artists, etc.) use computers for a variety of
tasks in the creative process. Many artists use the computer as a tool for the algorithmic
and computer-assisted composition of music that is then realized off-line. For Lejaren
Hiller’s Illiac Suite for string quartet (1957), the composer ran an algorithm on the
computer to generate notated instructions for live musicians to read and perform, much
like any other piece of notated music. This computational approach to composition
dovetails nicely with the aesthetic trends of twentieth-century musical modernism,
including the controversial notion of the composer as “researcher,” best articulated by
serialists such as Milton Babbitt and Pierre Boulez, the founder of IRCAM. This use of the
computer to manipulate the symbolic language of music has proven indispensable to
many artists, some of whom have successfully adopted techniques from computational
research in artifi cial intelligence to attempt the modeling of preexisting musical styles
and forms; for example, David Cope’s 5000 works . . . and Brad Garton’s Rough Raga Riffs
use stochastic techniques from information theory such as Markov chains to simulate
the music of J. S. Bach and the styles of Indian Carnatic sitar music, respectively.
 If music can be thought of as a set of informatics to describe an organization of
sound, the synthesis and manipulation of sound itself is the second category in which
artists can exploit the power of computational systems. The use of the computer as a
producer of synthesized sound liberates the artist from preconceived notions of
instrumental capabilities and allows her/him to focus directly on the timbre of the sonic
artifact, leading to the trope that computers allow us to make any sound we can
imagine. Composers such as Jean-Claude Risset (The Bell Labs Catalogue), Iannis Xenakis
(GENDYN3), and Barry Truax (Riverrun), have seen the computer as a crucial tool in
investigating sound itself for compositional possibilities, be they imitative of real
instruments (Risset), or formal studies in the stochastic arrangements of synthesized
sound masses (Xenakis) using techniques culminating in the principles of granular
synthesis (Truax). The computer also offers extensive possibilities for the assembly and
manipulation of preexisting sound along the musique concrète model, though with all
the alternatives a digital computer can offer. The compositional process of digital
sampling, whether used in pop recordings (Brian Eno and David Byrne’s My Life in the
Bush of Ghosts, Public Enemy’s Fear of a Black Planet) or conceptual compositions (John
Oswald’s Plunderphonics, Chris Bailey’s Ow, My Head), is aided tremendously by the
digital form sound can now take. Computers also enable the transcoding of an audio
signal into representations that allow for radical reinvestigation, as in the time-
stretching works of Leif Inge (9 Beet Stretch, a 24-hour “stretching” of Beethoven’s Ninth
Symphony) and the time-lapse phonography of this text’s author (Messiah, a 5-minute
“compression” of Handel’s Messiah).
 Artists working with sound will often combine the two approaches, allowing for the
creation of generative works of sound art where the underlying structural system, as
well as the sound generation and delivery, are computationally determined. Artists such

Reas_09_519-710.indd Sec6:581Reas_09_519-710.indd Sec6:581 5/23/07 1:07:43 PM5/23/07 1:07:43 PM

582 Extension 5: Sound

as Michael Schumacher, Stephen Vitiello, Carl Stone, and Richard James (the Aphex
Twin) all use this approach. Most excitingly, computers offer immense possibilities as
actors and interactive agents in sonic performance, allowing performers to integrate
algorithmic accompaniment (George Lewis), hyperinstrument design (Laetitia Sonami,
Interface), and digital effects processing (Pauline Oliveros, Mari Kimura) into their
repertoire.
 Now that we’ve talked a bit about the potential for sonic arts on the computer, we’ll
investigate some of the specifi c underlying technologies that enable us to work with
sound in the digital domain.

Sound and musical informatics

Simply put, we defi ne sound as a vibration traveling through a medium (typically air)
that we can perceive through our sense of hearing. Sound propagates as a longitudinal
wave that alternately compresses and decompresses the molecules in the matter (e.g.,
air) through which it travels. As a result, we typically represent sound as a plot of
pressure over time:

This time-domain representation of sound provides an accurate portrayal of how sound
works in the real world, and, as we shall see shortly, it is the most common
representation of sound used in work with digitized audio. When we attempt a technical
description of a sound wave, we can easily derive a few metrics to help us better
understand what’s going on. In the fi rst instance, by looking at the amount of
displacement caused by the sound pressure wave, we can measure the amplitude of the
sound. This can be measured on a scientifi c scale in pascals of pressure, but it is more
typically quantifi ed along a logarithmic scale of decibels. If the sound pressure wave
repeats in a regular or periodic pattern, we can look at the wavelength of a single
iteration of that pattern and from there derive the frequency of that wave. For example,
if a sound traveling in a medium at 343 meters per second (the speed of sound in air at
room temperature) contains a wave that repeats every half-meter, that sound has a
frequency of 686 hertz, or cycles per second. The fi gure below shows a plot of a cello note
sounding at 440 Hz; as a result, the periodic pattern of the waveform (demarcated with
vertical lines) repeats every 2.27 ms:

Minimum pressure

Maximum pressure Time

Reas_09_519-710.indd Sec6:582Reas_09_519-710.indd Sec6:582 5/23/07 1:07:43 PM5/23/07 1:07:43 PM

583 Extension 5: Sound

Typically, sounds occurring in the natural world contain many discrete frequency
components. In noisy sounds, these frequencies may be completely unrelated to one
another or grouped by a typology of boundaries (e.g., a snare drum may produce
frequencies randomly spread between 200 and 800 hertz). In harmonic sounds,
however, these frequencies are often spaced in integer ratios, such that a cello playing a
note at 200 hertz will produce frequencies not only at the fundamental of 200, but at
multiples of 200 up the harmonic series, i.e., at 400, 800, 1200, 1600, 2000, and so on.
A male singer producing the same note will have the same frequency components in
his voice, though in different proportions to the cello. The presence, absence, and relative
strength of these harmonics (also called partials or overtones) provide what we perceive
as the timbre of a sound.
 When a sound reaches our ears, an important sensory translation happens that is
important to understand when working with audio. Just as light of different
wavelengths and brightness excites different retinal receptors in your eyes to produce a
color image, the cochlea of your inner ear contains an array of hair cells on the basilar
membrane that are tuned to respond to different frequencies of sound. The inner ear
contains hair cells that respond to frequencies spaced roughly between 20 and 20,000
hertz, though many of these hairs will gradually become desensitized with age or
exposure to loud noise. These cells in turn send electrical signals via your auditory nerve
into the auditory cortex of your brain, where they are parsed to create a frequency-
domain image of the sound arriving in your ears:

This representation of sound, as a discrete “frame” of frequencies and amplitudes
independent of time, is more akin to the way in which we perceive our sonic
environment than the raw pressure wave of the time domain. Jean-Baptiste-Joseph

215 220 436 885

Frequency-domain plot of a sustained note (220 Hz) bowed on a cello

Frequency(Hz)

A
m
p
l
i
t
u
d
e

A
m
p
l
i
t
u
d
e

Time (milliseconds)
Time-domain plot of note A4 bowed on a cello

0

0 1 2

+

-

3 4 5 6

Reas_09_519-710.indd Sec6:583Reas_09_519-710.indd Sec6:583 5/23/07 1:07:44 PM5/23/07 1:07:44 PM

584 Extension 5: Sound

Fourier, a nineteenth-century French mathematician, developed the equations that
allow us to translate a sound pressure wave (no matter how complex) into its
constituent frequencies and amplitudes. This Fourier transform is an important tool in
working with sound in the computer.
 Our auditory system takes these streams of frequency and amplitude information
from our two ears and uses them to construct an auditory “scene,” akin to the visual
scene derived from the light reaching our retinas.6 Our brain analyzes the acoustic
information based on a number of parameters such as onset time, stereo correlation,
harmonic ratio, and complexity to parse out a number of acoustic sources that are then
placed in a three-dimensional image representing what we hear. Many of the
parameters that psychoacousticians believe we use to comprehend our sonic
environment are similar to the grouping principles defi ned in Gestalt psychology.
 If we loosely defi ne music as the organization and performance of sound, a new set
of metrics reveals itself. While a comprehensive overview of music theory, Western or
otherwise, is well beyond the scope of this text, it’s worth noting that there is a
vocabulary for the description of music, akin to how we describe sound. Our system for
perceiving loudness and pitch (useful “musical” equivalents to amplitude and frequency)
work along a logarithmic scale, such that a tone at 100 hertz and a tone at 200 hertz are
considered to be the same distance apart in terms of pitch as tones at 2000 and 4000
hertz. The distance between two sounds of doubling frequency is called the octave, and
is a foundational principle upon which most culturally evolved theories of music rely.
Most musical cultures then subdivide the octave into a set of pitches (e.g., 12 in the
Western chromatic scale, 7 in the Indonesian pelog scale) that are then used in various
collections (modes or keys). These pitches typically refl ect some system of temperament
or tuning, so that multiple musicians can play together; for example, the note A4 (the A
above middle C) on the Western scale is usually calibrated to sound at 440 hertz in
contemporary music.

Digital representation of sound and music

Sound typically enters the computer from the outside world (and vice versa) according
to the time-domain representation explained earlier. Before it is digitized, the acoustic
pressure wave of sound is fi rst converted into an electromagnetic wave of sound that is a
direct analog of the acoustic wave. This electrical signal is then fed to a piece of
computer hardware called an analog-to-digital converter (ADC or A/D), which then
digitizes the sound by sampling the amplitude of the pressure wave at a regular interval
and quantifying the pressure readings numerically, passing them upstream in small
packets, or vectors, to the main processor, where they can be stored or processed.
Similarly, vectors of digital samples can be sent downstream from the computer to a
hardware device called a digital-to-analog converter (DAC or D/A), which takes the
numeric values and uses them to construct a smoothed-out electromagnetic pressure
wave that can then be fed to a speaker or other device for playback:

Reas_09_519-710.indd Sec6:584Reas_09_519-710.indd Sec6:584 5/23/07 1:07:44 PM5/23/07 1:07:44 PM

585 Extension 5: Sound

Most contemporary digital audio systems (soundcards, etc.) contain both A/D and D/A
converters (often more than one of each, for stereo or multichannel sound recording and
playback) and can use both simultaneously (so-called full duplex audio). The specifi c
system of encoding and decoding audio using this methodology is called PCM (or pulse-
code modulation); developed in 1937 by Alec Reeves, it is by far the most prevalent
scheme in use today.
 The speed at which audio signals are digitized is referred to as the sampling rate; it
is the resolution that determines the highest frequency of sound that can be measured
(equal to half the sampling rate, according to the Nyquist theorem). The numeric
resolution of each sample in terms of computer storage space is called the bit depth; this
value determines how many discrete levels of amplitude can be described by the
digitized signal. The digital audio on a compact disc, for example, is digitized at 44,100
hertz with a 16-bit resolution, allowing for frequencies up to 22,050 hertz (i.e., just above
the range of human hearing) with 65,536 (216) different levels of amplitude possible for
each sample. Professional audio systems will go higher (96 or 192 kHz at 24- or 32-bit
resolution) while industry telephony systems will go lower (e.g., 8,192 Hz at 8-bit).
Digitized sound representing multiple acoustic sources (e.g., instruments) or
destinations (e.g., speakers) is referred to as multi-channel audio. Monaural sound
consists of, naturally, only one stream; stereo (two-stream) audio is standard on all
contemporary computer audio hardware, and various types of surround-sound (fi ve or
seven streams of audio with one or two special channels for low frequencies) are
becoming more and more common.
 Once in the computer, sound is stored using a variety of formats, both as sequences
of PCM samples and in other representations. The two most common PCM sound fi le
formats are the Audio Interchange File Format (AIFF) developed by Apple Computer and
Electronic Arts and the WAV fi le format developed by Microsoft and IBM. Both formats
are effectively equivalent in terms of quality and interoperability, and both are
inherently lossless formats, containing the uncompressed PCM data from the digitized
source. In recent years, compressed audio fi le formats have received a great deal of
attention, most notably the MP3 (MPEG-1 Audio Layer 3), the Vorbis codec, and the
Advanced Audio Coding (AAC) codec. Many of these “lossy” audio formats translate the
sound into the frequency domain (using the Fourier transform or a related technique
called Linear Predictive Coding) to package the sound in a way that allows compression
choices to be made based on the human hearing model, by discarding perceptually
irrelevant frequencies in the sound. Unlike the PCM formats outlined above, MP3 fi les
are much harder to encode, manipulate, and process in real time, due to the extra step
required to decompress and compress the audio into and out of the time domain.

MicrophoneSound

Voltage VoltageAir Pressure

Sound

Air PressureNumbers Numbers

Analog-to-digital Digital-to-analog SpeakerMemory

ADC DAC

Reas_09_519-710.indd Sec6:585Reas_09_519-710.indd Sec6:585 5/23/07 1:07:44 PM5/23/07 1:07:44 PM

586 Extension 5: Sound

Synthesis
Digital audio systems typically perform a variety of tasks by running processes in signal
processing networks. Each node in the network typically performs a simple task that
either generates or processes an audio signal. Most software for generating and
manipulating sound on the computer follows this paradigm, originally outlined by Max
Mathews as the unit generator model of computer music, where a map or function graph
of a signal processing chain is executed for every sample (or vector of samples) passing
through the system. A simple algorithm for synthesizing sound with a computer
could be implemented using this paradigm with only three unit generators, described
as follows.
 First, let’s assume we have a unit generator that generates a repeating sound
waveform and has a controllable parameter for the frequency at which it repeats. We
refer to this piece of code as an oscillator. Most typical digital oscillators work by playing
back small tables or arrays of PCM audio data that outlines a specifi c waveform. These
wavetables can contain incredibly simple patterns (e.g., a sine or square wave) or
complex patterns from the outside world (e.g., a professionally recorded segment of a
piano playing a single note).
 If we play our oscillator directly (i.e., set its frequency to an audible value and route
it directly to the D/A) we will hear a constant tone as the wavetable repeats over and
over again. In order to attain a more nuanced and articulate sound, we may want to vary
the volume of the oscillator over time so that it remains silent until we want a sound to
occur. The oscillator will then increase in volume so that we can hear it. When we want
the sound to silence again, we fade the oscillator down. Rather than rewriting the
oscillator itself to accommodate instructions for volume control, we could design a
second unit generator that takes a list of time and amplitude instructions and uses those
to generate a so-called envelope, or ramp that changes over time. Our envelope generator
generates an audio signal in the range of 0 to 1, though the sound from it is never
experienced directly. Our third unit generator simply multiplies, sample per sample, the
output of our oscillator with the output of our envelope generator. This amplifi er code
allows us to use our envelope ramp to dynamically change the volume of the oscillator,
allowing the sound to fade in and out as we like.
 In a commercial synthesizer, further algorithms could be inserted into the signal
network—for example, a fi lter that could shape the frequency content of the oscillator
before it gets to the amplifi er. Many synthesis algorithms depend on more than one
oscillator, either in parallel (e.g., additive synthesis, in which you create a rich sound by
adding many simple waveforms) or through modulation (e.g., frequency modulation,
where one oscillator modulates the pitch of another).

Sampling
Rather than using a small waveform in computer memory as an oscillator, we could use
a longer piece of recorded audio stored as an AIFF or WAV fi le on our computer’s hard
disk. This sample could then be played back at varying rates, affecting its pitch. For
example, playing back a sound at twice the speed at which it was recorded will result in

Reas_09_519-710.indd Sec6:586Reas_09_519-710.indd Sec6:586 5/23/07 1:07:45 PM5/23/07 1:07:45 PM

587 Extension 5: Sound

its rising in pitch by an octave. Similarly, playing a sound at half speed will cause it to
drop in pitch by an octave.
 Most samplers (i.e., musical instruments based on playing back audio recordings as
sound sources) work by assuming that a recording has a base frequency that, though
often linked to the real pitch of an instrument in the recording, is ultimately arbitrary
and simply signifi es the frequency at which the sampler will play back the recording at
normal speed. For example, if we record a cellist playing a sound at 220 hertz (the
musical note A below middle C in the Western scale), we would want that recording to
play back normally when we ask our sampler to play us a sound at 220 hertz. If we ask
our sampler for a sound at a different frequency, our sampler will divide the requested
frequency by the base frequency and use that ratio to determine the playback speed of
the sampler. For example, if we want to hear a 440 hertz sound from our cello sample,
we play it back at double speed. If we want to hear a sound at middle C (261.62558 hertz),
we play back our sample at 1.189207136 times the original speed.
 Many samplers use recordings that have meta-data associated with them to help
give the sampler algorithm information that it needs to play back the sound correctly.
The base frequency is often one of these pieces of information, as are loop points within
the recording that the sampler can safely use to make the sound repeat for longer than
the length of the original recording. For example, an orchestral string sample loaded into
a commercial sampler may last for only a few seconds, but a record producer or keyboard
player may need the sound to last much longer; in this case, the recording is designed so
that in the middle of the recording there is a region that can be safely repeated, ad
infi nitum if need be, to create a sense of a much longer recording.

Effects processing
In addition to serving as a generator of sound, computers are used increasingly as
machines for processing audio. The fi eld of digital audio processing (DAP) is one of the
most extensive areas for research in both the academic computer music communities
and the commercial music industry. Faster computing speeds and the increased
standardization of digital audio processing systems has allowed most techniques for
sound processing to happen in real time, either using software algorithms or audio DSP
coprocessors such as the Digidesign TDM and T|C Electronics Powercore cards.
 As we saw with audio representation, audio effects processing is typically done
using either time- or frequency-domain algorithms that process a stream of audio
vectors. An echo effect, for example, can be easily implemented by creating a buffer of
sample memory to delay a sound and play it back later, mixing it in with the original.
Extremely short delays (of one or two samples) can be used to implement digital fi lters,
which attenuate or boost different frequency ranges in the sound. Slightly longer delays
create resonation points called comb fi lters that form an important building block in
simulating the short echoes in room reverberation. A variable-delay comb fi lter creates
the resonant swooshing effect called fl anging. Longer delays are used to create a variety
of echo, reverberation, and looping systems and can also be used to create pitch shifters
(by varying the playback speed of a slightly delayed sound).

Reas_09_519-710.indd Sec6:587Reas_09_519-710.indd Sec6:587 5/23/07 1:07:45 PM5/23/07 1:07:45 PM

588 Extension 5: Sound

Audio analysis
A fi nal important area of research, especially in interactive sound environments, is the
derivation of information from audio analysis. Speech recognition is perhaps the most
obvious application of this, and a variety of paradigms for recognizing speech exist
today, largely divided between “trained” systems (which accept a wide vocabulary from
a single user) and “untrained” systems (which attempt to understand a small set of
words spoken by anyone). Many of the tools implemented in speech recognition systems
can be abstracted to derive a wealth of information from virtually any sound source.
 Interactive systems that “listen” to an audio input typically use a few simple
techniques to abstract a complex sound source into a control source that can be mapped
as a parameter in interaction design. For example, a plot of average amplitude of an
audio signal over time can be used to modulate a variable continuously through a
technique called envelope following. Similarly, a threshold of amplitude can be set to
trigger an event when the sound reaches a certain level; this technique of attack
detection (“attack” is a common term for the onset of a sound) can be used, for example,
to create a visual action synchronized with percussive sounds coming into the computer.
 The technique of pitch tracking, which uses a variety of analysis techniques to
attempt to discern the fundamental frequency of an input sound that is reasonably
harmonic, is often used in interactive computer music to track a musician in real time,
comparing her/his notes against a “score” in the computer’s memory. This technology of
score-following can be used to sequence interactive events in a computer program
without having to rely on absolute timing information, allowing musicians to deviate
from a strict tempo, improvise, or otherwise inject a more fl uid musicianship into a
performance.
 A wide variety of timbral analysis tools also exist to transform an audio signal into
data that can be mapped to computer-mediated interactive events. Simple algorithms
such as zero-crossing counters, which tabulate the number of times a time-domain audio
signal crosses from positive to negative polarity, can be used to derive the amount of
noise in an audio signal. Fourier analysis can also be used to fi nd, for example, the fi ve
loudest frequency components in a sound, allowing the sound to be examined for
harmonicity or timbral brightness. Filter banks and envelope followers can be combined
to split a sound into overlapping frequency ranges that can then be used to drive
another process. This technique is used in a common piece of effects hardware called the
vocoder, in which a harmonic signal (such as a synthesizer) has different frequency
ranges boosted or attenuated by a noisy signal (usually speech). The effect is that of
one sound “talking” through another sound; it is among a family of techniques called
cross-synthesis.

Music as information

Digital representations of music, as opposed to sound, vary widely in scope and
character. By far the most common system for representing real-time musical
performance data is the Musical Instrument Digital Interface (MIDI) specifi cation,

Reas_09_519-710.indd Sec6:588Reas_09_519-710.indd Sec6:588 5/23/07 1:07:45 PM5/23/07 1:07:45 PM

589 Extension 5: Sound

released in 1983 by a consortium of synthesizer manufacturers to encourage
interoperability between different brands of digital music equipment. Based on a
unidirectional, low-speed serial specifi cation, MIDI represents different categories of
musical events (notes, continuous changes, tempo and synchronization information)
as abstract numerical values, nearly always with a 7-bit (0–127) numeric resolution.
 Over the years, the increasing complexity of synthesizers and computer music
systems began to draw attention to the drawbacks of the simple MIDI specifi cation. In
particular, the lack of support for the fast transmission of digital audio and high-
precision, syntactic synthesizer control specifi cations along the same cable led to a
number of alternative systems. Open Sound Control, developed by a research team at the
University of California, Berkeley, makes the interesting assumption that the recording
studio (or computer music studio) of the future will use standard network interfaces
(Ethernet or wireless TCP/IP communication) as the medium for communication. OSC
allows a client-server model of communication between controllers (keyboards, touch
screens) and digital audio devices (synthesizers, effects processors, or general-purpose
computers), all through UDP packets transmitted on the network.
 The following code examples are written in Processing using Krister Olsson’s Ess
library (www.processing.org/reference/libraries) to facilitate sound synthesis and
playback. The Ess library includes classes for audio playback in timed units
(AudioChannel), playback as a continuous process (AudioStream), use of real-time
input from the computer’s audio hardware (AudioInput), and writing of audio output
to disk (AudioFile). In addition, two classes of unit generator-style functions are
available: AudioGenerators, which synthesize sound (e.g., SineWave, a class that
generates a sine waveform), and AudioFilters, which process previously generated
audio (e.g., Reverb, a class to apply reverberation). An FFT class (for audio analysis) is
also provided.

Example 1, 2: Synthesizer (pp. 593, 594)
These two examples show two different methodologies for synthesizing sound. The fi rst
example fi lls an AudioStream with the output of a bank of sine waves (represented as
an array of SineWave generators). The audioStreamWrite() function behaves in a
manner analogous to the draw() function in the main Processing language, in that it
repeats indefi nitely to generate the audio by updating the state of the different
SineWave oscillators and writing them (through the generate() method) into the
AudioStream. The frequency properties of the different SineWave generators are set
based on the mouse position, which also determines where a snapshot of the audio
waveform being generated is drawn to the canvas. The second example shows the use of
an AudioChannel class to generate a sequence of algorithmically generated
synthesized events, which are created by a TriangleWave generator fi ltered through an
Envelope that fades in and out each “note.” The notes themselves are generated
entirely in the setup() function (i.e., the program is noninteractive), based on a
sequence of frequencies provided in a rawSequence[] array.

Reas_09_519-710.indd Sec6:589Reas_09_519-710.indd Sec6:589 5/23/07 1:07:46 PM5/23/07 1:07:46 PM

590 Extension 5: Sound

Example 3: Sample playback (p. 595)
The playback of an audio sample can be achieved by instantiating an instance of the
AudioChannel class with a fi lename of a sample to read in. This example uses an array
of six AudioChannel objects, each with the same short sample of a cello (cela3.aif). By
varying the effective SamplingRate of each channel, we can change the playback speed
(and as a result, the pitch) of the cello sample when it is sounded (by the play() method
to the AudioChannel). The example shows a simple Pong-like simulation where a
sound is triggered at each end of the ball’s trajectory as well as when it crosses the center
of the canvas. Because the AudioChannel playback routine will last for different
durations depending on the SamplingRate we randomly assign to it, we have no way
of guaranteeing that a given AudioChannel will be fi nished playing when the next
sound is called for. As a result, a while() loop in the code searches through the array of
AudioChannel objects whenever a sound is called for, querying their state property to
see if they are available to play a sound. This demonstrates a simple form of voice
allocation, an important technique in managing polyphony in systems where we have a
fi nite number of “voices” or sound-generating engines to draw from to make multiple
sounds at the same time. An Envelope fi lter is also used to fade the AudioChannel in
or out as it plays to prevent clicks in the sound.

Example 4: Effects processor (p. 597)
Ess (like many other computer music toolkits) allows for the processing of audio to occur
in-place; that is, it lets us take a sound, change it in some way, and store it in the same
block of memory so that we can continue to process it without having to create a
duplicate copy of the audio. This allows us to use effects that rely on some degree of
feedback. In this example, we take a sample of electric guitar chords (played by an
AudioChannel class) and process it through a Reverb fi lter. We then take this (already
reverberated) sound and process it again, gradually degenerating the original sound by
adding more and more reverberation. A similar technique in the analog domain provides
the basis for a well-known piece of the electroacoustic repertoire, Alvin Lucier’s 1969
masterpiece “I Am Sitting in a Room.”

Example 5: Audio analysis (p. 598)
In addition to classes that provide for the generation and manipulation of audio streams
and events, Ess provides an FFT class to analyze an AudioChannel using the Fast
Fourier Transform, fi lling an array with the spectrum of a particular sound. This allows
us to look at the frequency content of the sound we’re providing, which we can then use
to make decisions in our program or, as in this example, visualize during the draw()
function as a graph. The code draws two versions of a spectrogram for an
AudioChannel containing a sound fi le of a sine sweep: the fi rst (drawn in black) shows
the spectrum for the current FFT frame (i.e., the sound as we’re hearing it now); the
second (in white) shows the maximum amplitude achieved in each frequency band
so far, gradually decaying over time. This second graph is an example of a peak hold,
a feature that exists on many audio analysis tools (level meters, etc.) to give an analyst a
sense of how the current signal compares to what has come before. In the draw()

Reas_09_519-710.indd Sec6:590Reas_09_519-710.indd Sec6:590 5/23/07 1:07:47 PM5/23/07 1:07:47 PM

591 Extension 5: Sound

routine, we plot the FFT channels along a logarithmic space, so that the channels
representing lower frequencies are farther apart than the ones representing high
frequencies on the right of the canvas; this appropriately approximates our perception
of frequency as pitch.

Tools for sound programming

A wide variety of tools are available to the digital artist working with sound. Sound
recording, editing, mixing, and playback are typically accomplished through digital
sound editors and so-called digital audio workstation (DAW) environments. Sound
editors range from open source and free software (MixViews, Audacity) to professional-
level two-track mastering programs (BIAS Software’s Peak application, Digidesign’s
Sound Designer). These programs typically allow you to import and record sounds, edit
them with clipboard functionality (copy, paste, etc.), and perform a variety of simple
digital sound processing (DSP) tasks nondestructively on the sound fi le itself, such as
signal normalization, fading edits, and sample-rate conversion. Often these programs
will act as hosts for software plug-ins originally designed for working inside of
DAW software.
 Digital audio workstation suites offer a full range of multitrack recording, playback,
processing, and mixing tools, allowing for the production of large-scale, highly layered
projects. DAW software is now considered standard in the music recording and
production industry, gradually replacing reel-to-reel tape as the medium for producing
commercial recordings. The Avid/Digidesign Pro Tools software, considered the industry
standard, allows for the recording and mixing of many tracks of audio in real time along
a timeline roughly similar to that in a video NLE (nonlinear editing) environment .
Automation curves can be drawn to specify different parameters (volume, pan) of these
tracks, which contain clips of audio (“regions” or “soundbites”) that can be assembled
and edited nondestructively. The Pro Tools system uses hardware-accelerated DSP cards
to facilitate mixing as well as to host plug-ins that allow for the high-quality processing
of audio tracks in real time. Other DAW software applications, such as Apple’s Logic
Audio, Mark of the Unicorn’s Digital Performer, Steinberg’s Nuendo, and Cakewalk’s
Sonar, perform many of the same tasks using software-only platforms. All of these
platforms also support third-party audio plug-ins written in a variety of formats, such as
Apple’s AudioUnits (AU), Steinberg’s Virtual Studio Technology (VST), or Microsoft’s
DirectX format. Most DAW programs also include extensive support for MIDI, allowing
the package to control and sequence external synthesizers, samplers, and drum
machines; as well as software plug-in “instruments” that run inside the DAW itself
as sound generators.
 Classic computer music “languages,” most of which are derived from Max Mathews’
MUSIC program, are still in wide use today. Some of these, such as CSound (developed by
Barry Vercoe at MIT) have wide followings and are taught in computer music studios as
standard tools for electroacoustic composition. The majority of these MUSIC-N programs
use text fi les for input, though they are increasingly available with graphical editors for

Reas_09_519-710.indd Sec6:591Reas_09_519-710.indd Sec6:591 5/23/07 1:07:47 PM5/23/07 1:07:47 PM

592 Extension 5: Sound

many tasks. Typically, two text fi les are used; the fi rst contains a description of the sound
to be generated using a specifi cation language that defi nes one or more “instruments”
made by combining simple unit generators. A second fi le contains the “score,” a list of
instructions specifying which instrument in the fi rst fi le plays what event, when, for
how long, and with what variable parameters. Most of these programs go beyond simple
task-based synthesis and audio processing to facilitate algorithmic composition, often
by building on top of a standard programming language; F. Richard Moore’s CLM
package, for example, is built on top of Common LISP. Some of these languages have been
retrofi tted in recent years to work in real time (as opposed to rendering a sound fi le to
disk); Real-Time Cmix, for example, contains a C-style parser as well as support for
connectivity from clients over network sockets and MIDI.
 A number of computer music environments were begun with the premise of real-
time interaction as a foundational principle of the system. The Max development
environment for real-time media, fi rst developed at IRCAM in the 1980s and currently
developed by Cycling’74, is a visual programming system based on a control graph of
“objects” that execute and pass messages to one another in real time. The MSP
extensions to Max allow for the design of customizable synthesis and signal-processing
systems, all of which run in real time. A variety of sibling languages to Max exist,
including Pure Data (developed by the original author of Max, Miller Puckette) and jMax
(a Java-based version of Max still maintained at IRCAM). James McCartney’s
SuperCollider program and Ge Wang and Perry Cook’s ChucK software are both textual
languages designed to execute real-time interactive sound algorithms.
 Finally, standard computer languages have a variety of APIs to choose from when
working with sound. Phil Burke’s JSyn (Java Synthesis) provides a unit generator-based
API for doing real-time sound synthesis and processing in Java. The CCRMA Synthesis
ToolKit (STK) is a C++ library of routines aimed at low-level synthesizer design and
centered on physical modeling synthesis technology.
 Ess, a sound library for Processing that has many features in common with the
above-mentioned languages, is used in the examples for this text. Because of the
overhead of doing real-time signal processing in the Java language, it will typically be
more effi cient to work in one of the other environments listed above if your needs
require substantial real-time audio performance.

Conclusion

A wide variety of tools and techniques are available for working computationally with
sound, due to the close integration of digital technology and sound creation over the last
half-century. Whether your goal is to implement a complex reactive synthesis
environment or simply to mix some audio recordings, software exists to help you fi ll
your needs. Furthermore, sound-friendly visual development environments (such as
Max) allow you to create custom software from scratch. A basic understanding of the
principles behind digital audio recording, manipulation, and synthesis can be
indispensable in order to better translate your creative ideas into the sonic medium. As

Reas_09_519-710.indd Sec6:592Reas_09_519-710.indd Sec6:592 5/23/07 1:07:47 PM5/23/07 1:07:47 PM

593 Extension 5: Sound

the tools improve and the discourse of multimedia becomes more interdisciplinary,
sound will become even better integrated into digital arts education and practice.

 Notes

1. Douglas Kahn, Noise, Water, Meat: A History of Sound in the Arts (MIT Press, 2001), p. 10.

2. Paul Théberge, Any Sound You Can Imagine: Making Music / Consuming Technology (Wesleyan

 University Press, 1997), p. 105.

3. John Cage, “Credo: The Future of Music (1937),” in John Cage: An Anthology, edited by Richard Kostelanetz

 (Praeger, 1970), p. 52.

4. Joel Chadabe, Electric Sound: The Past and Promise of Electronic Music (Prentice Hall, 1996), p. 145.

5. Curtis Roads, The Computer Music Tutorial (MIT Press, 1996), p. 43.

6. Albert Bregman, Auditory Scene Analysis (MIT Press, 1994), p. 213.

Code

Example 1: Synthesizer

/**

 Sound is generated in real time by summing together harmonically related

 sine tones. Overall pitch and harmonic detuning is controlled by the mouse.

 Based on the Spooky Stream Save Ess example

*/

import krister.Ess.*;

int numSines = 5; // Number of oscillators to use

AudioStream myStream; // Audio stream to write into

SineWave[] myWave; // Array of sines

FadeOut myFadeOut; // Amplitude ramp function

FadeIn myFadeIn; // Amplitude ramp function

void setup() {

 size(256, 200);

 Ess.start(this); // Start Ess

 myStream = new AudioStream(); // Create a new AudioStream

 myStream.smoothPan = true;

 myWave = new SineWave[numSines]; // Initialize the oscillators

 for (int i = 0; i < myWave.length; i++) {

 float sinVolume = (1.0 / myWave.length) / (i + 1);

 myWave[i] = new SineWave(0, sinVolume);

 }

 myFadeOut = new FadeOut(); // Create amplitude ramp

 myFadeIn = new FadeIn(); // Create amplitude ramp

 myStream.start(); // Start audio

}

void draw() {

 noStroke();

Reas_09_519-710.indd Sec6:593Reas_09_519-710.indd Sec6:593 5/23/07 1:07:47 PM5/23/07 1:07:47 PM

594 Extension 5: Sound

 fill(0, 20);

 rect(0, 0, width, height); // Draw the background

 float offset = millis() - myStream.bufferStartTime;

 int interp = int((offset / myStream.duration) * myStream.size);

 stroke(255);

 for (int i = 0; i < width; i++) {

 float y1 = mouseY;

 float y2 = y1;

 if (i+interp+1 < myStream.buffer2.length) {

 y1 -= myStream.buffer2[i+interp] * height/2;

 y2 -= myStream.buffer2[i+interp+1] * height/2;

 }

 line(i, y1, i+1, y2); // Draw the waves

 }

}

void audioStreamWrite(AudioStream s) {

 // Figure out frequencies and detune amounts from the mouse

 // using exponential scaling to approximate pitch perception

 float yoffset = (height-mouseY) / float(height);

 float frequency = pow(1000, yoffset)+150;

 float detune = float(mouseX)/width-0.5;

 myWave[0].generate(myStream); // Generate first sine, replace Stream

 myWave[0].phase += myStream.size; // Increment the phase

 myWave[0].phase %= myStream.sampleRate;

 for (int i = 1; i < myWave.length; i++) { // Add remaining sines into the Stream

 myWave[i].generate(myStream, Ess.ADD);

 myWave[i].phase = myWave[0].phase;

 }

 myFadeOut.filter(myStream); // Fade down the audio

 for (int i = 0; i < myWave.length; i++) { // Set the frequencies

 myWave[i].frequency = round(frequency * (i+1 + i*detune));

 myWave[i].phase = 0;

 }

 myFadeIn.filter(myStream); // Fade up the audio

}

Example 2: Synthesizer

/**

 Sound is generated at setup with a triangle waveform and a simple envelope

 generator. Insert your own array of notes as 'rawSequence' and let it roll.

*/

import krister.Ess.*;

AudioChannel myChannel; // Create channel

TriangleWave myWave; // Create triangle waveform

Envelope myEnvelope; // Create envelope

int numNotes = 200; // Number of notes

int noteDuration = 300; // Duration of each note in milliseconds

float[] rawSequence = {

 293.6648, 293.6648, 329.62756, 329.62756, 391.9955, 369.99445, 293.6648, 293.6648,

Reas_09_519-710.indd Sec6:594Reas_09_519-710.indd Sec6:594 5/23/07 1:07:48 PM5/23/07 1:07:48 PM

595 Extension 5: Sound

 329.62756, 293.6648, 439.99997, 391.9955, 293.6648, 293.6648, 587.3294, 493.8834,

 391.9955, 369.99445, 329.62756, 523.25116, 523.25116, 493.8834, 391.9955,

 439.99997, 391.9955 }; // Happy birthday

void setup() {

 size(100, 100);

 Ess.start(this); // Start Ess

 myChannel = new AudioChannel(); // Create a new AudioChannel

 myChannel.initChannel(myChannel.frames(rawSequence.length * noteDuration));

 int current = 0;

 myWave = new TriangleWave(480, 0.3); // Create triangle wave

 EPoint[] myEnv = new EPoint[3]; // Three-step breakpoint function

 myEnv[0] = new EPoint(0, 0); // Start at 0

 myEnv[1] = new EPoint(0.25, 1); // Attack

 myEnv[2] = new EPoint(2, 0); // Release

 myEnvelope = new Envelope(myEnv); // Bind Envelope to the breakpoint function

 int time = 0;

 for (int i = 0; i < rawSequence.length; i++) {

 myWave.frequency = rawSequence[current]; // Update waveform frequency

 int begin = myChannel.frames(time); // Starting position within Channel

 int e = int(noteDuration*0.8);

 int end = myChannel.frames(e); // Ending position with Channel

 myWave.generate(myChannel, begin, end); // Render triangle wave

 myEnvelope.filter(myChannel, begin, end); // Apply envelope

 current++; // Move to next note

 time += noteDuration; // Increment the Channel output point

 }

 myChannel.play(); // Play the sound!

}

void draw() { } // Empty draw() keeps the program running

public void stop() {

 Ess.stop(); // When program stops, stop Ess too

 super.stop();

}

Example 3: Sample playback

/**

 Loads a sound file off disk and plays it in multiple voices at multiple sampling

 increments (demonstrating voice allocation), panning it back and forth between

 the speakers. Based on Ping Pong by Krister Olsson <http://tree-axis.com>

*/

import krister.Ess.*;

AudioChannel[] mySound = new AudioChannel[6]; // Six channels of audio playback

Envelope myEnvelope; // Create Envelope

boolean left = true;

boolean middle = false;

boolean right = false;

Reas_09_519-710.indd Sec6:595Reas_09_519-710.indd Sec6:595 5/23/07 1:07:48 PM5/23/07 1:07:48 PM

596 Extension 5: Sound

// Sampling rates to choose from

int[] rates = { 44100, 22050, 29433, 49500, 11025, 37083 };

void setup() {

 size(256,200);

 stroke(255);

 Ess.start(this); // Start Ess

 // Load sounds and set initial panning

 // Sounds must be located in the sketch's "data" folder

 for (int i = 0; i < 6; i++) {

 mySound[i] = new AudioChannel("cela3.aif");

 mySound[i].smoothPan=true;

 mySound[i].pan(Ess.LEFT);

 mySound[i].panTo(1,4000);

 }

 EPoint[] myEnv = new EPoint[3]; // Three-step breakpoint function

 myEnv[0] = new EPoint(0, 0); // Start at 0

 myEnv[1] = new EPoint(0.25, 1); // Attack

 myEnv[2] = new EPoint(2, 0); // Release

 myEnvelope = new Envelope(myEnv); // Bind an Envelope to the breakpoint function

}

void draw() {

 int playSound = 0; // How many sounds do we play on this frame?

 int which = -1; // If so, on which voice?

 noStroke();

 fill(0, 15);

 rect(0, 0, width, height); // Fade background

 stroke(102);

 line(width/2, 0, width/2, height); // Center line

 float interp = lerp(0, width, (mySound[0].pan+1) / 2.0);

 stroke(255);

 line(interp, 0, interp, height); // Moving line

 // Trigger 1-3 samples when the line passes the center line or hits an edge

 if ((mySound[0].pan < 0) && (middle == true)) {

 playSound = int(random(1,3));

 middle = false;

 } else if ((mySound[0].pan > 0) && (middle == false)) {

 playSound = int(random(1,3));

 middle = true;

 } else if ((mySound[0].pan < -0.9) && (left == true)) {

 playSound = int(random(1,3));

 left = false;

 } else if ((mySound[0].pan > -0.9) && (left == false)) {

 left = true;

 } else if ((mySound[0].pan > 0.9) && (right == true)) {

 playSound = int(random(1,3));

 right = false;

 } else if ((mySound[0].pan < 0.9) && (right == false)) {

 right = true;

 }

Reas_09_519-710.indd Sec6:596Reas_09_519-710.indd Sec6:596 5/23/07 1:07:48 PM5/23/07 1:07:48 PM

597 Extension 5: Sound

 // Voice allocation block; figure out which AudioChannels are free

 while (playSound > 0) {

 for (int i = 0; i < mySound.length; i++) {

 if (mySound[i].state == Ess.STOPPED) {

 which = i; // Find a free voice

 }

 }

 // If a voice is available and selected, play it

 if (which != -1) {

 mySound[which].sampleRate(rates[int(random(0,6))], false);

 mySound[which].play();

 myEnvelope.filter(mySound[which]); // Apply envelope

 }

 playSound--;

 }

}

public void stop() {

 Ess.stop(); // When program stops, stop Ess too

 super.stop();

}

void audioOutputPan(AudioOutput c) {

 c.panTo(-c.pan, 4000); // Reverse pan direction

}

Example 4: Effects processor

/**

 Applies reverb 10 times to a succession of guitar chords.

 Inspired by Alvin Lucier's "I am Sitting in a Room."

 Based on Reverb by Krister Olsson <http://www.tree-axis.com>

*/

import krister.Ess.*;

AudioChannel myChannel;

Reverb myReverb;

Normalize myNormalize;

int numRepeats = 9;

int repeats = 0;

float rectWidth;

void setup() {

 size(256, 200);

 noStroke();

 background(0);

 rectWidth = width / (numRepeats + 1.0);

 Ess.start(this); // Start Ess

 // Load audio file into a AudioChannel, file must be in the sketch's "data" folder

 myChannel = new AudioChannel("guitar.aif");

Reas_09_519-710.indd Sec6:597Reas_09_519-710.indd Sec6:597 5/23/07 1:07:48 PM5/23/07 1:07:48 PM

598 Extension 5: Sound

 myReverb = new Reverb();

 myNormalize = new Normalize();

 myNormalize.filter(myChannel); // Normalize the audio

 myChannel.play(1);

}

void draw() {

 if (repeats < numRepeats) {

 if (myChannel.state == Ess.STOPPED) { // If the audio isn't playing

 myChannel.adjustChannel(myChannel.size/16, Ess.END);

 myChannel.out(myChannel.size);

 // Apply reverberation "in place" to the audio in the channel

 myReverb.filter(myChannel);

 // Normalize the signal

 myNormalize.filter(myChannel);

 myChannel.play(1);

 repeats++;

 }

 } else {

 exit(); // Quit the program

 }

 // Draw rectangle to show the current repeat (1 of 9)

 rect(rectWidth * repeats, 0, rectWidth-1, height);

}

public void stop() {

 Ess.stop(); // When program stops, stop Ess too

 super.stop();

}

Example 5: Audio analysis

/**

 Analyzes a sound file using a Fast Fourier Transform, and plots both the current

 spectral frame and a "peak-hold" plot of the maximum over time using logarithmic

 scaling. Based on examples by Krister Olsson <http://tree-axis.com>

*/

import krister.Ess.*;

AudioChannel myChannel;

FFT myFFT;

int bands = 256; // Number of FFT frequency bands to calculate

void setup() {

 size(1024, 200);

 Ess.start(this); // Start Ess

 // Load "test.aif" into a new AudioChannel, file must be in the "data" folder

 myChannel = new AudioChannel("test.aif");

 myChannel.play(Ess.FOREVER);

 myFFT = new FFT(bands * 2); // We want 256 frequency bands, so we pass in 512

}

Reas_09_519-710.indd Sec6:598Reas_09_519-710.indd Sec6:598 5/23/07 1:07:48 PM5/23/07 1:07:48 PM

599 Extension 5: Sound

void draw() {

 background(176);

 // Get spectrum

 myFFT.getSpectrum(myChannel);

 // Draw FFT data

 stroke(255);

 for (int i = 0; i < bands; i++) {

 float x = width - pow(1024, (255.0-i)/bands);

 float maxY = max(0, myFFT.maxSpectrum[i] * height*2);

 float freY = max(0, myFFT.spectrum[i] * height*2);

 // Draw maximum lines

 stroke(255);

 line(x, height, x, height-maxY);

 // Draw frequency lines

 stroke(0);

 line(x, height, x, height-freY);

 }

}

public void stop() {

 Ess.stop(); // When program stops, stop Ess too

 super.stop();

}

Resources

Sound toolkits and resources
Vercoe, Barry, et al. CSound. Synthesis and signal processing language, 1984. http://www.csounds.com.

Garton, Brad, David Topper, et al. Real-Time Cmix. Synthesis and signal processing language, 1995. http://rtcmix.org.

Wang, Ge, and Perry Cook. ChucK. Real-time audio programming language, 2002. http://chuck.cs.princeton.edu.

McCartney, James, et al. SuperCollider. Real-time audio programming language, 1996.

 http://www.audiosynth.com.

Puckette, Miller, David Zicarelli, et al. Max/MSP. Graphical development environment for music and

 multimedia, 1986. http://www.cycling74.com.

Puckette, Miller, et al. Pure Data (Pd). Graphical development environment for music and multimedia, 1996.

 http://www-crca.ucsd.edu/~msp/software.html.

Burke, Phil. JSyn. Java API for real-time audio, 1997. http://www.softsynth.com/jsyn.

Cook, Perry, and Gary Scavone. STK. C++ synthesis toolkit, 1996. http://ccrma.stanford.edu/software/stk.

Lopez-Lezcano, Fernando, maintainer. Planet CCRMA. Collection of open source audio software for Linux, 2005.

 http://ccrma.stanford.edu/planetccrma/software.

Klingbeil, Michael. SPEAR. Spectral editor, 2004. http://www.klingbeil.com/spear.

Waveform Software. Sox, PVCX, AmberX. Freeware sound conversion / spectral processing / granular

 synthesis software, 2005. http://www.waveformsoftware.com.

Audacity. Open source audio waveform editor, 2002. http://audacity.sourceforge.net.

Texts
Bregman, Albert. Auditory Scene Analysis. MIT Press, 1994.

Reas_09_519-710.indd Sec6:599Reas_09_519-710.indd Sec6:599 5/23/07 1:07:49 PM5/23/07 1:07:49 PM

600 Extension 5: Sound

Chadabe, Joel. Electric Sound: The Past and Promise of Electronic Music. Prentice Hall, 1996.

Garnett, Guy E. “The Aesthetics of Interactive Computer Music.” Computer Music Journal 25:1, (2001).

Kahn, Douglas. Noise, Water, Meat: A History of Sound in the Arts. MIT Press, 2001.

Lysloff, Rene, and Leslie Gay, eds. Music and Technoculture. Wesleyan University Press, 2003.

Maurer, John. “A Brief History of Algorithmic Composition.” Stanford University.

 http://ccrma-www.stanford.edu/~blackrse/algorithm.html.

Paradiso, Joseph A. “American Innovations in Electronic Musical Instruments.” New Music Box 6.

 http://www.newmusicbox.org/third-person/oct99.

Prendergast, Mark. The Ambient Century: From Mahler to Moby—The Evolution of Sound in the Electronic Age.

 Bloomsbury, 2003.

Puckette, Miller. Theory and Techniques of Electronic Music. University of California, San Diego, 2006.

 http://crca.ucsd.edu/~msp/techniques.htm.

Rowe, Robert. Interactive Music Systems. MIT Press, 1993.

Rowe, Robert. Machine Musicianship. MIT Press, 2001.

Theberge, Paul. Any Sound You Can Imagine: Making Music / Consuming Technology.

 Wesleyan University Press, 1997.

Supper, Martin. “A Few Remarks on Algorithmic Composition.” Computer Music Journal 25:1 (2001).

Winkler, Todd. Composing Interactive Music: Techniques and Ideas Using Max. MIT Press, 1998.

Roads, Curtis. The Computer Music Tutorial. MIT Press, 1996.

Roads, Curtis. Microsound. MIT Press, 2002.

Artists
Aphex Twin (Richard James). http://www.drukqs.net.

Bailey, Chris. http://www.music.columbia.edu/~chris.

Cope, David. http://arts.ucsc.edu/faculty/cope.

DuBois, R. Luke. http://lukedubois.com.

Eno, Brian. http://www.enoweb.co.uk.

Garton, Brad. http://music.columbia.edu/~brad.

Inge, Leif. http://www.notam02.no/9.

Interface (Dan Trueman, Curtis Bahn, Tomie Hahn). http://www.arts.rpi.edu/crb/interface.

Lewis, George. http://kalvos.org/lewisge.html.

Kimura, Mari. http://homepages.nyu.edu/~mk4.

Oliveros, Pauline. http://www.deeplistening.org/pauline.

Oswald, John. http://www.plunderphonics.com.

Risset, Jean-Claude. http://www.cdemusic.org/artists/risset.html.

Schumacher, Michael J. http://www.diapasongallery.org/mjs.page.html.

Sonami, Laetitia. http://www.sonami.net.

Stone, Carl. http://www.sukothai.com.

Truax, Barry. http://www.sfu.ca/~truax.

Vitiello, Stephen. http://www.stephenvitiello.com.

Xenakis, Iannis. http://www.iannis-xenakis.org.

Reas_09_519-710.indd Sec6:600Reas_09_519-710.indd Sec6:600 5/23/07 1:07:49 PM5/23/07 1:07:49 PM

601

Reas_09_519-710.indd Sec6:601Reas_09_519-710.indd Sec6:601 5/23/07 1:07:50 PM5/23/07 1:07:50 PM

Manfred Mohr. P-122d, 1972.
19 X" * 19 X".
Plotter drawing ink on paper.
Image courtesy
bitforms gallery, nyc.

Manfred Mohr. P-020b, 1972.
19 X" * 19 X".
Plotter drawing ink on paper.
Image courtesy
bitforms gallery, nyc.

Reas_09_519-710.indd Sec6:602Reas_09_519-710.indd Sec6:602 5/23/07 1:07:50 PM5/23/07 1:07:50 PM

603

Extension 6: Print
Text by Casey Reas

Digital technologies have spawned many changes to printing within the arts. The
introduction of laser printers and personal computers into design offi ces in the mid-
1980s was a catalyst for years of experimentation and innovation in typeface design,
layout, and printing. Artists have produced prints from software since the mid-1960s, but
these techniques have surged since 1990. Innovations have given digitally made prints a
longer estimated life than color photographs printed from fi lm. The recent deluge of
digital cameras provided another change. Amateurs and professionals are skipping the
lab and printing their images at home.
 This short text provides a brief history of the digital printing technologies that have
led to these new techniques. It presents examples of software written to produce print
output, and discusses a few common contemporary print technologies. The industry
surrounding digital printing is full of trademarked names and buzzwords, so this text
aspires to demystify some of the terminology and provide pointers to additional
information. The content that follows is tailored for printing at home or working with
a vendor to produce small editions.

Print and computers

When they originated in the 1960s, computer graphics were more often seen printed on
paper than on screens. Computers of this time were enormous, expensive machines that
were accessible only at research centers and universities, but prints found their way into
galleries, journals, and newspapers. In 1963, the Computers and Automation journal
announced the fi rst competition for computer graphics to be judged using aesthetic
criteria.1 The U.S. Army Ballistic Missile Research Laboratories won the fi rst two
competitions, but A. Michael Noll and Frieder Nake won the following two. In 1965 in
Stuttgart, Georg Nees and Frieder Nake were the fi rst individuals to exhibit their
computer-generated images in a gallery. The same year, the work of A. Michael Noll and
Bela Julesz was exhibited at the Howard Wise gallery in New York.2 These shows
presented drawings defi ned by code and output using a plotter. A plotter is a machine
that controls the position of a physical pen on a drawing surface. Nake described his
plotter in an essay for the Cybernetic Serendipity exhibition catalog: “I used the
Graphomat Zuse Z 64 drawing machine controlled by punch tape. The machine has a
drawing head guiding four pens, fed by Indian ink of different colours with nibs of
varying thicknesses.”3 Because of mechanical and software limitations, the drawings
exhibited in these shows were sparse, mostly geometric, black-and-white images. The
plotter remained one of the most common output devices into the 1980s and is still in

Reas_09_519-710.indd Sec6:603Reas_09_519-710.indd Sec6:603 5/23/07 1:07:54 PM5/23/07 1:07:54 PM

604 Extension 6: Print

use today. Over the years, artists have explored many drawing surfaces and have
attached brushes, pencils, and other marking instruments to the plotter’s head.
 Another area of printed computer graphics produced during the 1960s was more
similar to photography than to drawings. At Bell Laboratories, the engineers Kenneth
Knowlton and Leon Harmon explored what they called “picture processing.” To create
their 1966 Studies in Perception I, a 5 * 12 foot print of a reclining nude, they scanned a
photograph with a device similar to a television camera to convert it to a series of
numbers stored on a magnetic tape.4 The picture’s range of gray values was reduced to
eight levels, and when it was printed using a microfi lm plotter, each gray level was
replaced with a corresponding icon with a similar density that, when viewed at a
distance, simulated the gray value. The icons used for the print included mathematical
symbols (multiplication and division signs) and electronics symbols for diodes and
transistors. The fi nal enlargement was made from the microfi lm using a photographic
process. The techniques used to create this work envisioned the now familiar
technologies of scanning and image fi ltering.
 During the 1980s, the cost of computers and printing technology fell to levels within
reach of individual artists and designers. The artist Mark Wilson started to work with
personal computers and plotters in 1980. He utilized the resolution and precision of the
plotter to produce dense, geometric textures. He has continued to explore new printing
techniques and has produced work using the plotter to deposit acrylic onto linen and to
draw with ink on mylar. In his 1985 book Drawing with Computers, Wilson explained
how to use a personal computer and the BASIC programming language to control a
plotter. The following program from the book draws a line from coordinate (100, 100) to
(200, 200). The text following each apostrophe is a comment explaining the purpose of
each line:

100 OPEN "COM1,1200,0,7,1" AS #1 'Serial communications opened

110 PRINT #1,"!AE" 'Initialize plotter

120 STARTX-100 'Create and assign STARTX variable

130 STARTY-100 'Create and assign STARTY variable

140 ENDX-200 'Create and assign ENDX variable

150 ENDY-200 'Create and assign ENDY variable

160 PRINT #1,"!AX"+STR$(STARTX)+STR$(STARTY); 'Move pen head to coordinate (100,100)

170 PRINT #1,"!AY"+STR$(ENDX)+STR$(ENDY); 'Draw line to coordinate (200,200)

Each plotter manufacturer (e.g., Hewlett-Packard, Tektronix, IBM) had its own
commands, but they all provided the ability to move the pen up and down and to move
it from one location to another. The above example was written for a Tektronix plotter.
 The LaserWriter printer, introduced for Apple’s Macintosh computer in 1985, was an
important innovation in printing technology. Combined with page-layout software and
the Mac’s GUI interface, this early laser printer was the catalyst for the desktop
publishing revolution. The LaserWriter printed at 300 dots per inch (dpi), while the more
common dot matrix printers at that time printed at 72 dpi. The PostScript programming
language was the essential software component of the LaserWriter. Each printer had a

Reas_09_519-710.indd Sec6:604Reas_09_519-710.indd Sec6:604 5/23/07 1:07:55 PM5/23/07 1:07:55 PM

605 Extension 6: Print

processor that ran the PostScript interpreter to rasterize the data for printing. Forms in a
PostScript fi le are defi ned by coordinates and shape commands. This makes it possible to
transform elements within a composition without losing resolution. The PostScript
equivalent of the BASIC program presented above is:

/startX 100 def % Create and assign startX variable

/startY 100 def % Create and assign startY variable

/endX 200 def % Create and assign endX variable

/endY 200 def % Create and assign endY variable

startX startY moveto % Move to coordinate (100,100)

endX endY lineto stroke % Draw line to coordinate (200,200)

Over time, the PostScript language became the de facto standard for printed output, and
it served as a basis for ambitious visual experimentation. Rather than programming
PostScript fi les directly, most people used software like Aldus PageMaker to design
pages. Graphic designers started to use this technology to assert more personal control
over typographic layout and to explore new visual possibilities.
 This expanded freedom was manifested in Emigre magazine, started in 1984 with
Rudy Vanderlans as editor/designer and his partner Zuzana Licko supplying new
typefaces. Emigre is a digital type foundry, and the magazine simultaneously promoted
the fonts and served as a protagonist in the wider debate on digital aesthetics within the
design community. The pages of Emigre were fi lled with portfolios and interviews with
the most interesting designers of that time, including P. Scott Makela, Rick Valicenti, and
The Designers Republic. In the time before the Web and blogs, Emigre magazine was a
place to be informed of new ideas and to discuss possible futures. When the last issue
was published in 2005, Rick Poynor, founder of Eye magazine, wrote: “Emigre emerged at
a time when technology was changing design forever and the magazine sizzled with
this energy and excitement.” With regard to Vanderlans, Poynor stated, “His page
designs were exemplary demonstrations of the new digital design aesthetic.”5

 In The End of Print (1995), the design writer Lewis Blackwell wrote, “The designer of
today works with resources that did not exist just a decade (or less) ago. The digital age
has transformed the tools available and the processes by which ideas are realized. The
functionality of earlier production methods has been emulated and superseded by this
new technology.”6 The typographic fl exibility encouraged by desktop publishing
software was pushed to its limit in the pages of Beach Culture and Ray Gun. David
Carson’s designs for these magazines about surfi ng and music were exciting and
controversial. The visual style from page to page was wildly idiosyncratic, and the
multiple layers of stressed typography and photography often bordered on illegibility,
but the design was in the spirit of the content and the time. Carson explored the
extremes of letter spacing, typographic texture, and mixing typefaces, but always with
a sensitive eye for composition.
 Printed work in the 1980s and 1990s was not all created using commercial desktop
publishing software. Many artists and designers wrote custom software to realize their
vision. The Beowolf typeface (p. 169) designed by LettError utilized code to produce a font

Reas_09_519-710.indd Sec6:605Reas_09_519-710.indd Sec6:605 5/23/07 1:07:55 PM5/23/07 1:07:55 PM

606 Extension 6: Print

that randomizes the design of every letter as it is printed. John Maeda’s early printed
works from the 1990s fostered a surge of interest in programming images for print.
These commercial posters for Japanese printers and type foundries utilize algorithms to
generate images of astonishing complexity and resolution. Each of the ten posters for
Morisawa use only the company’s logo to create a diverse range of dense, delicate
typographic compositions. The work of Kenneth A. Huff is more representational than
the graphic work of Maeda, yet it too is rooted in algorithmic abstraction. Infl uenced by
organic patterns such as those found in lichen and drying mud, Huff develops unique
numerical formulas to use as the basis of his compositions. He places an emphasis on
accurate rendering of textures and lighting to evoke tactility, but his work diverges from
the constraints of physical materials.
 Rapid advancements in inks and paper technology have made it possible for digital
prints to have the longevity necessary for the art market. Artists who previously worked
with traditional materials and techniques have started to use digital printing
technologies in place of etching and lithography, and photographers have replaced
darkrooms with computers. In the early 1990s, Iris prints became the fi rst digital prints
to be heavily used by established printmakers and photographers. At this time Robert
Rauschenberg, well known for his lithographs, began making Iris prints with vegetable
dyes and transferring the images to another piece of paper to make collages. This
technique was similar to his transferred lithograph images and silkscreen painting from
the 1960s, but gave him more control. Other well-known early adopters of digital
printing include Chuck Close, Jim Dine, and William Wegman. Artists have also started
to combine new digital techniques with traditional art materials. For example, recent
prints from Jean-Pierre Hébert use a computer-controlled machine to etch a copper plate,
and the physical printing process is executed traditionally. Manfred Mohr prints onto
canvas and then stretches the prints over frames.
 Subsequent technologies have again changed the landscape of digital printing, and
more artists continue to use the technology. The featured software projects by Jared
Tarbell (p. 157), Martin Wattenberg (p. 161), and James Paterson (p. 165) are additional
examples of excellent work with a focus on printed output.

High-resolution file export

Images saved directly from screen are created at the screen’s resolution, typically around
100 pixels per inch (ppi). This low resolution is clearly visible when the images are
printed with a high-resolution printer. In contrast to screen resolution, printers are
capable of 9600 dpi. Two primary techniques are used to create high-resolution fi les
with software. The fi rst technique saves a vector fi le, and the second saves a raster
(bitmap) fi le. The vector technique creates fi les that store shape information as
coordinate points. Common vector formats are PDF, AI, EPS, and SVG. The raster
technique stores shape information as pixels. Common raster formats are TIFF, JPEG,
TARGA, and PNG. A vector fi le can be output at any size without loss of resolution, but
raster fi les do not scale gracefully.

Reas_09_519-710.indd Sec6:606Reas_09_519-710.indd Sec6:606 5/23/07 1:07:55 PM5/23/07 1:07:55 PM

607 Extension 6: Print

The difference is illustrated with this diagram:

Use the vector technique to export line art, type, or shapes that can be printed
professionally, published, or printed at very large sizes. It’s also helpful to create a fi le
that can be edited further with a program like Inkscape or Adobe Illustrator. Raster
images are useful when exporting an image from a program that does not refresh its
background each frame. If the image accumulates by adding each new frame to the
display window, as in code 26-05 (p. 232) and code 44-02 (p. 415), it may not be possible for
vector data to achieve the same effect or it may be too much geometry to store in a single
fi le. A raster fi le does not represent each visual element separately (it saves it as a series
of pixels), so it is editable only by programs like GIMP and Photoshop. A raster fi le can be
printed with as much resolution as a vector fi le if it is output with a large enough width
and height setting to give the fi le a high resolution when scaled for print. For example, to
print a four-inch image at 600 dpi would require size(2400, 2400) inside setup().
Vector fi les are eventually rasterized during the printing process, so it’s simply a matter
of when the rasterizing takes place—whether directly from the program, or inside a
professional raster image processor (RIP). The following examples clarify the strengths
and weaknesses of each technique.

Example 1: Render to PDF (p. 613)
When PDF is used as the third parameter to the size() function, the program renders
to a PDF fi le instead of drawing to the display window. The fi le name is set by a fourth
parameter to size() and the fi le is saved to the sketch’s folder. Most sketches can be
renderered as PDF by simply adding the two parameters to the size() command and
selecting Sketch -> Import Library -> PDF. Once you do this, you’ll no longer see the image
on screen as it is running, but it becomes possible to create PDF fi les at sizes much larger
than the screen.

Example 2: Render to screen, export to PDF (p. 613)
This example saves a PDF fi le while simultaneously drawing to the screen. The
beginRecord() function opens a new fi le, and all subsequent drawing functions are
echoed to this fi le as well as to the display window. The endRecord() function stops
the recording process and closes the fi le. The beginRecord() function requires two
parameters; the fi rst is the renderer to use (in this example, PDF), and the second is the
fi le name.

Vector image enlarged 800% Raster image enlarged 800%

Reas_09_519-710.indd Sec6:607Reas_09_519-710.indd Sec6:607 5/23/07 1:07:56 PM5/23/07 1:07:56 PM

608 Extension 6: Print

Example 3: Save one frame from a continuous program (p. 613)
This example saves a PDF fi le each time the mouse is pressed. The boolean variable
saveOneFrame is set to true when a mouse button is pressed, causing
beginRecord() to run the next time through draw(). At the end of draw(),
endRecord() is run and the variable is set to false so another fi le won’t be saved
while drawing the next frame. Each PDF fi le is numbered with the current frame (the
number of elapsed frames since the program started).

Example 4: Accumulate many frames into one PDF (p. 614)
This example saves multiple frames drawn to the screen within a single PDF fi le. The fi le
opens when the B key is pressed, and everything drawn in subsequent frames is saved
into it, until the E key is pressed. The background function is run after beginRecord()
to clear the background within the PDF document as well as in the display window. This
example draws only one new line to the PDF fi le each frame so the fi le remains small,
but it’s possible to write thousands of lines each frame. However, when vector fi les get
very large, computers can have diffi culty opening and printing them.

Example 5: Save a TIFF image from a high-resolution off-screen buffer (p. 614)
This example creates a TIFF fi le larger than the screen and draws into it directly, rather
than drawing to the screen. The createGraphics() function creates an object from
the PGraphics class (PGraphics is the main graphics and rendering context for
Processing). The beginDraw() method is necessary to prepare for drawing, then each
subsequent drawing function is written into the large raster object. The endDraw() and
save() methods are necessary to complete the fi le and then save it to the machine so
that it can later be viewed in a different program such as GIMP or Photoshop.

Example 6: Scale and segment an image (p. 614)
This example saves a series of image fi les at screen resolution from a single image
enlarged to any dimension. These fi les can be tiled within an image editor such as
Photoshop to create a single, high-resolution fi le. Another program can also be written
to tile the images together automatically. A scaleValue of 2 tiles the image to 4 fi les,
a scaleValue of 3 tiles the image to 9 fi les, etc. This example code works only with
2D images.

After a fi le is generated through software, it is often modifi ed before it is printed.
Common changes include tweaking color or changing the weight of the lines after print
tests. To make changes, load raster fi les into a program such as GIMP or Photoshop. Load
vector fi les into a program such as Inkscape, Illustrator, or CorelDRAW.

Production

Like traditional printing technologies, creating a high-quality digital print is a craft that
requires knowledge and experience in addition to excellent tools and machines. The

Reas_09_519-710.indd Sec6:608Reas_09_519-710.indd Sec6:608 5/23/07 1:07:56 PM5/23/07 1:07:56 PM

609 Extension 6: Print

quality of a print is affected by the quality of the printer, ink, and paper, the preparation
of the digital fi le, and the printer settings. Each of these components is introduced below.

Printing technologies
Many different printing technologies are currently in use by artists and designers, and
each has unique attributes. This list presents some of the most popular ones. Because
printing technology changes rapidly, specifi c printer models are not discussed.
 Laser. Laser printers are exceptional because of their high resolution, speed, and low
cost per page. For these reasons they are ubiquitous in offi ce environments. Laser
printers use a technology similar to that of photocopiers. When a print is made, a
cylindrical drum inside the printer is electrically charged. A high-precision laser is
refl ected to strike the drum, and it reverses the electrical charge where it hits. When the
drum comes in contact with charged toner (small particles of carbon blended with a
polymer), the toner is attracted to the drum where the laser hit. A sheet of paper is then
passed over the drum and the toner is transferred and then fused to the paper surface
with heat.
 Inkjet. Inkjet prints are the most common technology for home printers because of
their low cost and high image quality. They have also become a dominant technology for
professional photographic printing. In comparison to laser printers, inkjet printers are
slow, but they can produce images with a much higher resolution (currently up to 9600
dpi). They achieve this resolution by precisely squirting tiny droplets of ink onto the
page. For this reason, the actual resolution of an inkjet can’t compare directly to that of a
laser printer, which is more precise. A 600 dpi inkjet printer may produce
distinguishable shapes down to 150 dpi, while a laser printer at 600 dpi maintains
precision almost to the full 600 dpi. Each inkjet printer operates using one of three
technologies: thermal, piezoelectric, or continuous. The thermal technique forces a drop
of ink onto the paper by using heat to cause a tiny steam explosion within a chamber.
The piezoelectric technique bends a piezoelectric crystal to force a droplet out of the ink
chamber. The continuous technique sends a constant fl ow of droplets but charges each
with a varying electrostatic fi eld that determines how or whether it will hit the paper.
Inkjet printers are sometimes also called bubblejet printers.
 Digital chromogenic print (C Print). A digital C print is similar to a traditional color
photographic print, but a digital fi le is used instead of an enlarged negative. It is made
by exposing photographic paper to light (either an LED or laser) inside the printer. It is
then processed using chemicals, just like a photographic print. Chromira and Lightjet are
two popular types of printers that use this technique.
 Iris. Iris printers were developed to make full-color proofs before a job was printed
in large numbers on a commercial press. They started to be used as fi ne art printers in
the early 1990s. The most distinct aspect of this technology is the ability to print on
many different fl exible substrates including paper, silk, and canvas. To make an Iris
print, the substrate is attached to a 35-inch-wide metal drum and spun at a high speed
while tiny drops of ink are applied to the substrate in a high-pressure stream. An Iris
printer is a specifi c type of inkjet printer.
 Giclée. Giclée (pronounced zhee-CLAY) is not a specifi c printing technology; it is a

Reas_09_519-710.indd Sec6:609Reas_09_519-710.indd Sec6:609 5/23/07 1:07:56 PM5/23/07 1:07:56 PM

610 Extension 6: Print

term used to defi ne a high-quality, digitally produced fi ne art print. The term giclée
was selected to distance the technique from connotations to digital technology and
computers, as a tactic to gain acceptance within the art community. The fi rst giclée
prints were made using the Iris printing technology, but they are now made using other
technologies as well.
 Other techniques. In addition to the printing technologies mentioned above,
commercial printers offer a wide selection of specialized printers for creating large-
format prints for buses, billboards, and buildings. These printing techniques produce
lower resolution, but they look crisp at a distance.

Ink
The various printing technologies use different types of inks. Laser printers use toner,
inkjet printers use liquid inks, and C prints don’t use inks because they are made with a
photographic process. Toner must be fi xed with heat, but liquid inks are absorbed into
the paper. Inkjet inks can be divided into two broad categories: dye-based and
pigmented. In comparison to pigmented inks, the more common dye-based inks are
not water-resistant, are less expensive, are less resistant to fading, and can create more
vivid colors.
 Ink selection partially determines how long a print will last. Inkjet inks have been
notorious for fading color (early prints could fade within six months), but prints from
some of the current generation of printers are rated to hold their color for over 100 years
when used with special papers. Ultraviolet (UV) light is a huge contributing factor to
fading. Frame prints with UV-fi ltering glass or plexiglass to signifi cantly increase their
life. According to Wilhelm Imaging Research, an independent research company that
rates specifi c inks and paper, Epson’s highest-quality pigmented inks will last for well
over 100 years if framed with archival materials under UV-fi ltering glass and will last for
over 200 years in dark storage. Dye-based inks from Epson, Canon, and HP typically
maintain color for 10 to 70 years.

Paper
Paper is defi ned by its surface, material, and weight. Basic surface options include matte,
luster, semigloss, gloss, and supergloss with textures ranging from extremely smooth to
rough. Paper is typically made from wood fi bers, but fi bers from cotton, hemp, linen, and
rice are also used. Paper made from wood is naturally acidic, so look for papers that are
acid-free (pH neutral) to increase the longevity of prints. Paper made from 100 percent
rag is the most stable and will not grow brittle with age. The weight of a paper affects its
thickness. Fine art papers are usually measured in units of grams per square meter (gsm
or g/m2). Common weights range from 110 (thin) to 350 (thick).
 The selection of papers available for digital printing is extremely limited in
comparison to those manufactured for traditional fi ne art and commercial printing, but
the selection is still broad. Printer manufacturers such as Hewlett-Packard, Canon, and
Epson offer their own papers, but the fi nest-quality paper can arguably be found at
companies that specialize in making paper. Companies like Hahnemühle and Somerset
have recently started producing papers specifi cally for digital printing technologies.

Reas_09_519-710.indd Sec6:610Reas_09_519-710.indd Sec6:610 5/23/07 1:07:56 PM5/23/07 1:07:56 PM

611 Extension 6: Print

Some inkjet printers require paper to be coated with a special layer to stop the ink from
bleeding into the paper and dulling the color. Iris printers offer the widest selection of
printable media. An Iris printer can print on any absorbent material and still produce
strong color.
 Paper for printers comes in sheets and rolls, but depending on where you live, it will
either be sized according to the international ISO 216 standard (A4, A3, etc.) or North
American sizes (letter, tabloid, etc.).

File preparation
The format, resolution, and color profi le are the most important components of
preparing a fi le. For the best printing results, fi les should be saved in a format that does
not compress the data in a way that loses information. For example, the JPEG image
format compresses a fi le by removing color data. Each type of printer produces the best
results when fi les are at a specifi c resolution. Images should typically be saved at 300 dpi
or higher. Images produced for Inkjet printers should prepared at a dpi resolution that is
an increment of the maximum printer resolution. For example, an image fi le prepared
for a 2880 dpi printer should be saved at 360 dpi (360 * 8 = 2880). The 360 dpi resolution
is suggested for photographic images, but the quality of an image with fi ne lines can be
improved by doubling the resolution to 720 dpi (720 * 4 = 2880). A higher dpi resolution
won’t help a great deal (with inkjet) and will signifi cantly increase fi le size. The color
profi le for a fi le is essential to match color when working with other people or across
different computers. Each fi le should be tagged with a color profi le to specify the color
space of the document (e.g., ColorMatch RGB or Adobe RGB 1998). A color profi le tells an
output device such as a monitor or printer how to interpret the fi le’s numerical color
data to display it correctly on that device.
 Our experience has shown that complex vector fi les should be rasterized in a
program such as Adobe Photoshop before they are sent to a vendor for printing. Most
printers specialize in printing photographs and have more competence in working with
image formats like TIFF and PSD. Printers eventually rasterize the image, and it’s a good
idea to have complete control over this process, unless the print shop specifi es otherwise.

Inkjet printer settings
C prints and Iris prints are typically made through a vendor and laser printing is
straightforward. Making a high-quality print with an inkjet printer, however, is often
done at home but requires following a few important protocols. Because every type of
paper behaves differently with each printer, it’s necessary to defi ne the paper type
within the print dialog box. Most printers offer selections for their proprietary papers. If
you are using one of these papers, select it from the list. If you are using a different
paper, you may want to install the ICC profi le for the paper that matches the printer.7
The dialog box will also offer an option to set the dpi of the print. Sometimes it’s
necessary to go into advanced settings to gain access to this. There are a few things to
consider when selecting the dpi. Glossy papers can hold a higher resolution than matte
papers, and higher-resolution prints require more ink. Unless your print has extremely
precise details and will be viewed close up, 1440 dpi is an adequate resolution. Some

Reas_09_519-710.indd Sec6:611Reas_09_519-710.indd Sec6:611 5/23/07 1:07:57 PM5/23/07 1:07:57 PM

612 Extension 6: Print

printers also have an option to print “high speed.” This option can cause visible banding
in areas of fl at color and should not be used for fi nal prints.
 Making test prints is an essential step toward producing a high-quality print.
Precise colors and line weights look very different on screen than on paper. If working
with a vendor, always have a small test print made to check the quality before producing
the fi nal print.

Conclusion

Only within the last fi fteen years have digital printing technologies begun to rival
traditional printing techniques in their resolution and longevity, but there is a vast
discrepancy between the physical qualities of a digital print and an original Hokusai
(1760–1849) woodblock print or an Albrecht Dürer (1472–1528) etching. Each printing
technique has its constraints and advantages. One arguable advantage of digital
printing is the absence of a physical representation of the print. A lithograph has a
corresponding stone, and offset printing has a metal plate, but the information for a
digital print is stored in a computer’s memory and is therefore easier to modify. The
primary advantage of digital printing is the ease with which a software image can be
manifested as a physical image. In contrast to an image on screen, a print can have a
much higher resolution and will exist long after the software becomes incompatible
with future computers. There are also disadvantages to printing software images. The
ability to animate the image is lost, and the color palette is reduced. Digital printing
technology evolves rapidly, and it’s possible that the current research into electronic
paper (e-paper, e-ink) and organic light-emitting diodes (OLEDs) will allow the best
aspects of printed images to merge with the best elements of digital screens. These or
other emerging technologies may make it possible for digital printing to evolve into an
original area of image making rather than simply mimicking traditional printing
technologies.

 Notes

1. H. W. Franke, Computer Graphics, Computer Art (Phaidon, 1971), p. 60.

2. Ibid., p. 69.

3. Frieder Nake, “Notes on the Programming of Computer Graphics,” In Cybernetic Serendipity,

 edited by Jasia Reichardt (Praeger, 1969), p. 77.

4. This work is also credited as Mural in the exhibition catalog Cybernetic Serendipity.

5. Rick Poynor, “Emigre: An Ending,” Design Observer, 10 November 2005.

 http://www.designobserver.com/archives/007816.html.

6. Lewis Blackwell, The End of Print: The Graphic Design of David Carson (Chronicle Books, 1995), p. 173.

7. ICC profi les are fi les that defi ne the mappings between a print’s data and the specifi c paper and printer

 specifi cations. Well-designed profi les can increase the quality of a print. Check the website of the paper

 manufacturer to see if it has created one for your printer.

Reas_09_519-710.indd Sec6:612Reas_09_519-710.indd Sec6:612 5/23/07 1:07:57 PM5/23/07 1:07:57 PM

613 Extension 6: Print

Code

Example 1: Render to PDF

import processing.pdf.*; // Import PDF code

size(600, 600, PDF, "line.pdf"); // Set PDF as the renderer

background(255);

stroke(0);

line(200, 0, width/2, height); // Draw line to PDF

exit(); // Stop the program

Example 2: Render to screen, export to PDF

import processing.pdf.*; // Import PDF code

size(600, 600);

beginRecord(PDF, "line.pdf"); // Start writing to PDF

background(255);

stroke(0, 20);

strokeWeight(20);

line(200, 0, 400, height); // Draw line to screen and to PDF

endRecord(); // Stop writing to PDF

Example 3: Save one frame from a continuous program

import processing.pdf.*; // Import PDF code

boolean saveOneFrame = false;

void setup() {

 size(600, 600);

}

void draw() {

 if (saveOneFrame == true) { // When the saveOneFrame boolean is true,

 beginRecord(PDF, "line-####.pdf"); // start recording to the PDF

 }

 background(255);

 stroke(0, 20);

 strokeWeight(20);

 line(mouseX, 0, width-mouseY, height);

 if (saveOneFrame == true) { // If the PDF has been recording,

 endRecord(); // stop recording,

 saveOneFrame = false; // and set the boolean value to false

 }

}

void mousePressed() { // When a mouse button is pressed,

 saveOneFrame = true; // trigger PDF recording within the draw()

}

Reas_09_519-710.indd Sec6:613Reas_09_519-710.indd Sec6:613 5/23/07 1:07:57 PM5/23/07 1:07:57 PM

614 Extension 6: Print

Example 4: Accumulate many frames into one PDF

import processing.pdf.*; // Import PDF code

void setup() {

 size(600, 600);

 background(255);

}

void draw() {

 stroke(0, 20);

 strokeWeight(20);

 line(mouseX, 0, width-mouseY, height);

}

void keyPressed() {

 if (key == 'B' || key == 'b') { // When 'B' or 'b' is pressed,

 beginRecord(PDF, "lines.pdf"); // start recording to the PDF

 background(255); // Set a white background

 } else if (key == 'E' || key == 'e') { // When 'E' or 'e' is pressed,

 endRecord(); // stop recording the PDF and

 exit(); // quit the program

 }

}

Example 5: Save a TIFF image from a high-resolution off-screen buffer

PGraphics big; // Declare a PGraphics variable

void setup() {

 big = createGraphics(3000, 3000, JAVA2D); // Create a new PGraphics object

 big.beginDraw(); // Start drawing to the PGraphics object

 big.background(128); // Set the background

 big.line(20, 1800, 1800, 900); // Draw a line

 big.endDraw(); // Stop drawing to the PGraphics object

 big.save("big.tif");

}

Example 6: Scale and segment an image

// Draws an image larger than the screen by tiling it into small sections.

// The scaleValue variable sets amount of scaling: 1 is 100%, 2 is 200%, etc.

int scaleValue = 3; // Multiplication factor

int xoffset = 0; // x-axis offset

int yoffset = 0; // y-axis offset

void setup() {

 size(600, 600);

 stroke(0, 100);

}

Reas_09_519-710.indd Sec6:614Reas_09_519-710.indd Sec6:614 5/23/07 1:07:57 PM5/23/07 1:07:57 PM

615 Extension 6: Print

void draw() {

 scale(scaleValue);

 translate(xoffset * (-width/scaleValue), yoffset * (-height/scaleValue));

 line(10, 150, 500, 50);

 line(0, 600, 600, 0);

 setOffset();

}

void setOffset() {

 save("lines-" + xoffset + "-" + yoffset + ".jpg");

 xoffset++;

 if (xoffset == scaleValue) {

 xoffset = 0;

 yoffset++;

 if (yoffset == scaleValue) {

 exit();

 }

 }

 background(204);

}

Resources

Blackwell, Lewis. The End of Print: The Graphic Design of David Carson. Chronicle Books, 1995.

The Designers Republic. Artist website. http://thedesignersrepublic.com.

Mohr, Manfred. Artist website. http://www.emohr.com.

Hébert, Jean-Pierre. Artist website. http://hebert.kitp.ucsb.edu.

Huff, Kenneth A. “Visually Encoding Numbers Utilizing Prime Factors.” In Aesthetic Computing,

 edited Paul A. Fishwick. MIT Press, 2006.

Greiman, April. Hybrid Imagery: The Fusion of Technology and Graphic Design. Watson-Guptill, 1990.

Nake, Frieder. “Notes on the Programming of Computer Graphics.” In Cybernetic Serendipity,

 edited by Jasia Reichardt. Praeger, 1969.

Knowlton, Kenneth A. “Portrait of the Artist as a Young Scientist.” In The Anthology of Computer Art: Sonic Acts XI,

 edited by Arie Altena and Lucas van der Velden. Sonic Acts Press, 2006.

Nees, Georg. Generative Computergraphik. Siemens AG, 1969.

Noll, Michael A. “The Digital Computer as a Creative Medium.” In Cybernetics, Art and Ideas,

 edited by Jasia Reichardt. New York Graphic Society, 1971.

Rick Poynor. “Emigre: An Ending.” Design Observer, 10 November 2005.

 http://www.designobserver.com/archives/007816.html.

Reichardt, Jasia, ed. Cybernetic Serendipity: The Computer and the Arts. Praeger, 1969.

Reid, Glenn C. Thinking in PostScript. Addison-Wesley, 1990.

 Available online at http://www.rightbrain.com/pages/books.html.

Valicenti, Rick. Thirst/3st. Website. http://www.3st.com.

Vanderlans, Rudy, Zuzana Licko, et al. Emigre: Graphic Design into the Digital Realm.

 Van Nostrand Reinhold, 1993.

Wilson, Mark. Drawing with Computers. Putnam, 1985.

Reas_09_519-710.indd Sec6:615Reas_09_519-710.indd Sec6:615 5/23/07 1:07:57 PM5/23/07 1:07:57 PM

Reas_09_519-710.indd Sec6:616Reas_09_519-710.indd Sec6:616 5/24/07 10:45:59 AM5/24/07 10:45:59 AM

617

Extension 7: Mobile
Text by Francis Li

The same relentless technological advancement that has resulted in shrinking the room-
fi lling mainframes of yesteryear to the desktop personal computers of today is still at
work, bringing the computational power of those same desktop computers to the
handheld computers of tomorrow. Already the “smart” mobile telephone of today has
the processing power of the fi rst generation of desktop computers. However, the mobile
phone is poised to reach a far greater audience. It has rapidly become a point of access to
the Internet and will play a similar role in future interactive services. For good and for
bad, the mobile phone is changing the way people communicate and interact with one
another, both in the electronic and the physical worlds. It is not uncommon now to
exchange text messages instead of email, to hear phones ringing in a movie theater, or
even to see a person seemingly talking to herself while walking down the street, using
a wireless headset to carry on a voice conversation with a remote partner.

Mobile software applications

The mobile phone has become the platform and subject for new forms of interactive
applications and electronic art. The rapid adoption and popularity of the low-cost Short
Messaging Service (SMS) in Europe made the ability to exchange short text messages a
standard feature on all mobile phones. Software that can receive and respond to text
messages have enabled services like Google SMS, in which search queries can be sent to
the popular Internet search engine using a text message with the results delivered in a
text message response. Sending a text message to Google’s social networking service
Dodgeball will broadcast your location to all your friends via text message. Like Friendster
and other Web-based social networking services, Dodgeball connects friends, friends of
friends, and strangers within its member community. Using the mobile phone as its
interface allows Dodgeball to go further by enabling opportunistic face-to-face
encounters in the physical world. While these services may fi nd the 160-character
maximum in a text message to be a limitation, writers contributing to the CityPoems
project used it as a creative challenge. Physical signs called PoemPoints posted in the city
of Leeds, U.K. encouraged members of the community to both contribute and read poems
via SMS by sending text messages with PoemPoint codes to the CityPoems phone number.
 However, as popular as text messaging may be, it will never completely replace the
original function of the mobile phone, which is talking with another person. And, being
able to receive a phone call at any place and any time means the ringing of a phone can
be heard at any place and any time. From simple sequences of synthesized tones to full
stereo digital recordings of music and sound clips, sounds from mobile phones are now a D

ia
lto

ne
s:

A
Te

le
sy

m
ph

on
y,

 2
00

1.
Pe

rf
or

m
ed

 a
nd

 co
m

po
se

d
by

 G
ol

an
 L

ev
in

, S
co

tt
 G

ib
bo

ns
, a

nd
 G

re
go

ry
 S

ha
ka

r.
Im

ag
es

 co
ur

te
sy

 o
f G

ol
an

 L
ev

in
.

Reas_09_519-710.indd Sec6:617Reas_09_519-710.indd Sec6:617 5/24/07 10:45:23 AM5/24/07 10:45:23 AM

618 Extension 7: Mobile

commonplace, if not always welcome, addition to our everyday soundscape. At the 2001
Ars Electronica Festival, Golan Levin and his collaborators premiered the Dialtones ring-
tone symphony, which used the mobile phones of audience members in a live
performance. By way of carefully choreographed calls to audience members, the
symphony transformed the mobile phone and its ring tone from an intrusion into an
instrument. Telephony, fi rst exhibited by Thomson and Craighead in 2000, brought
similar themes to a gallery installation of 42 preprogrammed mobile phones arranged in
a grid on a wall. Gallery visitors initiated a musical performance of ring tones by dialing
into one of the phones, which in turn dialed other phones in a chain reaction.
 Playing sound is one way in which the mobile phone can directly affect its surrounding
environment. However, it can also be used as a live remote-control interface to its
surrounding environment, such as during a SimpleTEXT performance where audience
members share control of an audio and video projection. SimpleTEXT uses the contents of
text messages sent in real time during a performance as keywords for image searches and
as an input for a generative MIDI music system. In Germany, the mobile phone was used as
the interface to play the electronic game Pong as displayed on the side of a building in the
Blinkenlights project. By calling the Blinkenlights phone number, players outside the
building in Berlin could use the number keys to move the paddles in the classic game.
The ubiquity of the mobile phone allows almost anyone to become a participant in these
projects from the comfort and intimacy of their own personal interface.
 The mobile phone is also becoming a remote interface by which the physical
environment can be “annotated” by electronic content. Code words, numbers, and
computer-readable tags can be used to mark places in the physical world that have
retrievable electronic content. The Yellow Arrow project uses phone numbers printed on
highly visible stickers to send and receive text messages related to the physical location
of the sticker. The [murmur] project uses phone numbers and codes marked on signs in
the city of Toronto for retrieving audio recordings. These types of systems are being used
for tour guide applications, for organizing games, and for linking all forms of text and
imagery including poetry, stories, and photography.
 Most of these applications utilize existing capabilities of mobile phones, such as
voice dialing, text messaging, and basic Internet browsing. An Internet server or other
computer is used to process most of the input and output, and the mobile phone serves
merely as a delivery device. Being able to connect to other devices and sources of
information is one of the most important characteristics of a mobile phone, but the
ability to write custom software that can be installed on a mobile phone allows for more
interaction than sending and receiving messages or calls.
 Games were some of the fi rst custom software written for mobile phones. In 1997,
the Finnish manufacturer Nokia embedded the game Snake into a mobile phone.
Although not the fi rst incarnation of the game, after being embedded into more than
350 million handsets, it is arguably the most successful and popular. With its blocky and
pixellated visuals, Snake is most commonly praised for its simple and addictive
gameplay and has since launched a revival of classic, now considered “retro,” games for
mobile phones. However, Snake has continued to evolve and take advantage of the
mobile phone as a platform in subsequent versions, adding downloadable levels and a

Reas_09_519-710.indd Sec6:618Reas_09_519-710.indd Sec6:618 5/23/07 1:08:01 PM5/23/07 1:08:01 PM

619 Extension 7: Mobile

worldwide community leader board of high scores, and the latest version provides
multiplayer interaction and color 3D graphics. Games are one of the largest markets for
downloadable content on the mobile phone.
 Custom software installed on a mobile phone can communicate with a wider range
of hardware devices and technologies. For example, global positioning system (GPS)
receivers and other location-sensing technologies are being used to query the location of
the mobile phone and its user in the physical world. Mapping and wayfi nding systems
have been the fi rst such applications to be developed, from companies like TeleNav and
Wayfi nder Systems; location-based service applications like a local business search loom
closely on the horizon.
 Bluetooth is a wireless networking standard that is used to communicate with
devices like GPS receivers, headsets, and other mobile phones. Moreover, a mobile phone
with Bluetooth can automatically detect the presence of those devices when they are in
its immediate vicinity. This is being used for new social networking applications like the
Nokia Sensor. Sensor detects the presence of other mobile phones running the same
software and allows the exchange of personal profi les as a way of facilitating face-to-
face meetings with strangers.

The mobile platform

Writing custom software for a mobile phone opens possibilities for new applications.
But, as with any platform, there are technical and physical constraints. This section
presents a broad overview of the characteristics of mobile phones and the ways in which
they differ from desktop computers. At the time of this writing, a typical mobile phone
has many characteristics in common with a desktop computer from the 1980s, including
memory and storage capacity. However, mobile phones are rapidly evolving, and
hundreds of new models are being introduced each year around the world. Many of the
technical limitations will likely become irrelevant, but the physical constraints of size
and weight will remain. After all, a mobile phone must remain mobile!

Application size and storage
Mobile phones have much less storage capacity for software and data than desktop
computers. As a result, some phones have limits on the size of applications. If the size of
an application exceeds the limit, the phone will refuse to install it. Depending upon the
make and model of the mobile phone, the application size limit can be as little as 64,000
bytes. In contrast, a typical compact disc can store 10,000 times as much. Multimedia fi les
including images and sounds are usually the largest contributor to application size, so
they must be used in moderation in mobile phone applications. Depending upon the
format of the image fi les, they can be compressed with the same techniques used to
optimize images for the Web.
 Similarly, data that is saved by the application can also be subject to a size
limitation. The total limit on data can be as little as 16,000 bytes on older phones. This is
enough to store 80 SMS text messages at 200 bytes each or 8 Email messages at 2,000

Reas_09_519-710.indd Sec6:619Reas_09_519-710.indd Sec6:619 5/23/07 1:08:01 PM5/23/07 1:08:01 PM

620 Extension 7: Mobile

bytes each. However, a single digital photo with dimensions of 640 * 480 pixels stored in
the JPEG format, common from cameras in mobile phones, can require 20,000 bytes or
more of storage. Newer mobile phones generally remove both of these limitations and
have storage capacities measured in millions of bytes.

Memory
Mobile phones can have as little as 256 kilobytes of memory for running applications,
the same as an original IBM Personal Computer from 1981. Memory is used to store the
program code of an application while it is running as well as any additional data fi les it
needs, including multimedia fi les. If a mobile phone runs out of memory while running
an application, the application will often simply terminate without explanation. Again,
multimedia fi les including images and sounds are often the largest consumers of
memory. If different images are to be displayed on the screen at the same time, they
must be able to fi t in memory together with the running program code.

Key input
The primary input mechanism on a mobile phone is its keys. Most mobile phones follow
the standard 4 rows by 3 columns key arrangement to allow the input of the numbers 0
though 9, #, and *. This grid arrangement makes it easy to map the keys to directions like
up (2), down (8), left (4), and right (6). However, some mobile phones have alternative key
arrangements or completely different input mechanisms such as scroll wheels. In
addition, most mobile phones have a completely separate key or joystick, similar to a
video game controller, that allows four-way directional input.
 Most mobile phones also have two or more physical keys placed next to the bottom
of the screen, called softkeys. Softkeys can be used for any function by an application
and are usually labeled with descriptive text or an icon on the screen just above each
key. Softkeys are commonly used as shortcuts for commands and to switch to different
screens in an application user interface.
 There is no standard for inputting text on a mobile phone. Most text input
techniques involve pressing a key multiple times to cycle through a set of characters
associated with the key. However, the association of characters and symbols with keys
printed on the face of the mobile phone can differ from one mobile phone to the next.
Often, it is also necessary to switch to or overlay a different screen on top of an
application in order to input text.
 Most key arrangements are designed to be used with only one hand, and usually
only the thumb of the hand. As a result, pressing multiple keys simultaneously or in very
rapid succession is usually not supported. Applications, usually games, that rely on fast
reactions and precise timing can sometimes be diffi cult to support.

Screen output
Mobile phones can have screens of varying sizes, resolutions, and aspect ratios. Some
common pixel dimensions include 96 * 64 pixels, 128 * 128 pixels, and 176 * 208 pixels.
Although most mobile phones now have color screens, there can be both black-and-
white screens and color screens that display 256, 4096, or 65,536 colors.

Reas_09_519-710.indd Sec6:620Reas_09_519-710.indd Sec6:620 5/23/07 1:08:01 PM5/23/07 1:08:01 PM

621 Extension 7: Mobile

Multimedia input and output
Most mobile phones have music synthesizers used for playing ring tones. Applications
can commonly play individual tones specifi ed by frequency and duration and more
complex musical arrangements stored in the MIDI fi le format. Newer mobile phones can
play digitized audio formats including WAV and MP3 and can sometimes also record
audio. However, there is often little sound control beyond starting and stopping playback
and adjusting the volume. Also, most mobile phones cannot play more than one sound
fi le at a time, often with delays between loading fi les and starting playback.
Vibrators are commonly used as an alternative to ring tones. Applications can also use
vibration as a form of haptic output to the user, such as when losing points in a game or
to call attention to an important message.
 Mobile phones with digital cameras can be used by an application to capture still
images or video. The images and video can be stored or transferred to another device.
Computer vision techniques can potentially be used to process the images as an input,
for example, recognizing numbers from barcodes or detecting motion for movement in
a game.

Networking and the Internet
Mobile phones connect to the Internet via radio-tower antennas maintained by wireless
network operators. Speeds are comparable to dial-up modem connections on current-
generation networks and can reach broadband speeds and beyond on newer networks.
Connection time delays, speed, and reliability vary wildly based on radio tower reception
and usage. Internet data passes through servers managed by the network operators that
monitor the amount of data being transferred, commonly billed to the user at a per-
kilobyte rate. Network operators can restrict access to the Internet, and connections can
easily be lost after a short period of inactivity. As a result, it is not easily possible, or
practical from a cost perspective, to maintain a continuous connection to a server or
other device on the Internet via the mobile phone network.
 Close-range wireless networks, also called personal area networks (PAN), are
becoming more common on mobile phones as a way to communicate with other mobile
phones, desktop computers, and a growing variety of accessories including wireless
headsets and GPS receivers. Infrared and Bluetooth are the most common PAN
technologies. Data exchanged on a PAN are independent of the mobile phone network.

Preinstalled applications
Most mobile phones include a suite of applications that are pre-installed and cannot be
deleted. These applications usually include a Web browser capable of displaying
different forms of XML- or HTML-based content. Personal information, including
appointments and contacts, is commonly stored and managed by calendar and address
book applications on a mobile phone. On some mobile phones, other applications are
also allowed to access this information. Other applications include message editors for
sending SMS or Email; games; and utilities like alarm clocks.

Reas_09_519-710.indd Sec6:621Reas_09_519-710.indd Sec6:621 5/23/07 1:08:01 PM5/23/07 1:08:01 PM

622 Extension 7: Mobile

Programming for mobile phones

Mobile Processing is a tool for programming applications for mobile phones. It uses the
same programming language as Processing with additions and omissions that are
specifi c to mobile phone features. Applications created using Mobile Processing run on
mobile phones that support Java technology, also known as Java-powered mobile
phones. The core language and API of Mobile Processing will run on any Java-powered
mobile phone, but not all such phones support the additional features included as
libraries. The following examples highlight some of the signifi cant differences between
Processing and Mobile Processing and demonstrate how to use features specifi c to the
mobile platform.
 Mobile Processing uses a software simulator to run and test mobile phone
applications on the desktop computer during development. When ready, the application
can be copied to a mobile phone using a PAN connection such as Bluetooth, or uploaded
to a Web server for download over the Internet. For some mobile phones, the only way to
install an application is to download it from a link on a Web page using the mobile
phone’s Web browser.

Example 1: Drawing to the screen (p. 626)
Applications on a mobile phone should fi ll the entire screen. There is no concept of
“windows” on most mobile phones, and because most built-in phone applications will
use the entire screen for their interfaces, users will generally have the same expectation
of other applications. As a result, Mobile Processing does not have a size() function to
set the width and height of the output. Instead, a Mobile Processing application will
automatically fi ll the entire screen, and the width and height variables will be
assigned the pixel dimensions of the screen. Instead of using absolute coordinates when
drawing to the screen, use the width and height variables to calculate relative
positions that will automatically adjust to the size of the mobile phone screen. Mobile
Processing supports loading and displaying images stored in the Portable Network
Graphics (PNG) format. PNG fi les can be optimized by most image editing programs to
create the smallest possible fi le size. The format supports 8-bit alpha transparency
values, but most phones only support 1-bit alpha transparency, where pixels are either
completely transparent or completely opaque.

Example 2, 3: Key presses (pp. 626, 627)
Handling key presses in Mobile Processing is similar to doing it in Processing, but there
are additions for keys specifi c to the mobile phone. By default, Mobile Processing creates
a softkey called Exit to allow the user to end the application. A second softkey can be
assigned using the softkey() function to specify a text label for the key. When the
softkey is pressed, the softkeyPressed() callback function is called with the label as
a parameter. The textInput() function will open a screen that allows input using the
built-in text entry methods of the mobile phone. The draw() loop, if running, will be
paused and the new screen will completely replace the output of the application. The
text entry screen will look different depending on the make and model of the mobile

Reas_09_519-710.indd Sec6:622Reas_09_519-710.indd Sec6:622 5/23/07 1:08:02 PM5/23/07 1:08:02 PM

623 Extension 7: Mobile

phone. After the input is complete, the text will be returned as a String and the
draw() loop will resume. If you do not wish to switch to a new screen in order to gather
text input, you can use custom key-handling functions that implement a text entry
method called multitap. Pressing a key multiple times in rapid succession cycles through
the characters associated with the key. Since multiple key presses can be necessary to
interpret a single character, a buffer is used to accumulate and interpret key presses. Use
the multitap() function to begin interpreting key presses and accumulating
characters in the key buffer. The multitapText variable is a String object containing
the accumulated characters. The multitapDeleteChar() function deletes a single
character from the buffer, and the multitapClear() function deletes all the
accumulated characters. Use the noMultitap() function to stop the buffering process.

Example 4: Networking (p. 627)
Mobile Processing applications use the PClient object to connect to the Internet. It is
included as part of the core languge of Mobile Processing, and all mobile phones that
have an Internet data included with their service plan should be able to use it. Direct
connections to computers on the Internet are not supported. Instead, requests can be
made to Web servers using the same Hypertext Transport Protocol (HTTP) used by Web
browsers. Create a PClient object by specifying the name of the server you wish to
communicate with. Then, use the GET() function to request data. The GET() function
is used to retrieve the contents of a fi le or the output of a server-side script.
 The GET() function returns a PRequest object immediately while the phone
attempts to establish a connection in the background. In the meantime, the main loop
continues and you can draw or animate the status of the connection, if you wish. If the
connection is successful, the libraryEvent() function will be called by the request
object to notify you. At that time, you can then fetch the data by calling readBytes().
Again, the phone will attempt to read the data in the background and the main loop will
continue. When all of the data is fetched, the request object will call libraryEvent() again
and the data can be processed as an array of bytes.
 To send data to the server, you can call the POST() function on the PClient object.
The server receives the data as if it were submitted from a form on a Web page. The
server can then process the data and send a reply, which can be read using the same
readBytes() function.

Example 5, 6, 7: Sound (pp. 629, 630)
Sound is available as a library in Mobile Processing. Not all mobile phones will be able to
run applications with the Sound library included. If a mobile phone cannot run the
Sound library, the application will likely not start at all, or it will terminate without
explanation. All mobile phones that can run applications with the Sound library will be
able to play synthesized tones. To play a tone, use the playTone() function in the
Sound object, specifying the MIDI note and duration of the tone. To play other types of
sound, use the loadSound() function to get a Sound object. Most mobile phones can
play MIDI music fi les, and some can play WAV or MP3 digitized audio fi les. Use the

Reas_09_519-710.indd Sec6:623Reas_09_519-710.indd Sec6:623 5/23/07 1:08:02 PM5/23/07 1:08:02 PM

624 Extension 7: Mobile

supportedTypes() function in Sound to return an array of String objects listing the
supported sound types using Internet MIME codes.

Example 8: Controlling the phone (p. 630)
The Phone library provides control for mobile phone-specifi c features. These include
vibrating the phone, fl ashing the backlight of the screen, launching the Web browser,
and dialing a phone number. Not all phones will support this library or implement all
the features. To use it, create a new Phone object and then call the function for the
feature you wish to control. The vibrate() and flash() functions take one parameter
describing the length of the vibration or backlight fl ashing, respectively, in milliseconds.
The call() function takes a String containing the phone number to dial, and the
launch() function takes a String containing the URL to fetch.

Mobile Processing includes additional libraries that support even more mobile phone
features, including Bluetooth, XML data parsing, and video playback and frame capture.
These libraries and even more contributions from the community of Mobile Processing
users can be found on the Web.

Mobile programming platforms

The development options for mobile phones are as diverse as the possible applications.
Mobile Processing is just one option for writing software applications for mobile phones.

Messaging
Projects like CityPoems and services like Dodgeball use text messaging to communicate
with a server that does all the computational work. The server software can be
developed with almost any language, but implementation of the messaging can require
a service contract with a messaging gateway and fees for messages sent and received.
Wireless network operators can provide unique phone numbers, called shortcodes, that
have fewer digits than typical phone numbers to make the service number more
memorable for users. Since all mobile phones support text messaging, these services are
accessible to all users without requiring them to install any applications.

Browsers
Most mobile phones include some form of Web browser. Any Web server can easily be
confi gured to serve the mobile-specifi c XML- or HTML-based content formats currently
being used, including the Compact HTML format used by NTT DoCoMo’s i-Mode service
and the xHTML Mobile and Wireless Markup Language (WML) documents specifi ed by
the Wireless Application Protocol (WAP) Forum. These formats support a reasonable
subset of HTML features, including images, tables, and forms, but generally lack client-
side scripting features such as JavaScript. Server applications can be developed using the
same scripting or programming languages used to create Web applications. Although
there is no mechanism for plug-ins in these mobile Web browsers, Adobe Flash Lite is

Reas_09_519-710.indd Sec6:624Reas_09_519-710.indd Sec6:624 5/23/07 1:08:02 PM5/23/07 1:08:02 PM

625 Extension 7: Mobile

being included in many new phones as a player for the popular vector-based content
format. Flash Lite is also one of many players that can display content authored using
the Scalable Vector Graphics (SVG) specifi cation, a standard XML-based markup format
for vector graphics content.

Runtime environments
A runtime environment allows a software application to run unmodifi ed in the same
way on different operating systems and hardware. Mobile Processing is built on top of
the Java 2 Micro Edition (J2ME) platform from Sun Microsystems, an application runtime
environment based on the same Java programming language and runtime environment
used on desktop computers. Development for J2ME can be performed using any Java
development tools, including the Eclipse and NetBeans integrated development
environments (IDEs), many of which include specifi c support for J2ME development. Sun
provides the Sun Java Wireless Toolkit (WTK), which Mobile Processing uses for building
and running applications. Manufacturers like Nokia and Sony Ericsson often provide
custom WTK implementations that better approximate the look and feel and
functionality of their mobile phones. New libraries for Mobile Processing can be written
using these tools. Alternative runtime environments include the Binary Runtime
Environment for Wireless (BREW) from Qualcomm and Mophun from Synergenix. The
trade-off for providing an environment that can run across diverse devices is
performance and a lowest-common-denominator feature set. The latest mobile phone
features are usually not immediately available in a runtime environment.

Operating systems
Most operating systems for mobile phones are closed and proprietary, which means that
it is not possible to write custom software applications for them (instead, a runtime
environment is usually provided). However, operating systems that support custom
software development are available for mobile phones and include Symbian, Windows
Mobile, Palm OS, and Linux. Developing applications for these operating systems allows
for the most fl exibility and highest performance at the expense of limiting the
application to running on a smaller number of mobile phones. Symbian is owned by a
consortium of mobile phone manufacturers including Nokia, Sony Ericsson, and
Panasonic, and its operating system can be found running many advanced mobile
phones from a wide variety of manufacturers. Windows Mobile and Palm OS have a long
history of development as the operating systems for the Pocket PC and Palm personal
digital assistants, respectively, and are relative newcomers to the mobile phone market.
Although largely unseen in the market at the time of this writing, the Linux operating
system is an attractive option because of its open source licensing model.

Conclusion

Mobile phones are an emerging platform for new services and applications that have
the potential to change the way we live and communicate. Mobile Processing provides a

Reas_09_519-710.indd Sec6:625Reas_09_519-710.indd Sec6:625 5/23/07 1:08:02 PM5/23/07 1:08:02 PM

626 Extension 7: Mobile

way to write custom software applications for mobile phones that can utilize the
features built into the hardware as well as connect to the Internet and communicate
with servers that provide additional computational power and data. As the ability to
rapidly prototype and explore new possibilities for interaction and visualization
becomes greater, so do the opportunities for fi nding innovative new services and
applications. The Mobile Processing project aims to help drive this innovation and keep
pace with the rapid developments in technology while also increasing the audience of
potential designers and developers through the tool itself and the open sharing of ideas
and information.

Code

These examples are written for the Mobile Processing programming environment and
require a mobile phone that can run Java programs. To download the software, visit the
Mobile Processing website: http://mobile.processing.org. Like Processing, it is free and
open source. Further instructions are included with the software and are available on
the website.

Example 1: Drawing to the screen

// The image file, named sprite.png in this example, must be located in the

// sketch data folder. From the Sketch menu, choose "Add File" to copy files into

// the sketch data folder.

PImage img = loadImage("sprite.png");

// The coordinates (0, 0) refer to the top-left corder of the screen

image(img, 0, 0);

// The following coordinate calculations will center the image in the screen

image(img, (width – img.width) / 2, (height – img.height) / 2);

// Finally, the next line will position the image in the bottom-right corner

image(img, width – img.width, height – img.height);

Example 2: Key presses, using textInput()

String s;

PFont font;

void setup() {

 font = loadFont(); // Load and set the default font for drawing text

 textFont(font);

 softkey("Input"); // Create a softkey called Input

 s = "No input"; // Initialize s with an initial message

}

void draw() {

 background(200);

 text(s, 0, height / 2); // Draw the String s in the middle of the screen

}

Reas_09_519-710.indd Sec6:626Reas_09_519-710.indd Sec6:626 5/23/07 1:08:03 PM5/23/07 1:08:03 PM

627 Extension 7: Mobile

void softkeyPressed(String label) {

 // Check the value of the softkey label to determine the action to take

 if (label.equals("Input")) {

 // If the Input softkey is pressed, open a textInput window for the user

 // to type text. It will be drawn on the screen by the draw() method

 s = textInput();

 }

}

Example 3: Key presses, using multitap()

PFont font;

void setup() {

 font = loadFont();

 textFont(font);

 softkey("Delete"); // Use softkey to to delete characters from the multitap buffer

 multitap(); // Turn on multitap key input

}

void draw() {

 background(200);

 text(multitapText, 0, height / 2); // Draw the text captured with multitap

}

void softkeyPressed(String label) {

 if (label.equals("Delete")) {

 multitapDeleteChar(); // Delete a character

 }

}

Example 4: Networking

// The PClient object is used to initiate requests to the server

PClient c;

// The PRequest object represents an active request from which we receive

// status information and data from the server

PRequest request;

int counter;

PFont font;

PImage img;

String version;

String error;

void setup() {

 font = loadFont(); // Load and set the default font for drawing text

 textFont(font);

 fill(0);

 // Create a new network connection to connect to the Mobile Processing website

 c = new PClient(this, "mobile.processing.org");

 // Start by fetching the logo for Mobile Processing the filename is a relative path

Reas_09_519-710.indd Sec6:627Reas_09_519-710.indd Sec6:627 5/23/07 1:08:03 PM5/23/07 1:08:03 PM

628 Extension 7: Mobile

 // specified in the same way as a URL in a webpage

 request = c.GET("/images/mobile.png");

 // Use the counter to keep track of what we're fetching

 counter = 0;

}

void draw() {

 background(255);

 int y = 0;

 if (error != null) {

 // A network error has occurred, so display the message

 y += font.baseline;

 text(error, 0, y);

 } else if (img == null) {

 // The img is not yet fetched, so draw a status message

 y += font.baseline;

 text("Fetching image...", 0, y);

 } else {

 // Draw the image

 image(img, (width - img.width) / 2, y);

 y += img.height + font.baseline;

 if (version == null) {

 // The version text is not yet fetched, so draw a status message

 text("Checking version...", 0, y);

 }

 else {

 // Draw the version as reported by the website

 text("Latest version: " + version, 0, y);

 }

 }

}

// The libraryEvent() will be called when a library, in this case the Net

// library, has an event to report back to the program

void libraryEvent(Object library, int event, Object data) {

 // Make sure we handle the event from the right library

 if (library == request) {

 if (event == PRequest.EVENT_CONNECTED) {

 // This event occurs when the connection is complete, so we can start

 // reading the data. The readBytes() method will read all the data returned

 // by the server and send another event when completed.

 request.readBytes();

 } else if (event == PRequest.EVENT_DONE) {

 // Reading is complete! Check the counter to see what we're transferring,

 // then process the data. The data object in this case is an array of bytes.

 byte[] bytes = (byte[]) data;

 if (counter == 0) {

 // This is the logo, so create an image from the bytes

 img = new PImage(bytes);

 // Now that we have the logo image, fetch the latest version text for

 // Mobile Processing. We use the client object to initiate a new request

 request = c.GET("/download/latest.txt");

 // Set the counter to 1 to represent the text

Reas_09_519-710.indd Sec6:628Reas_09_519-710.indd Sec6:628 5/23/07 1:08:03 PM5/23/07 1:08:03 PM

629 Extension 7: Mobile

 counter = 1;

 } else if (counter == 1) {

 // This is the version text, so create a string from the bytes

 version = new String(bytes);

 }

 } else if (event == PRequest.EVENT_ERROR) {

 // The data object in this case is an error message

 error = (String) data;

 }

 }

}

Example 5: Sound, using playTone()

import processing.sound.*;

// Notes range from 0 to 127 as in the MIDI specification

int[] notes = { 60, 62, 64, 65, 67, 69, 71, 72, 74 };

void setup() {

 noLoop(); // No drawing in this sketch, so we don't need to run the draw() loop

}

void keyPressed() {

 if ((key >= '1') && (key <= '9')) {

 // Use the key as an index into the array of notes

 Sound.playTone(notes[key - '1'], 500, 80);

 }

}

Example 6: Sound, using loadSound()

import processing.sound.*;

Sound s;

void setup() {

 // The file, soundtrack.mid, must be copied into the data folder of this sketch

 s = new Sound("soundtrack.mid");

 softkey("Play");

 noLoop();

}

void softkeyPressed(String label) {

 if (label.equals("Play")) {

 s.play();

 softkey("Pause"); // Change the label of the softkey to Pause

 } else if (label.equals("Pause")) {

 s.pause();

 softkey("Play"); // Change the label of the softkey back to Play

 }

}

Reas_09_519-710.indd Sec6:629Reas_09_519-710.indd Sec6:629 5/23/07 1:08:03 PM5/23/07 1:08:03 PM

630 Extension 7: Mobile

Example 7: Sound, using supportedTypes()

import processing.sound.*;

PFont font = loadFont();

textFont(font);

background(255);

fill(0);

// Get a list of the supported types of media on the phone

String[] types = Sound.supportedTypes();

// Start at the top of the screen

int y = font.baseline;

// Draw each of the supported types on the screen

for (int i = 0, length = types.length; i < length; i++) {

 // Draw the supported type (represented as an

 // Internet MIME type string, such as audio/x-wav)

 text(types[i], 0, y);

 // Go to the next line

 y += font.height;

}

Example 8: Controlling the phone

import processing.phone.*;

Phone p;

void setup() {

 p = new Phone(this);

 noLoop(); // No drawing in this sketch, so we don't need to run the draw() loop

}

void keyPressed() {

 switch (key) {

 case '1':

 // Vibrate the phone for 200 milliseconds

 p.vibrate(200);

 break;

 case '2':

 // Flash the backlight for 200 milliseconds

 p.flash(200);

 break;

 case '3':

 // Dial 411 on the phone

 p.call("411");

 break;

 case '4':

 // Launch the Web browser

 p.launch("http://mobile.processing.org/");

 break;

 }

}

Reas_09_519-710.indd Sec6:630Reas_09_519-710.indd Sec6:630 5/23/07 1:08:03 PM5/23/07 1:08:03 PM

631 Extension 7: Mobile

Resources

Mobile toolkits and references
Adobe. Adobe Flash Lite. http://www.adobe.com/products/fl ashlite.

Bluetooth. http://www.bluetooth.com.

Microsoft. Windows Mobile. http://www.microsoft.com/windowsmobile.

NetBeans. http://www.netbeans.org.

Nokia Sensor. http://www.nokia.com/sensor/.

NTT. DoCoMo i-Mode. http://www.nttdocomo.co.jp/english/service/imode.

Palm OS. http://www.palmsource.com.

Portable Network Graphics (PNG). http://www.w3.org/Graphics/PNG.

Qualcomm. Binary Runtime Environment for Wireless (BREW). http://brew.qualcomm.com.

Scalable Vector Graphics (SVG). http://www.w3.org/Graphics/SVG.

Sun Microsystems. Java Micro Edition (ME). http://java.sun.com/javame.

Sun Microsystems. Java Wireless Toolkit, http://java.sun.com/products/sjwtoolkit.

Synergenix Interactive. Mophun. http://www.mophun.com.

Symbian OS. http://www.symbian.com.

WAP Forum. http://www.wapforum.org.

Artworks and services
Centrifugalforces. CityPoems. SMS and website. February 2003–October 2005. http://www.citypoems.co.uk.

Chaos Computer Club. Blinkenlights. SMS-controlled architectural installation, 2001.

 http://www.blinkenlights.de.

Counts Media. Yellow Arrow. SMS Service, 2004. http://yellowarrow.net.

Dodgeball. SMS service, 2001. http://www.dodgeball.com.

Family Filter (Jonah Brucker-Cohen, Tim Redfern, Duncan Murphy). SimpleTEXT. SMS Performance, 2003.

 http://www.simpletext.info.

Levin, Golan, et al. Dialtones: A Telesymphony. Performance, 2001. http://www.fl ong.com/telesymphony/

Google SMS. http://www.google.com/sms.

[murmur]. SMS Service, 2004. http://murmurtoronto.ca.

TeleNav. SMS navigation service. http://www.telenav.com.

Thomson, Jon and Alison Craighead. Telephony. Mobile phone installation, 2000.

 http://thomson-craighead.net/docs/telf.html.

Wayfi nder Systems. SMS navigation service, 2002. http://www.wayfi nder.com.

Reas_09_519-710.indd Sec6:631Reas_09_519-710.indd Sec6:631 5/23/07 1:08:03 PM5/23/07 1:08:03 PM

Reas_09_519-710.indd Sec6:632Reas_09_519-710.indd Sec6:632 5/24/07 10:47:33 AM5/24/07 10:47:33 AM

633

Extension 8: Electronics
Text by Hernando Barragán and Casey Reas

Software is not limited to running on desktop computers, laptops, and mobile phones.
Contemporary cameras, copiers, elevators, toys, washing machines, and artworks found
in galleries and museums are controlled with software. Programs written to control
these objects use the same concepts discussed earlier in this book (variables, control
structures, arrays, etc.), but building the physical parts requires learning about
electronics. This text introduces the potential of electronics with examples from art and
design and discusses basic terminology and components. Examples written with Wiring
and Arduino (two electronics toolkits related to Processing) are presented and explained.

Electronics in the arts

Electronics emerged as a popular material for artists during the 1960s. Artists such as
Naum Gabo and Marcel Duchamp had used electrical motors in prior decades, but the
wide interest in kinetic sculpture and the foundation of organizations such as
Experiments in Art and Technology (E.A.T.) are evidence of a signifi cant emphasis at that
time. In The Machine exhibition at The Museum of Modern Art in 1968, Wen-Ying Tsai
exhibited Cybernetic Sculpture, a structure made of vibrating steel rods illuminated by
strobe lights fl ashing at high frequencies. Variations in the vibration frequency and the
light fl ashes produced changes in the perception of the sculpture. The sculpture
responded to sound in the surrounding environment by changing the frequency of the
strobe lights. Peter Vogel, another kinetic sculpture pioneer, produced sculptures that
generate sound. The sculptures have light sensors (photocells) that detect and respond to
a person’s shadow when she approaches the sculpture. The sculptures’ form is composed
directly of the electrical components. The organization of these components forms both
the shape of the sculpture and its behavior. Other pioneers during the 1960s include
Nam June Paik, Nicolas Schöffer, James Seawright, and Takis.
 The range of electronic sculpture created by contemporary artists is impressive. Tim
Hawkinson produces sprawling kinetic installations made of cardboard, plastic, tape,
and electrical components. His Überorgan (2000) uses mechanical principles inspired by
a player piano to control the fl ow of air through balloons the size of whales. The air is
pushed through vibrating reeds to create tonal rumbles and squawks. This physical
energy contrasts with the psychological tension conveyed through Ken Feingold’s
sculptures. His If/Then (2001) is two identical, bald heads protruding from a cardboard
box fi lled with packing material. These electromechanical talking heads debate their
existence and whether they are the same person. Each head listens to the other and
forms a response from what it understands. Speech synthesis and recognition software Pe

te
r V

og
el

. C
ir

cu
la

r S
tr

uc
tu

re
, 1

97
9.

 S
pe

ak
er

, p
ho

to
 ce

ll,
 ci

rc
ui

ts
, i

ro
n

w
ir

e.
 2

7"
 *

 17
 X

" *
 7"

. I
m

ag
e

co
ur

te
sy

 o
f t

he
 b

itf
or

m
s g

al
le

ry
, n

yc
.

Reas_09_519-710.indd Sec6:633Reas_09_519-710.indd Sec6:633 5/24/07 10:46:45 AM5/24/07 10:46:45 AM

634 Extension 8: Electronics

are used in tandem with mechanisms to move the face—the result is uncanny.
Contemporary projects from Chris Csikszentmihályi (p. 507) and the team of Marc
Hansen and Ben Rubin (p. 515) are also featured in this book.
 The works of Maywa Denki and Crispin Jones are prototypical of a fascinating area
of work between art and product design. Maywa Denki is a Japanese art unit that
develops series of products (artworks) that are shown in product demonstrations (live
performances). Over the years, they have developed a progeny of creatures, instruments,
fashion devices, robots, toys, and tools—all animated by motors and electricity. Devices
from the Edelweiss Series include Marmica, a self-playing marimba that opens like a
fl ower, and Mustang, a gasoline-burning aroma machine for people who love exhaust
fumes. Crispin Jones creates fully functioning prototypes for objects that are critical
refl ections of consumer technologies. Social Mobiles (SoMo), developed in collaboration
with IDEO, is a set of mobile phones that address the frustration and anger caused by
mobile phones in public places. The project humorously explores ways mobile phone
calls in public places could be made less disruptive. The SoMo 1 phone delivers a variable
electrical shock to the caller depending on how loud the person at the other end of the
conversation is speaking. The ring tone for SoMo 4 is created by the caller knocking on
their phone. As with a knock on a door, the attitude or identity of the caller is revealed
through the sound. Other artists working in this area include the Bureau of Inverse
Technology, Ryota Kuwakubo, and the team of Tony Dunne and Fiona Raby.
 As electronics devices proliferate, it becomes increasingly important for designers to
consider new ways to interact with these machines. Working with electronics is an
essential component of the emerging interaction design community. The Tangible
Media Group (TMG) at the MIT Media Laboratory, led by Hiroshi Ishii, pioneered research
into tangible user interfaces to take advantage of human senses and dexterity beyond
screen GUIs and clicking a mouse. Curlybot (1999) is a toy that can record and play back
physical movement. It remembers how it was moved and can replay the motion
including pauses and changes in speed and direction. MusicBottles (1999) are physical
glass bottles that trigger sounds when they are opened. To the person who opens the
bottles, the sounds appear to be stored within the bottles, but technically, custom-
designed electromagnetic tags allow a special table to know when a bottle has been
opened, and the sound is played through nearby speakers. These and other projects from
the TMG were instrumental in moving research in interface design away from the
screen and into physical space. Research labs at companies like Sony and Philips are
other centers for research and innovation into physical interaction design. Academic
programs such as New York University’s Interactive Telecommunication Program, the
Design Interactions course at the Royal College of Art, and the former Interaction Design
Institute Ivrea have pioneered educational strategies within in this area.

Reas_09_519-710.indd Sec6:634Reas_09_519-710.indd Sec6:634 5/23/07 1:08:06 PM5/23/07 1:08:06 PM

635 Extension 8: Electronics

Electricity

Electricity is something we use daily, but it is diffi cult to understand. Its effect is
experienced in many ways, from observing a light turn on to noticing the battery charge
deplete on a laptop computer.
 Electrical current is a stream of moving electrons. They fl ow from one point to
another through a conductor. Some materials are better conductors than others. Sticking
a fork in a light socket is dangerous because metal is a good conductor and so is your
body. The best conductors are copper, silver, and gold. A resistor is the opposite of a
conductor. Resistance is the capability of a material to resist the fl ow of electrons.
A substance with a very high resistance is an insulator. Plastic and rubber are very good
insulators and for this reason they are used as the protective covering around wires.
Voltage is electrical energy—the difference of electrical potential between two points.
Current is the amount of electrical energy that fl ows through a point. Resistance is
measured in units called ohms, voltage is measured in volts, and current is measured in
amperes (amps). The relation between the three is easiest to understand through an
analogy of water fl owing through a hose. As explained by the educators Dan O’Sullivan
and Tom Igoe:

The fl ow of water through a hose is like the fl ow of electricity through a circuit. Turning the faucet increases the

amount of water coming through the hose, or increases the current (amps). The diameter of the hose offers

resistance to the current, determining how much water can fl ow. The speed of the water is equivalent to voltage.

When you put your thumb over the end of the hose, you reduce the diameter of the pathway of the water. In other

words, the resistance goes up. The current (that is, how much water is fl owing) doesn’t change, however, so the

speed of the water, or voltage, has to go up so that all the water can escape . . . 1

Electrical current fl ows in two ways: direct current (DC) and alternating current (AC).
A DC signal always fl ows in the same direction and an AC signal reverses the direction of
fl ow at regular intervals. Batteries and solar cells produce DC signals, and the power that
comes from wall sockets is an AC signal:

Depending on your location, the AC power coming into your home is between 100 and
240 volts. Most home appliances use AC current to operate, but some use a transformer
to convert the higher-potential AC energy into DC current at smaller voltages. The black
plastic boxes (a k a power bricks, power adapters, wall warts) that are used to power
laptops or mobile phones are transformers. Most desktop computers have an internal
power supply with a transformer to convert the AC signal to the 12-volt and 5-volt DC
signals necessary to run the internal electronics. Low voltages are generally safer than
high voltages, but it’s the amount of current (amps) that makes electricity dangerous.

Time

Direct Current (DC)

TimeV
o
l
t
s

Alternating Current (AC)

0

V
o
l
t
s

0

Reas_09_519-710.indd Sec6:635Reas_09_519-710.indd Sec6:635 5/23/07 1:08:07 PM5/23/07 1:08:07 PM

Reas_09_519-710.indd Sec6:636Reas_09_519-710.indd Sec6:636 5/23/07 1:08:08 PM5/23/07 1:08:08 PM

637 Extension 8: Electronics

Components

Electronic components are used to affect the fl ow of electricity and to convert electrical
energy into other forms such as light, heat, and mechanical energy. There are many
different components, each with a specifi c use, but here we introduce only four of the
most basic: resistor, capacitor, diode, and transistor.

Resistor
A resistor limits (provides resistance to) the fl ow of electricity. Resistors are measured in
units called ohms. The value 10 ohms is less resistance than 10,000 (10K) ohms. The value
of each resistor is marked on the component with a series of colored bands. A variable
resistor that changes its resistance when a slider, knob, or dial attached to it is turned is
called a potentiometer or trimmer. Variable resistors are designed to change in response
to different environmental phenomena. For example, one that changes in response to
light is called a photoresistor or photocell, and one that changes in response to heat is
called a thermistor. Resistors can be used to limit current, reduce voltage, and perform
many other essential tasks.

Capacitor
A capacitor stores electrons. It stores electrical charge when current is applied, and it
releases charge (discharges) when the current is removed. This can smooth out the dips
and spikes in a current signal. Capacitors are combined with resistors to create fi lters,
integrators, differentiators, and oscillators. A simple capacitor is two parallel sheets of
conductive materials, separated by an insulator. Capacitors are measured in units called
farads. A farad is a large measurement, so most capacitors you will use will be measured
in microfarads (μF), picofarads (pF), or nanofarads (nF).

Diode
Current fl ows only in one direction through a diode. One side is called the cathode
(marked on the device with a line) and the other is the anode. Current fl ows when the
anode is more positive than the cathode. Diodes are commonly used to block or invert
the negative part of an AC signal. A light-emitting diode (LED) is used to produce light.
The longer wire coming out of the LED is the anode and the other is the cathode. LEDs
come in many sizes, forms, colors, and brightness levels.

Transistor
A transistor can be used as an electrical switch or an amplifi er. A bipolar transistor has
three leads (wires) called the base, collector, and emitter. Depending on the type of
transistor, applying current to the base either allows current to fl ow or stops it from
fl owing through the device from the collector to the emitter. Transistors make it possible
for the low current from a microcontroller to control the much higher currents necessary
for motors and other power-hungry devices and thus to turn them on and off.

Z

Z

Z

Z

Reas_09_519-710.indd Sec6:637Reas_09_519-710.indd Sec6:637 5/23/07 1:08:08 PM5/23/07 1:08:08 PM

638 Extension 8: Electronics

Circuits

An electrical circuit is a confi guration of components, typically designed to produce a
desired behavior such as decreasing the current, fi ltering a signal, or turning on an LED.
The following simple circuit can be used to turn a light on and off:

This simple electric circuit is a closed loop with an energy source (battery), a load
(lightbulb) that offers a resistance to the fl ow of electrons and transforms the electric
energy into another form of energy (light), wires that carry the electricity, and a switch
to connect and disconnect the wires. The electrons move from one end of the battery,
through the load, and to the other end.
 Circuits are usually represented with diagrams. A circuit diagram uses standardized
symbols to represent specifi c electrical components. It is easier to read the connections
on a diagram than on photographs of the components. A diagram of the simple circuit
above could look like this:

Circuits are often prototyped on a "breadboard”, a rectangular piece of plastic with holes
for inserting wires. A breadboard makes it easy to quickly make variations on a circuit
without soldering (fusing components together with a soft metal). Conductive strips
underneath the surface connect the long horizontal rows at the top and bottom of the
board and the short vertical rows within the middle:

Circuits are tested with a multimeter, an instrument to measure volts, current,
resistance, and other electrical properties. It allows the electrical properties of the circuit

Holes in the top surface Internal connections

Light

Switch

Battery +

Reas_09_519-710.indd Sec6:638Reas_09_519-710.indd Sec6:638 5/23/07 1:08:09 PM5/23/07 1:08:09 PM

639 Extension 8: Electronics

to be read as numbers and is necessary for debugging. Analog multimeters have a small
needle that moves from left to right and digital multimeters have a screen that displays
numbers. Most multimeters have two metal prongs to probe the circuit and a central dial
to select between different modes.
 Commonly used circuits are often condensed into small packages. These integrated
circuits (ICs, or chips) contain dense arrangements of miniaturized components. They are
typically small black plastic rectangles with little metal pins sticking out of the sides.
Like objects (p. 395) in software, these devices are used as building blocks for creating
more complicated projects. ICs are produced to generate signals, amplify signals, control
motors, and perform hundreds of other functions. They fi t neatly into a breadboard by
straddling a gap in the middle.

Microcontrollers and I/O boards

Microcontrollers are small and simple computers. They are the tiny computer brains that
automate many aspects of contemporary life through their activities inside devices
ranging from alarm clocks to airplanes. A microcontroller has a processor, memory, and
input/output interfaces enclosed within a single programmable unit. They range in size
from about 1 * 1 cm to 5 * 2 cm. Like desktop computers, they come in many different
confi gurations. Some have the same speed and memory as a personal computer from
twenty years ago, but they are much less powerful than current machines, as this
comparison tables shows:

 Model Speed Memory Cost

 Apple Macintosh (1984) 8 MHz 128 Kb $2500

 Atmel ATmega128-8AC Microcontroller (2001) 8 MHz 128 Kb $15

 Apple Mac Mini (2006) 1500 MHz 512,000 Kb $600

Small metal pins poking out from a microcontroller’s edges allow access to the circuits
inside. Each pin has its own role. Some are used to supply power, some are for
communication, some are inputs, and others can be set to either input or output. The
relative voltage at each input pin can be read through software, and the voltage can be
set at each output pin. Some pins are reserved for communication. They allow a
microcontroller to communicate with computers and other microcontrollers through
established communication protocols such as RS-232 serial (p. 645).
 Microcontrollers can be used to build projects directly, but they are often packaged
with other components onto a printed circuit board (PCB) to make them easier to use for
beginners and for rapid prototyping. We call these boards I/O boards (input/output
boards) because they are used to get data in and out of a microcontroller. They are also
called micrcontroller modules. We’ve created three informal groups—bare
microcontrollers, programmable I/O boards, and tethered I/O boards—to discuss
different ways to utilize microcontrollers in a project.

Reas_09_519-710.indd Sec6:639Reas_09_519-710.indd Sec6:639 5/23/07 1:08:11 PM5/23/07 1:08:11 PM

640 Extension 8: Electronics

Bare microcontrollers (PIC, AVR)
Working directly with a bare microcontroller is the most fl exible but most diffi cult way
to work. It also has the potential to be the least expensive way of building with
electronics, but this economy can be offset by initial development costs and the extra
time spent learning how to use it. Microchip PIC and Atmel AVR are two popular families
of microcontrollers. Each has variations ranging from simple to elaborate that are
appropriate for different types of projects. The memory, speed, and other features affect
the cost, the number of pins, and the size of the package. Both families feature chips
with between 8 and 100 pins with prices ranging from under $1 to $20. PIC
microcontrollers have been on the market for a longer time, and more example code,
projects, and books are available for beginners. The AVR chips have a more modern
architecture and a wider range of open-source programming tools. Microcontrollers are
usually programmed in the C language or their assembly language, but it’s also possible
to program them in other languages such as BASIC. If you are new to electronics and
programming, we don’t recommend starting by working directly with PIC or AVR chips.
In our experience, beginners have had more success with the options introduced below.

Programmable I/O boards (Wiring, Arduino, Basic Stamp 2, BX-24, OOPic)
A programmable I/O board is a microcontroller situated on a PCB with other components
to make it easier to program, attach/detach components, and turn on and off. These
boards typically have components to regulate power to protect the microcontroller and a
USB or RS-232 serial port to make it easy to attach cables. The small pins on the
microcontroller are wired to larger pins called headers that make it easy to insert and
remove sensors and motors. Small wires embedded within the PCB connect pins to a
corresponding header. Small reset switches make it easy to restart the power without
having to physically detach the power supply or battery.
 Within the context of this book, the most relevant I/O boards are Wiring ($60) and
Arduino ($30). Both were created as tools for designers and artists to build prototypes
and to learn about electronics. Both boards use the Wiring language to program their
microcontrollers and use a development environment built from the Processing
environment. In comparison to the Processing language, the Wiring language provides a
similar level of control and ease of use within its domain. They share common language
elements when possible, but Wiring has some functions specifi c to programming
microcontrollers and omits the graphics programming functions within Processing. Like
Processing programs, Wiring programs are translated into another language before they
are run. When a program written with the Wiring language is compiled, it’s fi rst
translated into the C/C++ language (p. 682) and then compiled using a C/C++ compiler.
Wiring is a more powerful system (the board has more memory, I/O pins, serial ports,
and other internal capabilities) and is therefore more expensive. The microcontroller on
the Wiring board is also directly soldered to the board, while the microprocessor on the
Arduino board can be removed and replaced if it is damaged. In the United States, Wiring
and Arduino boards are distributed by Spark Fun Electronics.
 Both Wiring and Arduino are new boards; others are more established and have a
larger user base. The BASIC Stamp 2 ($49) boards from Parallax have a wide user base

Reas_09_519-710.indd Sec6:640Reas_09_519-710.indd Sec6:640 5/23/07 1:08:11 PM5/23/07 1:08:11 PM

641 Extension 8: Electronics

Wiring I/O board
The Wiring board can be
programmed to read
data from sensors, to
control motors, and to
communicate with other
microcontrollers and
computers.

Arduino I/O board
The Arduino family of
boards works similarly to
the Wiring board. There
are a range of different
Arduino boards, including
one that uses Bluetooth
and one that is the size
of a postage stamp.

Ph
ot

og
ra

ph
s:

Jo
hn

 H
ou

ck

Reas_09_519-710.indd Sec6:641Reas_09_519-710.indd Sec6:641 5/23/07 1:08:12 PM5/23/07 1:08:12 PM

642 Extension 8: Electronics

and are popular microcontrollers for education and for hobbyists, and a vast array of
code, project examples, books, and other materials are available. The availability of these
materials and user group support makes this system an excellent choice for beginners.
The system is sold as a kit including breadboards and other components or as a stand-
alone board for more experienced users. BASIC Stamps are programmed using a
variation of the BASIC programming language called PBASIC. The NetMedia BasicX-24
($50) was designed as an updated competitor to the BASIC Stamp 2. The primary
advantage of the BasicX-24 is the inclusion of eight ADC pins and a more powerful
programming language that allows fl oating-point math and multitasking. The OOPic
($59–$79) system was designed for robotics and therefore has good support for
controlling motors. It includes a development environment for creating user scripts with
an object-oriented syntax in different languages like BASIC, C, and Java.

Tethered I/O boards (Teleo, I-Cube X, Phidgets, EZIO)
A tethered I/O board is used to get sensor data into a computer and to control a physical
devices (motors, lights, etc.) without the need to program the board. A computer already
has many input and output devices such as a monitor, mouse, and keyboard and
tethered I/O boards provide a way to communicate between more exotic input devices
such as light sensors and video cameras, and output devices such as servomotors and
lights. These boards are designed to be easy to use. They often do not require knowledge
of electronics because sensors and motors can be directly plugged directly into the board
and do not need to interface with other components. Messages are sent and received
from the boards through software such as Max/MSP, Flash, Director, and many
programming languages. This ease of use often comes at a high price. Four popular
systems are the Teleo ($89–$189), the I-Cube X ($299), Phidgets ($10–$380), and EZIO
($129–$179). Teleo is a modular system that can be confi gured for projects of varying
complexity. Each component within the system performs a specifi c task, and up to 63
can connect together using a special network cable. The basic I-Cube X system includes
many basic sensors (touch, proximity) and a wider range are sold separately. It uses the
MIDI protocol to communicate with computers or other MIDI devices. Phidgets are an
extensive set of USB-compatible boards that simplify bringing sensor data into a
computer. They can be interfaced through a range of different development
environments and languages. EZIO is a single board with ten digital input/outputs, eight
analog inputs, and two PWM (p. 646) outputs.

Sensors and communication

Physical phenomena are measured by electronic devices called sensors. Different sensors
have been invented to acquire data related to touch, force, proximity, light, orientation,
sound, temperature, and much more. Sensors can be classifi ed into groups according to
the type of signals they produce (analog or digital) and the type of phenomena they
measure. Analog signals are continuous, but digital signals are discrete and are
constrained to a range of values (e.g., 0 to 255):

Reas_09_519-710.indd Sec6:642Reas_09_519-710.indd Sec6:642 5/23/07 1:08:14 PM5/23/07 1:08:14 PM

643 Extension 8: Electronics

Most basic analog sensors utilize resistance. Changes in a physical phenomenon modify
the resistance of the sensor, therefore varying the voltage output through the sensor.
An analog-to-digital converter can continuously measure this changing voltage and
convert it to a number that can be used by software. Sensors that produce digital signals
send data as binary values to an attached device or computer. These sensors use a
voltage (typically between 3.5 and 5 volts) as ON (binary digit 1 or TRUE) and no voltage
as a OFF (binary digit 0 or FALSE). More complex sensors include their own
microcontrollers to convert the data to digital signals and to use established
communication protocols for transmitting these signals to another computer.

Touch and force
Sensing of touch and force is achieved with switches, capacitive sensors, bend sensors,
and force-sensitive resistors. A switch is the simplest way to detect touch. A switch is a
mechanism that stops or allows the fl ow of electricity depending on its state, either open
(OFF) or closed (ON). Some switches have many possible positions, but most can only be
ON or OFF. Touch can also be detected with capacitive sensors. These sensors can be
adjusted to detect the touch and proximity (within a few millimeters) of a fi nger to an
object. The sensor can be positioned underneath a nonconductive surface like glass,
cardboard, or fabric. This type of sensor is often used for the buttons in an elevator. The
QT113H chip from Quantum Technologies packages all of the circuits required for
capacitive sensing into an easy-to-interface chip. A bend (fl ex) sensor is a thin strip of
plastic that changes its resistance as it is bent. A force-sensitive resistor (FSR or force
sensor) changes its resistance depending on the magnitude of force applied to its
surface. FSRs are designed for small amounts of force like the pressure from a fi nger,
and they are available in different shapes including long strips and circular pads.

Presence and distance
There are a wide variety of sensors to measure distance and determine whether a person
is present. The simplest way to determine presence is a switch. A switch attached to a
door, for example, can be used to determine whether it is open or closed. A change in the
state (open or closed) means someone or something is there. Switches come in many
different shapes and sizes, but category of small ones called microswitches are most
useful for this purpose. The infrared (IR) motion detectors used in security systems are
another simple way to see if something is moving in the environment. They can’t
measure distance or the degree of motion, but they have a wide range, and some types
can be purchased at hardware stores. IR distance sensors such as the Sharp GP2D family
are used to calculate the distance between the sensor and an object. They can calculate
distances from 4 to 140 centimeters. The distance is converted into a voltage between 0

Time

V
o
l
t
s

Digital signal
Time

V
o
l
t
s

Analog signal

Reas_09_519-710.indd Sec6:643Reas_09_519-710.indd Sec6:643 5/23/07 1:08:15 PM5/23/07 1:08:15 PM

644 Extension 8: Electronics

and 5 volts that can be read by a microcontroller. Ultrasonic sensors are used for
measuring up to 10 meters. This type of device sends a sound pulse and calculates how
much time it takes to receive the echo. The Devantech SRF04 is reasonably priced and
can determine distances between 8 centimeters and 3 meters.

Light
Sensors for detecting light include photoresistors, phototransistors, and photodiodes. A
photoresistor (also called a photocell) is a component that changes its resistance with
varying levels of light. It is among the easiest sensors to use. A phototransitor is more
sensitive to changes in light and is also easy to use. Photodiodes are also very sensitive
and can respond faster to changing light levels, but they are more complex to interface
with a microcontroller. Photodiodes are used in the remote control receivers of
televisions and stereos.

Position and orientation
A potentiometer is a variable resistor that works by twisting a rotary knob or by moving
a slider up and down. The potentiometer’s resistance changes with the rotation or up/
down movement, and this can affect the voltage level within a circuit. Most rotary
potentiometers have a limited range of rotation, but some are able to turn continuously.
A tilt sensor is used to crudely measure orientation (up or down). It is a switch with two
or more wires and a small metal ball or mercury in a box that touches wires to complete
a circuit when it is in a certain orientation. An accelerometer measures the change in
movement (acceleration) of an object that it is mounted to. Tiny structures inside the
device bend as a result of momentum and the amount of bending is measured. The
three-axis ADXL330 accelerometer from Analog Devices works well. Accelerometers are
used in cameras to control image stabilization and in automobiles to detect rapid
deceleration and release airbags. A digital compass calculates orientation in relation to
the earth’s magnetic fi eld. The less expensive sensors of this type have a lower accuracy,
and they may not work well when situated near objects that emit electromagnetic fi elds
(e.g., motors). The Devantech CMPS03 is a reasonably priced compass sensor.

Sound
A microphone is the simplest and most common device used to detect and measure
sound. Sudden changes in volume are the easiest sound elements to read, but processing
the sound wave with software (or special hardware) makes it possible to detect specifi c
frequencies or rhythms. A microphone usually requires extra components to amplify the
signal before it can be read by a microcontroller. Piezo electric fi lm sensors, commonly
used in speakers and microphones, can also be used to detect sound. Sampling a sound
wave with a microcontroller can dramatically reduce the quality of the audio signal. For
some applications it’s better to sample and analyze sound through a desktop computer
and to communicate the desired analysis information to an attached microcontroller.

Temperature
A thermistor is a device that changes its resistance with temperature. These sensors are

Reas_09_519-710.indd Sec6:644Reas_09_519-710.indd Sec6:644 5/23/07 1:08:16 PM5/23/07 1:08:16 PM

645 Extension 8: Electronics

easy to interface, but they respond slowly to changes. To quantitatively measure
temperature, a more sophisticated device is needed. The Dallas DS1820 sensor measures
the temperature with high accuracy, but it is more expensive and not as easy to connect
to a microcontroller. Flame sensors are more exotic. Devices such as the Hamamatsu UV
Tron are tuned to detect open fl ames such as lighters and candles.

Analog voltage signals from sensors can’t be directly interpreted by a computer, so they
must be converted it to a digital value. Some microcontrollers provide analog-to-digital
converters (ADC or A/D) that measure variations in voltage at an input pin and convert it
to a digital value. The range of values depends on the resolution of the ADC; common
resolutions are 8 and 10 bits. At 8-bit resolution, an ADC can represent 28 (256) different
values, where 0 volts corresponds to the value 0 and 5 volts corresponds to 255. A 10-bit
ADC provides 1024 different values, where 5 volts corresponds to the value 1023.
 Data is sent and received between microcontrollers and computers according to
established data protocols such as RS-232 serial, USB, MIDI, TPC/IP, Bluetooth, and other
proprietary formats like I2C or SPI. Most electronics prototyping kits and
microcontrollers include an RS-232 serial port, and this is therefore a convenient way to
communicate. This standard has been around for a long time (it was developed in the
late 1960s) and it defi nes signal levels, timing, physical plugs, and information exchange
protocols. The physical RS-232 serial port has largely been replaced in computers by the
faster and more fl exible (but more complex) universal serial bus (USB), but the protocol is
still widely used when combining the USB port with software emulation.
 Because a device can have several serial ports, a user must specify which serial port
to use for data transmission. On most Windows computers serial port names are COMx
where x can be 1, 2, 3, etc. On UNIX-based systems (Mac OS X and Linux), serial devices
are accessed through fi les in the /dev/ directory. After the serial port is selected, the user
must specify the settings for the port. Communication speed will vary with devices, but
typical values are 9600, 19,200 and 115,200 bits per second. Once the ports are open for
communication on both devices it is possible to send and receive data.
 The following examples connect sensors and actuators to a Wiring or Arduino board
and communicate the data between the I/O board and a Processing application. When
the Wiring and Arduino boards are plugged in to a computer’s USB port, it appears on the
computer as a serial port, making it possible to send/receive data on it. The Wiring board
has two serial ports called Serial and Serial1; the Arduino board has one called Serial.
Serial is directly available on the USB connector located on the board surface. Serial1 is
available through the Wiring board digital pin numbers 2(Rx) and 3(Tx) for the user’s
applications.

Example 1: Switch (p. 650)
This example sends the status of a switch (ON or OFF) connected to the Wiring or
Arduino board to a Processing application running on a computer. Software runs on the
board to read the status of a switch connected on digital pin 4. This value 1 is sent to the
serial port continuously while the switch is pressed and 0 is sent continuously when the
switch is not pressed. The Processing application continuously receives data from the

Reas_09_519-710.indd Sec6:645Reas_09_519-710.indd Sec6:645 5/23/07 1:08:16 PM5/23/07 1:08:16 PM

646 Extension 8: Electronics

board and assigns the color of a rectangle on the screen depending on the value of the
data. When the switch is pressed the rectangle’s color changes from black to light gray.

Example 2: Light sensor (p. 651)
This example brings data from a light sensor (photoresistor) connected to the Wiring or
Arduino board’s analog input pin 0 into a Processing application running on a computer.
Software runs on the board to send the value received from the light sensor to the serial
port. Because the light sensor is plugged into an analog input pin, the analog voltage
coming into the board is converted into a digital number before it is sent over the serial
port. The Processing application changes the color of a rectangle on screen according to
the value sent from the board. The rectangle exhibits grays from black to white
according to the amount of light received by the sensor. Cover and uncover the sensor
with your hand to see a large change.

Controlling physical media

Actuators are devices that act on the physical world. Different types of actuators can
create light, motion, heat, and magnetic fi elds. The digital output pin on a
microcontroller can set a voltage of 0 or 5 volts. This value can be used to turn a light or
motor on or off, but fi ner control over brightness and speed requires using a technique
called pulse-width modulation (PWM). This is turning a digital output ON and OFF very
quickly to simulate values between 0 and 5 volts. If the output is 0 volts for 90% of the
time and 5 volts for 10%, this is called a 10% duty cycle. It emulates an analog voltage of
0.5 volts. An 80% duty cycle emulates a 4-volt signal:

The PWM technique can be used to dim a light, to run a motor at a slow speed, and to
control the frequency of a tone through a speaker.

Light
Sending current through a light-emitting diode (LED) is the simplest way to get a
microcontroller to control light. An LED is a semiconductor device that emits
monochromatic light when a current is applied to it. The color (ranging from ultraviolet
to infrared) depends on the semiconductor material used in its construction. LEDs have a
wide range of applications from simple blinking indicators and displays to street lamps.
They have a long life and are very effi cient. Some types of LEDs and high-power LEDs
require special power arrangements and interfacing circuits before they can be used
with microcontrollers. Incandescent, fl uorescent, and electroluminescent light sources
always require special interfacing circuits before they can be controlled.

Reas_09_519-710.indd Sec6:646Reas_09_519-710.indd Sec6:646 5/23/07 1:08:17 PM5/23/07 1:08:17 PM

647 Extension 8: Electronics

Motion
Motors are used to create rotational and linear movement. The rated voltage, the current
drawn by the motor, internal resistance, speed, and torque (force) are factors that
determine the power and effi ciency of the motor. Direct current (DC) motors turn
continuously at very high speeds and can switch between a clockwise and
counterclockwise direction. They are usually interfaced with a gear box to reduce the
speed and increase the power. Servomotors are modifi ed DC motors that can be set to
any position within a 180-degree range. These motors have an internal feedback system
to ensure they remain at their position. Stepper motors move in discrete steps in a both
directions. The size of the steps depends on the resolution of the motor. Solenoids move
linearly (forward or back instead of in circles). A solenoid is a coil of wire with a shaft in
the center. When current is applied to the coil, it creates a magnetic fi eld that pulls or
pushes the shaft, depending on the type. Muscle wire (shape memory alloy or nitinol), is
a nickel-titanium alloy that contracts when power is applied. It is diffi cult to work with
and is slower than motors, but requires less current and is smaller. DC and stepper
motors need special interfacing circuits because they require more current than
a microcontroller can supply through its output pins. H-bridge chips simplify
this interface.

Switches
Relays and transistors are used to turn on and off electric current. A relay is an
electromechanical switch. It has a coil of wire that generates a magnetic fi eld when an
electrical current is passed through. The magnetic fi eld pulls the two metal contacts of
the relay’s switch together. Solid-state relays without moving parts are faster than
electromechanical relays. Using relays makes it possible to turn ON and OFF devices that
can’t be connected directly to a microcontroller. These devices include home appliances,
120-volt light bulbs, and all other devices that require more power than the
microcontroller can provide. Transistors can also behave like switches. Because they
operate electronically and not mechanically, they are much faster than relays.

Sound
Running a signal from a digital out or PWM pin to a small speaker is the easiest way to
produce a crude, buzzing noise. For more sophisticated sounds, attach these pins to tone-
generator circuits created with a 555 timer IC, capacitors, and resistors. Sound can be
recorded and played back using chips such as the Winbond ISD4002. The SpeakJet chip is
a sound synthesizer that can synthesize speech by confi guring its stored phonemes.

Temperature
Temperature can be controlled by a Peltier junction, a device that works as a heat pump.
It transforms electricity into heat and cold at the same time by extracting thermal energy
from one side (cooling) into the other side (heating). It can also work in reverse, applying
heat or cold to the proper surface to produce an electrical current. Because this device
consumes more current than a microcontroller can handle in an output pin, it must be
interfaced using transistors, relays, or digital switches like the ones described above.

Reas_09_519-710.indd Sec6:647Reas_09_519-710.indd Sec6:647 5/23/07 1:08:17 PM5/23/07 1:08:17 PM

648 Extension 8: Electronics

The following examples demonstrate how to control lights and motors attached to an
I/O board through a Processing program:

Example 3: Turning a light on and off (p. 653)
This example sends data from a Processing program running on a computer to a Wiring
or Arduino board to turn a light ON or OFF. The program continually writes an H to the
serial port if the cursor is inside the rectangle and writes a L if it’s not. Software running
on the board receives the data and checks for the value. If the value is H, it turns on a
light connected to the digital I/O pin number 4, and if the value is L, it turns off the light.
The light always refl ects the status of the rectangle on the computer’s screen.

Example 4: Controlling a servomotor (p. 654)
This example controls the position of a servomotor through an interface within a
Processing program. When the mouse is dragged through the interface, it writes the
position data to the serial port. Software running on a Wiring or Arduino board receives
data from the serial port and sets the position of a servomotor connected to the digital
I/O pin number 4.

Example 5: Turning a DC motor on and off (p. 655)
This example controls a DC motor from a Processing program. The program displays an
interface that responds to a mouse click. When the mouse is clicked within the interface,
the program writes data to the serial port. Software running on the board receives data
from the serial port and turns the DC motor connected to the PWM pin ON and OFF. The
DC motor is connected to the board through an L293D chip to protect the microcontroller
from current spikes caused when the motor turns on.

Conclusion

Electronic components and microcontrollers are becoming more common in designed
objects and interactive artworks. Although the programming and electronics skills
required for many projects call for an advanced understanding of circuits, a number of
widely used and highly effective techniques can be implemented and quickly
prototyped by novices. The goal of this text is to introduce electronics and to provide
enough information to encourage future exploration. As you pursue electronics further,
we recommend that you read CODE by Charles Petzold to gain a basic understanding of
how electronics and computers work, and we recommend that you read Physical
Computing by Dan O’Sullivan and Tom Igoe for a pragmatic introduction to working
with electronics. Practical Electronics for Inventors by Paul Scherz is an indispensable
resource, and the Engineer’s Mini Notebook series by Forrest M. Mims III is an excellent
source for circuit designs. The Web is a deep resource for learning about electronics and
there are many excellent pages listed below in Resources. The best way to learn is by
making projects. Build many simple projects and work through the examples in Physical
Computing to gain familiarity with the different components.

Reas_09_519-710.indd Sec6:648Reas_09_519-710.indd Sec6:648 5/23/07 1:08:18 PM5/23/07 1:08:18 PM

649 Extension 8: Electronics

 Notes

1. Dan O’Sullivan and Tom Igoe, Physical Computing: Sensing and Controlling the Physical World with

 Computers (Thomson Course Technology PTR, 2004), p. 5.

Code

To run these examples, unlike the other examples in this book, you will need additional
equipment. They require either a Wiring (wiring.org.co) or Arduino (www.arduino.cc)
board and the following:

 USB cable (used to send data between board and computer)

 9–15V 1000mA power supply or 9V battery

 22-gauge solid core wire (get different colors)

 Breadboard

 Switch

 Resistors (10K ohm for the switch circuits, 330 ohm for the LEDs, 1K ohm for the photoresistor)

 LEDs

 Servo motor (Futaba or Hi-Tech)

 DC motor (a generic DC motor like the ones in toy cars)

 L293D or SN754410 H-Bridge Integrated Circuit

 Wire cutters

 Wire strippers

 Needlenose pliers

This equipment can be purchased from an electronics store such as Radio Shack or from
an online vendor (p. 658).
 Each example presents two programs: code for the I/O board and code for
Processing. Diagrams and breadboard illustrations for the examples are side by side
on pages 652 and 656 to reinforce the connections between the two representations.
Learning to translate a circuit diagram into a physical circuit is one of the most
diffi cult challenges when starting to work with electronics.
 The Wiring or Arduino software environment is necessary to program each board.
These environments are built on top of the Processing environment, but they have
special features for uploading code to the board and monitoring serial communication.
Both can be downloaded at no cost from their respective websites and both are available
for Linux, Macintosh, and Windows.
 The examples that follow assume the I/O board is connected to your computer and
serial communication is working. Before working with these examples, get one of the
simple Serial library examples included with Processing to work. For the most up-to-date
information and troubleshooting tips, read the Serial reference on the Processing
website: www.processing.org/reference/libraries. The Wiring and Arduino websites have
additional information.

Reas_09_519-710.indd Sec6:649Reas_09_519-710.indd Sec6:649 5/23/07 1:08:18 PM5/23/07 1:08:18 PM

650 Extension 8: Electronics

Example 1A: Switch (Wiring/Arduino)

// Code for sensing a switch status and writing the value to the serial port

int switchPin = 4; // Switch connected to pin 4

void setup() {

 pinMode(switchPin, INPUT); // Set pin 0 as an input

 Serial.begin(9600); // Start serial communication at 9600 bps

}

void loop() {

 if (digitalRead(switchPin) == HIGH) { // If switch is ON,

 Serial.print(1, BYTE); // send 1 to Processing

 } else { // If the switch is not ON,

 Serial.print(0, BYTE); // send 0 to Processing

 }

 delay(100); // Wait 100 milliseconds

}

Example 1B: Switch (Processing)

// Read data from the serial port and change the color of a rectangle

// when a switch connected to the board is pressed and released

import processing.serial.*;

Serial port; // Create object from Serial class

int val; // Data received from the serial port

void setup() {

 size(200, 200);

 frameRate(10);

 // Open the port that the board is connected to and use the same speed (9600 bps)

 port = new Serial(this, 9600);

}

void draw() {

 if (0 < port.available()) { // If data is available,

 val = port.read(); // read it and store it in val

 }

 background(255); // Set background to white

 if (val == 0) { // If the serial value is 0,

 fill(0); // set fill to black

 } else { // If the serial value is not 0,

 fill(204); // set fill to light gray

 }

 rect(50, 50, 100, 100);

}

Reas_09_519-710.indd Sec6:650Reas_09_519-710.indd Sec6:650 5/23/07 1:08:18 PM5/23/07 1:08:18 PM

651 Extension 8: Electronics

Example 2A: Light sensor (Wiring/Arduino)

// Code to read an analog value and write it to the serial port

int val;

int inputPin = 0; // Set the input to analog in pin 0

void setup() {

 Serial.begin(9600); // Start serial communication at 9600 bps

}

void loop() {

 val = analogRead(inputPin)/4; // Read analog input pin, put in range 0 to 255

 Serial.print(val, BYTE); // Send the value

 delay(100); // Wait 100ms for next reading

}

Example 2B: Light sensor (Processing)

// Read data from the serial port and assign it to a variable. Set the fill a

// rectangle on the screen using the value read from a light sensor connected

// to the Wiring or Arduino board

import processing.serial.*;

Serial port; // Create object from Serial class

int val; // Data received from the serial port

void setup() {

 size(200, 200);

 noStroke();

 frameRate(10); // Run 10 frames per second

 // Open the port that the board is connected to and use the same speed (9600 bps)

 port = new Serial(this, 9600);

}

void draw() {

 if (0 < port.available()) { // If data is available to read,

 val = port.read(); // read it and store it in val

 }

 background(204); // Clear background

 fill(val); // Set fill color with the value read

 rect(50, 50, 100, 100); // Draw square

}

Reas_09_519-710.indd Sec6:651Reas_09_519-710.indd Sec6:651 5/23/07 1:08:19 PM5/23/07 1:08:19 PM

652 Extension 8: Electronics

+5V Ground

Analog In Pin 0+5V Ground

Digital I/O Pin 4

Digital I/O Pin 4

Ground

Example 1

Example 2

Example 3

Digital I/O Pin 4

+5V

Ground

Pulse
switch

+5V

Analog In Pin 0

Ground

Ground

LED

Digital I/O Pin 4

10K

1K

330 ohm

Reas_09_519-710.indd Sec6:652Reas_09_519-710.indd Sec6:652 5/23/07 1:08:19 PM5/23/07 1:08:19 PM

653 Extension 8: Electronics

Example 3A: Turning a light on and off (Wiring/Arduino)

// Read data from the serial and turn ON or OFF a light depending on the value

char val; // Data received from the serial port

int ledPin = 4; // Set the pin to digital I/O 4

void setup() {

 pinMode(ledPin, OUTPUT); // Set pin as OUTPUT

 Serial.begin(9600); // Start serial communication at 9600 bps

}

void loop() {

 if (Serial.available()) { // If data is available to read,

 val = Serial.read(); // read it and store it in val

 }

 if (val == 'H') { // If H was received

 digitalWrite(ledPin, HIGH); // turn the LED on

 } else {

 digitalWrite(ledPin, LOW); // Otherwise turn it OFF

 }

 delay(100); // Wait 100 milliseconds for next reading

}

Example 3B: Turning a light on and off (Processing)

// Check if the mouse is over a rectangle and write the status to the serial port

import processing.serial.*;

Serial port; // Create object from Serial class

void setup() {

 size(200, 200);

 noStroke();

 frameRate(10);

 // Open the port that the board is connected to and use the same speed (9600 bps)

 port = new Serial(this, 9600);

}

void draw() {

 background(255);

 if (mouseOverRect() == true) { // If mouse is over square,

 fill(204); // change color and

 port.write('H'); // send an H to indicate mouse is over square

 } else { // If mouse is not over square,

 fill(0); // change color and

 port.write('L'); // send an L otherwise

 }

 rect(50, 50, 100, 100); // Draw a square

}

Reas_09_519-710.indd Sec6:653Reas_09_519-710.indd Sec6:653 5/23/07 1:08:20 PM5/23/07 1:08:20 PM

654 Extension 8: Electronics

boolean mouseOverRect() { // Test if mouse is over square

 return ((mouseX >= 50) && (mouseX <= 150) && (mouseY >= 50) && (mouseY <= 150));

}

Example 4A: Controlling a servomotor (Wiring/Arduino)

// Read data from the serial port and set the position of a servomotor

// according to the value

Servo myservo; // Create servo object to control a servo

int servoPin = 4; // Connect yellow servo wire to digital I/O pin 4

int val = 0; // Data received from the serial port

void setup() {

 myservo.attach(servoPin); // Attach the servo to the PWM pin

 Serial.begin(9600); // Start serial communication at 9600 bps

}

void loop() {

 if (Serial.available()) { // If data is available to read,

 val = Serial.read(); // read it and store it in val

 }

 myservo.write(val); // Set the servo position

 delay(15); // Wait for the servo to get there

}

Example 4B: Controlling a servomotor (Processing)

// Write data to the serial port according to the mouseX value

import processing.serial.*;

Serial port; // Create object from Serial class

float mx = 0.0;

void setup() {

 size(200, 200);

 noStroke();

 frameRate(10);

 // Open the port that the board is connected to and use the same speed (9600 bps)

 port = new Serial(this, 9600);

}

void draw() {

 background(0); // Clear background

 fill(204); // Set fill color

 rect(40, height/2-15, 120, 25); // Draw square

 float dif = mouseX - mx;

 if (abs(dif) > 1.0) {

 mx += dif/4.0;

 }

Reas_09_519-710.indd Sec6:654Reas_09_519-710.indd Sec6:654 5/23/07 1:08:20 PM5/23/07 1:08:20 PM

655 Extension 8: Electronics

 mx = constrain(mx, 50, 149); // Keeps marker on the screen

 noStroke();

 fill(255);

 rect(50, (height/2)-5, 100, 5);

 fill(204, 102, 0);

 rect(mx-2, height/2-5, 4, 5); // Draw the position marker

 int angle = int(map(mx, 50, 149, 0, 180)); // Scale the value the range 0-180

 //print(angle + " "); // Print the current angle (debug)

 port.write(angle); // Write the angle to the serial port

}

Example 5A: Turning a DC motor on and off (Wiring/Arduino)

// Read data from the serial and turn a DC motor on or off according to the value

char val; // Data received from the serial port

int motorpin = 0; // Wiring: Connect L293D Pin En1 connected to Pin PWM 0

// int motorpin = 9; // Arduino: Connect L293D Pin En1 to Pin PWM 9

void setup() {

 Serial.begin(9600); // Start serial communication at 9600 bps

}

void loop() {

 if (Serial.available()) { // If data is available,

 val = Serial.read(); // read it and store it in val

 }

 if (val == 'H') { // If 'H' was received,

 analogWrite(motorpin, 125); // turn the motor on at medium speed

 } else { // If 'H' was not received

 analogWrite(motorpin, 0); // turn the motor off

 }

 delay(100); // Wait 100 milliseconds for next reading

}

Example 5B: Turning a DC motor on and off (Processing)

// Write data to the serial port according to the status of a button controlled

// by the mouse

import processing.serial.*;

Serial port; // Create serial port object

boolean rectOver = false;

int rectX, rectY; // Position of square button

int rectSize = 100; // Diameter of rect

color rectColor;

boolean buttonOn = false; // Status of the button

void setup() {

 size(200, 200);

 noStroke();

Reas_09_519-710.indd Sec6:655Reas_09_519-710.indd Sec6:655 5/23/07 1:08:20 PM5/23/07 1:08:20 PM

656 Extension 8: Electronics

MotorMotor

In2In2 In3In3

Out2Out2 Out3Out3

En1En1

In4In4

Out4Out4Out1Out1

In1In1

En2En2

GNDGND

GNDGND

GNDGND

GNDGND

VssVss

VsVs

+5V

+V (Motor)

L293D

+5V

Example 4

Servo

+5V

Red wire

Red wire

Black wire

Black wire

Yellow wire

Yellow wireGround

�����

Example 5
PWM Pin 9 (Arduino)
PWM Pin 0 (Wiring) or

PWM Pin 9 (Arduino)
PWM Pin 0 (Wiring) or

+5V +V (Motor)Ground

+5V Ground Digital I/O Pin 4

Digital I/O Pin 4

Reas_09_519-710.indd Sec6:656Reas_09_519-710.indd Sec6:656 5/23/07 1:08:20 PM5/23/07 1:08:20 PM

657 Extension 8: Electronics

 frameRate(10);

 rectColor = color(100);

 rectX = width/2 - rectSize/2;

 rectY = height/2 - rectSize/2;

 // Open the port that the board is connected to and use the same speed (9600 bps)

 port = new Serial(this, 9600);

}

void draw() {

 update(mouseX, mouseY);

 background(0); // Clear background to black

 fill(rectColor);

 rect(rectX, rectY, rectSize, rectSize);

}

void update(int x, int y) {

 if (overRect(rectX, rectY, rectSize, rectSize) == true) {

 rectOver = true;

 } else {

 rectOver = false;

 }

}

void mouseReleased() {

 if (rectOver == true) {

 if (buttonOn == true) {

 rectColor = color(100);

 buttonOn = false;

 port.write('L'); // Send an L to indicate button is OFF

 } else {

 rectColor = color(180);

 buttonOn = true;

 port.write('H'); // Send an H to indicate button is ON

 }

 }

}

boolean overRect(int x, int y, int width, int height) {

 if ((mouseX >= x) && (mouseX <= x+width) &&

 (mouseY >= y) && (mouseY <= y+height)) {

 return true;

 } else {

 return false;

 }

}

Reas_09_519-710.indd Sec6:657Reas_09_519-710.indd Sec6:657 5/23/07 1:08:21 PM5/23/07 1:08:21 PM

658 Extension 8: Electronics

Resources

Vendors and manufacturers
Acroname. Robotics components distributor and BrainStem creator. http://www.acroname.com.

All Electronics. Surplus electronics distributor. www.allelectronics.com.

Analog Devices. Electronics components (sensors, A/D converters, etc.) manufacturer. http://www.analog.com.

Arduino. Prototyping toolkit. http://www.arduino.cc.

Digi-Key. Large electronics parts distributor. http://www.digikey.com.

Electronic Goldmine. Surplus electronics distributor. http://www.goldmine-elec.com.

EZIO. I/O board designed at the University of Michigan. http://www.ezio.com.

I-Cube X. I/O platform from Infusion Systems. http://infusionsystems.com.

Jameco. Large electronics parts distributor. http://www.jameco.com.

LEGO Mindstorms. Programmable electronics from LEGO. http://mindstorms.lego.com.

McMaster-Carr. Extensive selection of hardware and construction supplies. http://www.mcmaster.com.

Microchip. Creator of PICmicro microcontrollers. http://www.microchip.com.

MicroEngineering Labs. Creator of PicBasic Pro programming environment. http://www.melabs.com.

NetMedia. Creator of BX-24 microcontrollers. http://www.netmedia.com.

Parallax. Creator of the Basic Stamp microcontrollers and related modules. http://www.parallax.com.

Phidgets. I/O platform. http://www.phidgets.com.

Servocity. Servomotor distributor. http://www.servocity.com.

Small Parts. Hardware for researchers and developers. http://www.smallparts.com.

Solarbotics. Distributor for solar-powered robotics kits and components. http://www.solarbotics.com.

Spark Fun Electronics. http://www.sparkfun.com.

Teleo. I/O platform from MakingThings. http://www.makingthings.com.

Wiring. Prototyping environment and toolkit. http://wiring.org.co.

Online resources
Buxton, Bill. List of input devices. http://www.billbuxton.com/InputSources.html.

Igoe, Tom. Physical computing resources. http://tigoe.net/pcomp.

FindChips. Electronic components search engine. http://www.fi ndchips.com.

Instructables. Step-by-step instructions for building projects. http://www.instructables.com.

Haque, Usman, and Adam Somlai-Fischer. Low-tech sensors and actuators. http://lowtech.propositions.org.uk.

Make magazine. Do-it-yourself technology. http://www.makezine.com.

Open Circuits. Wiki for electronics projects, components, and techniques. http://www.opencircuits.com.

O’Sullivan, Dan. Physical computing resources. http://itp.nyu.edu/~dbo3/physical/physical.html.

RS-232 Serial. Data protocol description. http://en.wikipedia.org/wiki/RS-232.

Texts
Burnham, Jack. Beyond Modern Sculpture. George Braziller, 1968.

Horowitz, Paul, and Winfi eld Hill. The Art of Electronics. Second edition. Cambridge University Press, 1989.

Hultén, K. G. Pontus. The Machine: As Seen at the End of the Mechanical Age. The Museum of Modern Art, 1968.

O’Sullivan, Dan, and Tom Igoe. Physical Computing: Sensing and Controlling the Physical World with Computers.

 Thomson Course Technology PTR, 2004.

Reas_09_519-710.indd Sec6:658Reas_09_519-710.indd Sec6:658 5/23/07 1:08:21 PM5/23/07 1:08:21 PM

659 Extension 8: Electronics

Jones, Joseph L., Bruce A. Seiger, and Anita M. Flynn. Mobile Robots: Inspiration to Implementation.

 Second edition. A. K. Peters, 1999.

Fraden, Jacob. Handbook of Modern Sensors: Physics, Designs, and Applications. Springer-Verlag, 1996.

Mims, Forrest M. III. Getting Started in Electronics. Second edition. Radio Shack, 1998.

Mims, Forrest M. III. Timer, Op Amp, and Optoelectronic Circuits and Projects. Radio Shack, 2000.

Petzold, Charles. Code: The Hidden Language of Computer Hardware and Software. Microsoft Press, 2000.

Scherz, Paul. Practical Electronics for Inventors. McGraw-Hill, 2000.

Wise, Edwin. Animatrionics: A Guide to Animated Holiday Displays. PROMPT Publications, 2000.

Artists, designers, institutions
Dunne, Anthony, and Fiona Raby. Design Noir. Birkhäuser, 2001.

Bureau of Inverse Technology. http://bureauit.org.

Feingold, Ken. http://www.kenfeingold.com.

Hawkinson, Tim. Tim Hawkinson. Harry N. Abrams, 2004.

IDEO. Design fi rm. http://www.ideo.com.

Interaction Design Institute Ivrea. Former graduate program. http://www.interaction-ivrea.it.

Design Interactions. Royal College of Art. MFA program. http://www.interaction.rca.ac.uk.

Interactive Telecommunication Program. New York University. MFA program. http://itp.nyu.edu/itp.

Jones, Crispin. http://www.mr-jones.org.

Kuwakubo, Ryota. http://www.vector-scan.com.

Maywa Denki. http://www.maywadenki.com.

Paik, Nam June. The Worlds of Nam June Paik. Solomon R. Guggenheim Foundation, 2000.

Rath, Alan. Alan Rath: Robotics. Smart Art Press, 1999.

Rinaldo, Ken. http://kenrinaldo.com.

Tangible Media Group, MIT Media Lab. http://tangible.media.mit.edu.

Vogel, Peter. http://www.bitforms.com/artist_vogel.html.

Reas_09_519-710.indd Sec6:659Reas_09_519-710.indd Sec6:659 5/23/07 1:08:21 PM5/23/07 1:08:21 PM

Reas_09_519-710.indd Sec6:660Reas_09_519-710.indd Sec6:660 5/23/07 1:08:21 PM5/23/07 1:08:21 PM

661

Appendix A

Order of Operations

An operator is a symbol that performs an operation. There are operators for arithmetic,
relational, logical, and bitwise operations. The order of operations determines which
operations are performed before others. For example, in the following expression, is the
addition or multiplication calculated fi rst?

 2 + 3 * 4

You may remember the mnemonic “My Dear Aunt Sally” (MDAS) from math class. MDAS,
short for Multiply, Divide, Add, Subtract, states the order in which mathematical
operations in an expression should be performed. Regardless of the order from left to
right, the multiplication should happen fi rst (3 * 4), and the result should then be added
(2 + 12). If this order is not followed, the expression will not evaluate to the correct result.
 The order of operations goes beyond arithmetic and applies to all of the operators
within a programming language. The list of operators presented below reveals the order
in which they are evaluated within Processing. The operators higher in this list are
evaluated before those on lower lines. This is not a complete list of the operators
available in Processing, but it contains those used within this book’s examples.

 Name Symbol Examples

 Parentheses () a*(b+c)

 Postfix, Unary ++ -- ! a++ --b !c

 Multiplicative * / % a * b

 Additive + - a + b

 Relational < > <= >= if (a < b)

 Equality == != if (a == b)

 Logical AND && if (mousePressed && (a > b))

 Logical OR || if (mousePressed || (a > b))

 Assignment = += -= *= /= %= a = 44

The following examples clarify how the order of operations works:

// The expression 4 + 5 evaluates to 9, then the

// value 9 is assigned to the variable x

int x = 4 + 5;

// The expression 5 * 10 evaluates to 50, then the

// expression 4 + 50 evaluates to 54, then the

// value 54 is then assigned to the variable x

int x = 4 + 5 * 10;

A-01

A-02

Be
n

Fr
y.

 D
is

ar
tic

ul
at

e,
20

06
.

Reas_09_519-710.indd Sec6:661Reas_09_519-710.indd Sec6:661 5/23/07 1:08:23 PM5/23/07 1:08:23 PM

662 Appendix A: Order of Operations

In the previous example, even though * is the last operator on the line, it is evaluated
fi rst because the multiplicative operators have precedence over the additive and
assignment operators. Parentheses are used to control the evaluation of an expression if
a different order of operation is desired. In this example, they are used to evaluate the
addition before the multiplication:

// The expression 4 + 5 evaluates to 9, then the

// expression 9 * 10 evaluates to 90, then the

// value 90 is assigned to the variable x

int x = (4 + 5) * 10;

When operators with the same evaluation order (e.g., + and -, * and /) appear within an
expression, they are evaluated from left to right. The following example demonstrates
this rule:

float w = 12.0 - 6.0 + 3.0; // Assigns 9 to w

float x = 3.0 + 6.0 / 12.0; // Assigns 3.5 to x

float y = 12.0 / 6.0 * 3.0; // Assigns 6 to y

float z = 3.0 * 6.0 / 12.0; // Assigns 1.5 to z

When in doubt, it is helpful to include parentheses to specify the desired order of
operations. This can be a useful reminder when returning to the code after some time,
and it can help clarify the intent for others reading the code.

A-03

A-04

Reas_09_519-710.indd Sec6:662Reas_09_519-710.indd Sec6:662 5/23/07 1:08:23 PM5/23/07 1:08:23 PM

663

Appendix B

Reserved Words

Some words are essential to the Processing language, and their use is restricted to their
intended use. For example, the int data type is an integral component of the language.
It can be used only to declare a variable of that type and cannot be used as the name for
a variable. The following program produces an error:

float int = 50; // ERROR! Unexpected token: float

line(int, 0, int, 100);

Many of these language components are inherited from the Java programming
language (Processing is built using Java), but some are unique to Processing. The names
of the functions, variables, and constants such as line, fill, width, mouseX, and PI
found in the Processing reference should be used only as intended. For example, while
it’s possible to make a variable called line, it can make a program confusing to read.
When someone sees the word line in a program, there is an expectation that it will be
used to run the line() function. The following program demonstrates how ignoring
this suggestion can make a program baffl ing:

int line = 50; // This does not create a program error

line(line, 0, line, 100); // but it's very confusing

In addition to the words used for variables and functions in the Processing language, the
list below presents words that cannot be used as names for functions, variables, and
classes within a Processing program. Most of these will cause an error that may be quite
hard to identify because of the way it confuses the compiler.

Processing’s reserved words

abstract

assert

boolean

break

byte

case

catch

char

class

const

continue

default

do

double

else

enum

extends

false

final

finally

float

for

goto

if

implements

import

init

instanceof

int

interface

long

native

new

null

package

private

protected

public

return

setup

short

start

static

stop

strictfp

super

switch

synchronized

this

throw

throws

transient

true

try

update

void

volatile

while

B-01

B-02

Reas_09_519-710.indd Sec6:663Reas_09_519-710.indd Sec6:663 5/23/07 1:08:24 PM5/23/07 1:08:24 PM

664 Appendix C: ASCII, Unicode

Appendix C

ASCII, Unicode

ASCII (pronounced AS-kee) is an acronym for American Standard Code for Information
Interchange. It was designed as a code to associate the letters, numbers, and punctuation
in the English language with numeric values. Characters must be translated into
numbers so they can be used as data in software, and ASCII is a standard for making this
conversion. Processing distinguishes between the number and character representation
of a value based on the data type. For example, the binary sequence 01000001 will be
used as the character A if the data type is char and will be used as the number 65 if the
data type is int.
 The ASCII standard also has encodings for control characters (nonprintable
characters) such as tab, backspace, enter, escape, line feed, etc., which can control
external devices such as printers and format whitespace in a fi le. Control characters are
important when writing and reading fi les and for reading keys such as Tab, Del, and Esc
on the keyboard.
 ASCII became a standard in 1967 and was last updated in 1986. Over time it has been
replaced by newer standards such as UTF-8 and Unicode, which defi ne a wider range of
characters and therefore can be used for text written in non-English languages. ASCII
remains extremely useful because of its simplicity and ubiquity. More information
about ASCII can be found at http://en.wikipedia.org/wiki/ASCII.
 The tables on the opposite page present the relations between the various
representations of each character. Additional control characters can be seen in a full
ASCII chart but are omitted here for brevity.
 Because of its heritage, each ASCII character consists of only seven bits, covering
the numbers 0 through 127. Because a byte is 8 bits and can express numbers between
0 and 255, the values from 128 to 255 vary widely between operating systems and locales.
Because each platform interprets values between 128 and 255 differently, a plain-text fi le
that contains a ü character that is created on Mac OS will be interpreted incorrectly on a
Windows machine unless the software is told that the fi le is using a Macintosh
encoding. It’s common to see Web pages that contain strange characters instead of a
slanted double quote or an em dash. This is the result of a Web page that was created
on a Macintosh being viewed on a PC (or vice versa). To prevent this situation, the
HTML specifi cation has its own method of encoding characters as plain ASCII, even
though many don’t use it. A table that translates between each of these encodings
appears below.
 The Unicode standard (www.unicode.org) is an attempt to create a universal
character set that encompasses many international languages. Most commonly, Unicode
characters are represented as two bytes, which means that 65,536 characters can be
specifi ed. A char in Processing is a single Unicode character. Unicode information is
often stored in a format called UTF-8, which uses a clever packing mechanism to store
the 16-bit values as mostly 8-bit data.

Reas_09_519-710.indd Sec6:664Reas_09_519-710.indd Sec6:664 5/23/07 1:08:24 PM5/23/07 1:08:24 PM

665 Appendix C: ASCII, Unicode

 32 (space)

 33 !

 34 “

 35 #

 36 $

 37 %

 38 &

 39 ‘

 40 (

 41)

 42 *

 43 +

 44 ,

 45 -

 46 .

 47 /

 48 0

 49 1

 50 2

 51 3

 52 4

 53 5

 54 6

 55 7

 56 8

 57 9

 58 :

 59 ;

 60 <

 61 =

 62 >

 63 ?

 64 @

 65 A

 66 B

 67 C

 68 D

 69 E

 70 F

 71 G

 72 H

 73 I

 74 J

 75 K

 76 L

 77 M

 78 N

 79 O

 80 P

 81 Q

 82 R

 83 S

 84 T

 85 U

 86 V

 87 W

 88 X

 89 Y

 90 Z

 91 [

 92 \

 93]

 94 ^

 95 _

 96 `

 97 a

 98 b

 99 c

100 d

101 e

102 f

103 g

104 h

105 i

106 j

107 k

108 l

109 m

110 n

111 o

112 p

113 q

114 r

115 s

116 t

117 u

118 v

119 w

120 x

121 y

122 z

123 {

124 |

125 }

126 ~

ASCII Characters (Numeric value followed by the corresponding character)

ASCII Control Characters (Abridged)

Number Abbreviation Escape Sequence Processing Constant Description

0 NUL Null character

4 EOT (EOF) End of transmission (or file)

6 ACK Acknowledgment

7 BEL Bell

8 BS \b BACKSPACE Backspace

9 HT \t TAB Horizontal tab

10 LF \n ENTER Line feed

13 CR \r RETURN Carriage return

27 ESC ESC Escape

127 DEL DELETE Delete

Reas_09_519-710.indd Sec6:665Reas_09_519-710.indd Sec6:665 5/23/07 1:08:25 PM5/23/07 1:08:25 PM

666 Appendix C: ASCII, Unicode

 When including non-ASCII characters in a Processing program, it’s a good idea to use
each character’s escape sequence (p. 421), rather than the actual character, so that
problems aren’t introduced when the fi le is opened on another platform (e.g., source
code for a sketch is sent by email or posted as a text fi le on the Web). The escape
sequence consists of \u followed by four digits that represent the character’s Unicode
value in hexadecimal. The chart below also includes the escape sequences for many
characters. For instance, instead of the following . . .

 text("Zoë", 50, 50);

. . . this is more compatible and therefore safer:

 text("Zo\u00EB", 50, 50);

Some fonts, such as Arial Unicode, support thousands of characters in a single font.
When the Create Font tool is used with such a font, it’s possible to include all available
characters by selecting the “All characters” option. As might be expected, this can
produce enormous fi les and may even cause an OutOfMemoryError. Without the “All
characters” option selected, fonts are encoded with all ASCII values, plus the characters
found in the table below. This table is based on the most common Roman-language
encodings for Mac OS and Windows (Mac Roman and CP1250), plus ISO Latin-1, a third
encoding that defi nes the Unicode characters 128 through 255.

Character Format Conversion Table for the Processing Character Set

‚ \u0082 130 ‚

ƒ \u0083 131 ƒ

„ \u0084 132 „

… \u0085 133 …

† \u0086 134 †

‡ \u0087 135 ‡

ˆ \u0088 136 ˆ

‰ \u0089 137 ‰

Š \u008A 138 Š

‹ \u008B 139 ‹

Œ \u008C 140 Œ

[RI] \u008D 141 

Ž \u008E 142 Ž

[SS3] \u008F 143 

[DCS] \u0090 144 

‘ \u0091 145 ‘

’ \u0092 146 ’

“ \u0093 147 “

” \u0094 148 ”

• \u0095 149 •

– \u0096 150 –

— \u0097 151 —

˜ \u0098 152 ˜

™ \u0099 153 ™

š \u009A 154 š

› \u009B 155 ›

œ \u009C 156 œ

[OSC] \u009D 157 

ž \u009E 158 ž

Ÿ \u009F 159 Ÿ

[NBSP] \u00A0 160 202 160

¡ \u00A1 161 193 ¡

¢ \u00A2 162 162 ¢

£ \u00A3 163 163 £

¤ \u00A4 164 219 164 ¤

¥ \u00A5 165 180 ¥

¦ \u00A6 166 166 ¦

§ \u00A7 167 164 167 §

¨ \u00A8 168 172 168 ¨

© \u00A9 169 169 169 ©

ª \u00AA 170 187 ª

« \u00AB 171 199 171 «

¬ \u00AC 172 194 172 ¬

[SHY] \u00AD 173 173 ­

® \u00AE 174 168 174 ®

¯ \u00AF 175 248 ¯

Ch
ar

ac
te

r

Pr
oc

es
si

ng
 E

sc
ap

e

U
ni

co
de

 D
ec

im
al

M
ac

 R
om

an

W
in

do
w

s C
P1

25
0

 H
TM

L
Es

ca
pe

Reas_09_519-710.indd Sec6:666Reas_09_519-710.indd Sec6:666 5/23/07 1:08:25 PM5/23/07 1:08:25 PM

667 Appendix C: ASCII, Unicode

° \u00B0 176 161 176 °

± \u00B1 177 177 177 ±

² \u00B2 178 ²

³ \u00B3 179 ³

´ \u00B4 180 171 180 ´

μ \u00B5 181 181 181 µ

¶ \u00B6 182 166 182 ¶

· \u00B7 183 225 183 ·

¸ \u00B8 184 252 184 ¸

¹ \u00B9 185 ¹

º \u00BA 186 188 º

» \u00BB 187 200 187 »

¼ \u00BC 188 ¼

½ \u00BD 189 ½

¾ \u00BE 190 ¾

¿ \u00BF 191 192 ¿

À \u00C0 192 203 À

Á \u00C1 193 231 193 Á

Â \u00C2 194 229 194 Â

Ã \u00C3 195 204 Ã

Ä \u00C4 196 128 196 Ä

Å \u00C5 197 129 Å

Æ \u00C6 198 174 Æ

Ç \u00C7 199 130 199 Ç

È \u00C8 200 233 È

É \u00C9 201 131 201 É

Ê \u00CA 202 230 Ê

Ë \u00CB 203 232 203 Ë

Ì \u00CC 204 237 Ì

Í \u00CD 205 234 205 Í

Î \u00CE 206 235 206 Î

Ï \u00CF 207 236 Ï

Ð \u00D0 208 Ð

Ñ \u00D1 209 132 Ñ

Ò \u00D2 210 241 Ò

Ó \u00D3 211 238 211 Ó

Ô \u00D4 212 239 212 Ô

Õ \u00D5 213 205 Õ

Ö \u00D6 214 133 214 Ö

× \u00D7 215 215 ×

Ø \u00D8 216 175 Ø

Ù \u00D9 217 244 Ù

Ú \u00DA 218 242 218 Ú

Û \u00DB 219 243 Û

Ü \u00DC 220 134 220 Ü

Ý \u00DD 221 221 Ý

Þ \u00DE 222 Þ

ß \u00DF 223 167 223 ß

à \u00E0 224 136 à

á \u00E1 225 135 225 á

â \u00E2 226 137 226 â

ã \u00E3 227 139 ã

ä \u00E4 228 138 228 ä

å \u00E5 229 140 å

æ \u00E6 230 190 æ

ç \u00E7 231 141 231 ç

è \u00E8 232 143 è

é \u00E9 233 142 233 é

ê \u00EA 234 144 ê

ë \u00EB 235 145 235 ë

ì \u00EC 236 147 ì

í \u00ED 237 146 237 í

î \u00EE 238 148 238 î

ï \u00EF 239 149 ï

ð \u00F0 240 ð

ñ \u00F1 241 150 ñ

ò \u00F2 242 152 ò

ó \u00F3 243 151 243 ó

ô \u00F4 244 153 244 ô

õ \u00F5 245 155 õ

ö \u00F6 246 154 246 ö

÷ \u00F7 247 214 247 ÷

ø \u00F8 248 191 ø

ù \u00F9 249 157 ù

ú \u00FA 250 156 250 ú

û \u00FB 251 158 û

ü \u00FC 252 159 252 ü

ý \u00FD 253 253 ý

þ \u00FE 254 þ

ÿ \u00FF 255 216 ÿ

Ă \u0102 258 195 Ă

ă \u0103 259 227 ă

Ą \u0104 260 165 Ą

ą \u0105 261 185 ą

Ć \u0106 262 198 Ć

ć \u0107 263 230 ć

Č \u010C 268 200 Č

č \u010D 269 232 č

Ď \u010E 270 207 Ď

ď \u010F 271 239 ď

Đ \u0110 272 208 Đ

đ \u0111 273 240 đ

Ę \u0118 280 202 Ę

ę \u0119 281 234 ę

Ě \u011A 282 204 Ě

ě \u011B 283 236 ě

ı \u0131 305 245 ı

Ĺ \u0139 313 197 Ĺ

ĺ \u013A 314 229 ĺ

Ľ \u013D 317 188 Ľ

ľ \u013E 318 190 ľ

Ł \u0141 321 163 Ł

ł \u0142 322 179 ł

Ń \u0143 323 209 Ń

Character Format Conversion Table for the Processing Character Set (Continued)

Reas_09_519-710.indd Sec6:667Reas_09_519-710.indd Sec6:667 5/23/07 1:08:25 PM5/23/07 1:08:25 PM

668 Appendix C: ASCII, Unicode

ń \u0144 324 241 ń

Ň \u0147 327 210 Ň

ň \u0148 328 242 ň

Ő \u0150 336 213 Ő

ő \u0151 337 245 ő

Œ \u0152 338 206 Œ

œ \u0153 339 207 œ

Ŕ \u0154 340 192 Ŕ

ŕ \u0155 341 224 ŕ

Ř \u0158 344 216 Ř

ř \u0159 345 248 ř

Ś \u015A 346 140 Ś

ś \u015B 347 156 ś

Ş \u015E 350 170 Ş

ş \u015F 351 186 ş

Š \u0160 352 138 Š

š \u0161 353 154 š

Ţ \u0162 354 222 Ţ

ţ \u0163 355 254 ţ

Ť \u0164 356 141 Ť

ť \u0165 357 157 ť

Ů \u016E 366 217 Ů

ů \u016F 367 249 ů

Ű \u0170 368 219 Ű

ű \u0171 369 251 ű

Ÿ \u0178 376 217 Ÿ

Ź \u0179 377 143 Ź

ź \u017A 378 159 ź

Ż \u017B 379 175 Ż

ż \u017C 380 191 ż

Ž \u017D 381 142 Ž

ž \u017E 382 158 ž

ƒ \u0192 402 196 ƒ

ˆ \u02C6 710 246 ˆ

ˇ \u02C7 711 255 161 ˇ

˘ \u02D8 728 249 162 ˘

˙ \u02D9 729 250 255 ˙

˚ \u02DA 730 251 ˚

˛ \u02DB 731 254 178 ˛

˜ \u02DC 732 247 ˜

˝ \u02DD 733 253 189 ˝

Ω \u03A9 937 189 Ω

π \u03C0 960 185 π

– \u2013 8211 208 150 –

— \u2014 8212 209 151 —

‘ \u2018 8216 212 145 ‘

’ \u2019 8217 213 146 ’

‚ \u201A 8218 226 130 ‚

“ \u201C 8220 210 147 “

” \u201D 8221 211 148 ”

„ \u201E 8222 227 132 „

† \u2020 8224 160 134 †

‡ \u2021 8225 224 135 ‡

• \u2022 8226 165 149 •

… \u2026 8230 201 133 …

‰ \u2030 8240 228 137 ‰

‹ \u2039 8249 220 139 ‹

› \u203A 8250 221 155 ›

⁄ \u2044 8260 218 ⁄

€ \u20AC 8364 128 €

™ \u2122 8482 170 153 ™

∂ \u2202 8706 182 ∂

∆ \u2206 8710 198 ∆

∏ \u220F 8719 184 ∏

∑ \u2211 8721 183 ∑

√ \u221A 8730 195 √

∞ \u221E 8734 176 ∞

∫ \u222B 8747 186 ∫

≈ \u2248 8776 197 ≈

≠ \u2260 8800 173 ≠

≤ \u2264 8804 178 ≤

≥ \u2265 8805 179 ≥

◊ \u25CA 9674 215 ◊

 \uF8FF 63743 240 

fi \uFB01 64257 222 ﬁ

fl \uFB02 64258 223 ﬂ

Character Format Conversion Table for the Processing Character Set (Continued)

Reas_09_519-710.indd Sec6:668Reas_09_519-710.indd Sec6:668 5/23/07 1:08:26 PM5/23/07 1:08:26 PM

669

Appendix D

Bit, Binary, Hex

Bit

A bit (binary digit) is the most basic information unit in computing. It’s often thought of
as a 1 or 0, but a bit has no numeric meaning. It’s simply a way to distinguish between
two mutually exclusive states. Bits may be stored as holes punched in a card, a positive or
negative magnetic charge on a fl oppy disk, or an indent in the surface of a compact disk.
The amazing innovation of binary notation is the ability to encode many types of data
and logic with only two different states. This was made possible by George Boole’s
contributions to logic in the mid-nineteenth century and Claude Shannon’s development
of information theory in the 1930s. The information that comprises images, video, text,
and software is all encoded into binary notation and later decoded as colors, shapes, and
words that we are able to understand. Bits are grouped together in units of 8 called
bytes. Storage on computers is measured in these units. For example, a kilobyte (K, KB,
kB, Kbyte) is 1024 bytes, a megabyte (MB) is 1,048,576 bytes, and a gigabyte (GB, Gbyte) is
1,073,741,824 bytes.1

Binary

The binary number system, also called base-2, represents numbers as sequences of 1s and
0s. This is different from the more common decimal representation, also called base-10.
Here we can compare the powers of 10 and the powers of 2:

 Base-10 100 101 102 103 104 105

 1 10 100 1000 10000 100000

 Base-2 20 21 22 23 24 25

 1 2 4 8 16 32

When using a computer, it’s clear that many frequently used numbers are a result of
base-2 notation. For example, colors are specifi ed in values from 0 to 255 (28, the number
of unique values for one byte), and screens are often 1024 pixels wide (210).
 In base-10 numbers, each digit is multiplied by the power of 10 associated with its
position. For example, the number 243 is expressed as follows:

 200 + 40 + 3 = 243

 2*100 + 4*10 + 3*1 = 243

 2*102 + 4*101 + 3*100 = 243

Reas_09_519-710.indd Sec6:669Reas_09_519-710.indd Sec6:669 5/23/07 1:08:26 PM5/23/07 1:08:26 PM

670 Appendix D: Bit, Binary, Hex

Base-2 numbers work the same way, but the digits are multiplied by the powers of 2.
Every whole number can be made by adding values that are powers of two. The
following example breaks down the binary equivalent of the decimal number 23
(16+4+2+1) which is 10111:

 16 + 0 + 4 + 2 + 1 = 23

 1*16 + 0*8 + 1*4 + 1*2 + 1*1 = 23

 1*25 + 0*24 + 1*22 + 1*21 + 1*20 = 23

Each fi le format specifi es how information is encoded into binary notation and how
software is used to decode the information according to the standards for each format.
For example, using the ASCII standard (p. 664) for text, the word Process is encoded as
the numeric and binary sequence like this:

 Character P r o c e s s

 ASCII 80 114 111 99 101 115 115

 Binary 01010000 01110010 01101111 01100011 01100101 01110011 01110011

Bitwise operations

The integer and fl oating-point representations of numbers are operated on with
arithmetic operators such as + and *. The binary representations of numbers have
different operators. Bitwise operators & (bitwise AND) and | (bitwise OR) are used for
comparing binary representations. The bitwise operators >> and << are used to shift bits
left and right.

The bitwise AND operator compares each corresponding bit according to these rules:

 Expression Evaluation

 1 & 1 1

 1 & 0 0

 0 & 0 0

A larger calculation follows:

 11010110

 & 01011100

 01010100

Reas_09_519-710.indd Sec6:670Reas_09_519-710.indd Sec6:670 5/23/07 1:08:26 PM5/23/07 1:08:26 PM

671 Appendix D: Bit, Binary, Hex

The bitwise OR operator compares each corresponding bit according to these rules.

 Expression Evaluation

 1 | 1 1

 1 | 0 1

 0 | 0 0

A larger calculation follows:

 11010110

 | 01011100

 11011110

The bitwise operators >> and << shift bits left and right.

int a = 205; // In binary: 00000000000000000000000011001101

int b = 45; // In binary: 00000000000000000000000000101101

a = a << 24; // Converts to 11001101000000000000000000000000

b = b << 8; // Converts to 00000000000000000010110100000000

Hex

Hexadecimal notation encodes an entire 8-digit byte with just two characters, one
character for each nibble (4 bits, or half a byte). Because there are only 16 possible byte
confi gurations for a nibble, each can be encoded with the following 16 distinct
alphanumeric characters.

 0000 0 0100 4 1000 8 1100 C

 0001 1 0101 5 1001 9 1101 D

 0010 2 0110 6 1010 A 1110 E

 0011 3 0111 7 1011 B 1111 F

For example, the binary sequence . . .

 01010000 01110010 01101111 01100011 01100101 01110011 01110011

. . . is reduced to this hexadecimal encoding:

 50 72 6F 63 65 73 73

Hex notation is an established way to defi ne color within software and on the Web. For
example, the three decimal RGB color value 255, 204, 51 is converted to FFCC33 in

D-01

Reas_09_519-710.indd Sec6:671Reas_09_519-710.indd Sec6:671 5/23/07 1:08:27 PM5/23/07 1:08:27 PM

672 Appendix D: Bit, Binary, Hex

hexadecimal notation. In Processing, a # sign is front of six digits denotes a web color.
To use hexadecimal notation for other uses besides color, place 0x (the number zero
followed by a lowercase x) in front of the digits.

 Notes

1. There are two defi nitions each for kilobyte, megabyte, and gigabyte. The alternative quantities are, respectively,

 1,000 (one thousand), 1,000,000 (one million), and 1,000,000,000 (one billion).

Reas_09_519-710.indd Sec6:672Reas_09_519-710.indd Sec6:672 5/23/07 1:08:27 PM5/23/07 1:08:27 PM

673

Appendix E

Optimization

Optimization is making changes to a program so that it will run faster. This can provide
tremendous benefi t by increasing the number of frames displayed per second or by
allowing more to be drawn to the screen each frame. Increasing the speed can also make
a program more responsive to mouse and keyboard input.
 Code should usually not be optimized until a late stage in a program’s development.
Energy diverted to optimization detracts from refi ning the concept and aesthetic
considerations of the software. Optimization can be very rewarding because of increased
performance, but such technical details should not be allowed to distract you from the
ideas. There are a few important heuristics to guide the process:
 Work slowly and carefully. It’s easy to introduce new bugs when optimizing, so work
with small pieces of code at a time. Always keep the original version of the code. You
may want to comment out the old version of a function and keep it present in your
program while you work on its optimization.
 Optimize the code that’s used most. The majority of code in a program gets used
very little, so make sure that you’re focusing on a section that needs work. Advanced
programmers can use a profi ler for this task—a tool that identifi es the amount of time
being spent in different sections of code. Profi lers are too specifi c to be covered here, but
books and online references cover profi ling Java code, and this methodology can be
applied to Processing programs.
 If the optimization doesn’t help, revert to the original code. Lots of things seem like
they’ll improve performance but actually don’t (or they don’t improve things as much as
hoped). The “optimized” version of the code will usually be more diffi cult to read—so if
the benefi ts aren’t suffi cient, the clearer version is better.
 There are many techniques to optimize programs; some that are particularly
relevant to Processing sketches are listed below.

Bit-shifting color data

The red(), green(), blue(), and alpha() functions are easy to use and understand,
but because they take the colorMode() setting into account, using them is much
slower than making direct operations on the numbers. With the default color mode, the
same numerical results can be achieved with greater speed by using the >> (right shift)
operator to isolate the components and then use the bit mask 0xFF to remove any
unwanted data. These operators are explained in Appendix D (p. 669). The following
example shows how to shift color data to isolate each component.

Reas_09_519-710.indd Sec6:673Reas_09_519-710.indd Sec6:673 5/23/07 1:08:27 PM5/23/07 1:08:27 PM

674 Appendix E: Optimization

color c = color(204, 153, 102, 255);

float r = (c >> 16) & 0xFF; // Faster version of red(c)

float g = (c >> 8) & 0xFF; // Faster version of green(c)

float b = c & 0xFF; // Faster version of blue(c)

float a = (c >> 24) & 0xFF; // Faster version of alpha(c)

println(r + ", " + g + ", " + b + ", " + a);

Each component of a color is 8 bits. The bits in a pixel are ordered like this . . .

 AAAAAAAARRRRRRRRGGGGGGGGBBBBBBBB

. . . where the A’s are alpha bits, R’s are red, G’s are green, and B’s are blue. After the red
component is shifted 16 to the right (the >> 16 above), the pixel values looks like this:

 0000000000000000AAAAAAAARRRRRRRR

The hexadecimal value 0xFF is 8 bits all set to 1 (equivalent to 255). The bitwise AND
operator is applied to remove the other bits and just save the 8 bits needed for the color
component itself:

 0000000000000000AAAAAAAARRRRRRRR

 & 00000000000000000000000011111111

 000000000000000000000000RRRRRRRR

This calculation completely isolates the red component of the color. To put a color “back
together,” use the following code:

int a = 255;

int r = 102;

int g = 51;

int b = 255;

color c = (a << 24) | (r << 16) | (g << 8) | b;

The following code is useful when the alpha setting is opaque, because no shift is needed:

 color c = 0xFF000000 | (r << 16) | (g << 8) | b;

The hex digits 0xFF000000 (p. 671) are equivalent to 255 shifted to the left by 24. Hex
digits can be used to replace the red and green components as well.

Bit shifting is much faster than using the color() method, because it ignores the
colorMode() setting. For the same reason, specifying colors using hex notation (e.g.,
#FFCC00) has zero overhead.

E-01

E-02

Reas_09_519-710.indd Sec6:674Reas_09_519-710.indd Sec6:674 5/23/07 1:08:27 PM5/23/07 1:08:27 PM

675 Appendix E: Optimization

Avoid creating objects in draw()

Creating an object slows a program down. When possible, create the objects within
setup() so they are created only once within the program. For example, load all images
and create objects within setup(). The following two examples show common
misunderstandings about creating objects that slow programs down.

// AVOID loading an image within draw(); it is slow

void draw() {

 PImage img = loadImage("tower.jpg");

 image(img, 0, 0);

}

// AVOID creating an array inside draw(); it is slow

void draw() {

 int[] values = new int[200];

 // Do something with the array here

}

In this case, the array will be re-created and destroyed on each trip through the draw()
method, which is extremely wasteful. The programs 43-07 (p. 404) and 44-05 (p. 417)
show faster ways of creating objects.

Using the pixels[] array

The get() and set() functions are easy to use, but they are not as fast as accessing and
setting the pixels of an image directly through the pixels[] array (p. 356). The
following examples show four different ways of accessing the data within the
pixels[] array, each faster than the previous one.

// Converts (x,y) coordinates into a position in the pixels[] array

loadPixels();

for (int y = 0; y < height; y++) {

 for (int x = 0; x < width; x++) {

 pixels[y*height + x] = color(102);

 }

}

updatePixels();

// Replaces the multiplication y*height with an addition

int offset = 0;

loadPixels();

for (int y = 0; y < height; y++) {

E-03

E-05

E-06

E-04

Reas_09_519-710.indd Sec6:675Reas_09_519-710.indd Sec6:675 5/23/07 1:08:27 PM5/23/07 1:08:27 PM

676 Appendix E: Optimization

 for (int x = 0; x < width; x++) {

 pixels[offset + x] = color(102);

 }

 offset += width; // Avoids the multiply

}

updatePixels();

// Avoid the calculation y*height+width

int index = 0;

loadPixels();

for (int y = 0; y < height; y++) {

 for (int x = 0; x < width; x++) {

 pixels[index++] = color(102);

 }

}

updatePixels();

// Avoids (x,y) coordinates

int wh = width*height;

loadPixels();

for (int index = 0; index < wh; index++) {

 pixels[index] = color(102);

}

updatePixels();

// Only calculate the color once

int wh = width*height;

color c = color(102);

loadPixels();

for (int index = 0; index < wh; index++) {

 pixels[index] = c;

}

updatePixels();

When manipulating pixels[], use the loadPixels() and updatePixels()
functions only once within draw(). When possible, use color() outside of loops. It is
not very fast because it must take into account the current color mode.

Tips for working with arrays

Adding one value at a time to an array is slower than doubling the size of the array when
it’s full. If a program will be continually adding data to the end of an array, use the
expand() function once each time the array fi lls up in place of running append()

E-06
cont.

E-07

E-08

E-09

Reas_09_519-710.indd Sec6:676Reas_09_519-710.indd Sec6:676 5/23/07 1:08:28 PM5/23/07 1:08:28 PM

677 Appendix E: Optimization

many times. Code 33-19 (p. 309) shows how to manage a growing array with expand().
 The arraycopy() function is the fastest way of copying data from one array to
another. Copying the data from one array to another inside a for structure is much
slower when copying data from large arrays. The arraycopy() function is
demonstrated in code 33-20 (p. 310). Arrays are also much faster (sometimes 2*) than the
Java classes ArrayList and Vector.

Avoid repeating calculations

If the same calculation is made more than once, it’s faster to make the calculation once
and store it in a variable. Instead of writing . . .

 float x = (width/2) * 4;

 float y = (width/2) * 8;

. . . save the result of the division in a variable and substitute it for the calculation:

 float half = width/2;

 float x = half * 4;

 float y = half * 8;

Multiplications and divisions from inside a for structure can slow a program down
signifi cantly, especially if there are more than 10,000 iterations. When possible, make
these calculations outside of the structure. This is demonstrated above in code E-08.
 Because of the way computers make calculations, addition is faster than
multiplication and multiplication is faster than division. Multiplication can often be
converted to addition by restructuring the program. For example, compare the difference
in run time between code E-05 and code E-06.

Lookup tables

The idea behind a lookup table is that it is faster to make reference to a value stored
within a data structure than to make the calculation. One example is making
calculations for sin() and cos() at each frame. These numbers can be generated once
within setup() and stored within an array so they may be quickly retrieved. The
following example shows how it’s done.

int res = 16; // Number of data elements

float[] x = new float[res]; // Create x-coordinate array

float[] y = new float[res]; // Create y-coordinate array

void setup() {

 size(100, 100);

E-10

Reas_09_519-710.indd Sec6:677Reas_09_519-710.indd Sec6:677 5/23/07 1:08:28 PM5/23/07 1:08:28 PM

678 Appendix E: Optimization

 for (int i = 0; i < res; i++) {

 x[i] = cos(PI/res * i); // Sets x-coordinates

 y[i] = sin(PI/res * i); // Sets y-coordinates

 }

}

void draw() {

 for (int i = 0; i < res; i++) { // Access each point

 point(50 + x[i]*40, 50 + y[i]*40); // Draws point on a curve

 }

}

You can change the resolution of the values by altering the length of the array.

Optimizers beware!

Optimized code can sometimes be more diffi cult to read. When deciding whether to
optimize, balance the need for speed against the value of legibility. For example, in the
bit-shifting example presented above, the expression

 red(color)

is more clear than its optimized equivalent:

 (color >> 16) & 0xFF

The name of the red() function clearly states its purpose, whereas the bit shift and
mask are cryptic to everyone except those familiar with the technique. The confusion
can be alleviated with comments, but always consider whether the optimization is more
important than the simplicity of your code.

E-10
cont.

Reas_09_519-710.indd Sec6:678Reas_09_519-710.indd Sec6:678 5/23/07 1:08:29 PM5/23/07 1:08:29 PM

679

Appendix F

Programming Languages

There are hundreds of different programming languages,1 and many are used by artists
and designers. Like human languages, programming languages can be grouped into
related sets. French and Spanish are similar because they share similar origins, and the
Java and C++ programming languages are similar because they too share similar origins.
The etymology of a programming language determines many of its characteristics. Is it
appropriate for sketching? Can it be used to program a mobile phone? Is the code highly
optimized? Programming languages evolve over a long period of time, and a new
language frequently adopts conventions from its predecessors. This appendix describes
the characteristics of a variety of languages and their role as tools for artists and
designers.

Text vs. visual languages

The fi rst programming languages were text languages, and the majority of
programming languages used in the twenty-fi rst century are text languages. Visual
programming languages (VPL or VL) are used less often, but they may be employed by a
higher percentage of people involved in the arts than in other areas. VPLs often appeal to
people who think spatially and prefer to organize their thoughts as visual relationships
between elements. For example, the following short text program . . .

 ellipse(mouseX, mouseY, 50, 50);

. . . might be written in a visual programming language like this:

Because VPLs represent software less abstractly, they have proved more effective within
specifi c domains than as general-purpose programming languages. They have found a
niche in applications for generating sound, editing video, and building GUIs. A VPL
places a greater distance between the programmer and the low-level technical details of
the software. For example, a color can be selected directly and curves can be modifi ed
and drawn with the mouse rather than specifi ed with numbers. VPLs are themselves
written using general-purpose text languages such as C++ and Java; therefore, adding
intrinsic features to a VPL requires text programming.

ellipse

mouse 50

Reas_09_519-710.indd Sec6:679Reas_09_519-710.indd Sec6:679 5/23/07 1:08:30 PM5/23/07 1:08:30 PM

680 Appendix F: Programming Languages

 Some researchers feel VPLs have the power to reach an audience that has previously
not been attracted to programming. There is logic in this hypothesis, considering that
the introduction of the GUI in the 1980s brought the personal computer to a vast new
audience. The Scratch project,2 developed by Mitchel Resnick’s research group at the MIT
Media Laboratory, was created to enable children to make their own games and
animated stories. Programs are created by snapping together visual blocks and setting
parameters. There are different block types for mouse events, iteration, and other
programming fundamentals. The software is used in the Computer Clubhouse network
of after-school centers in low-income communities.
 One category of languages is not intrinsically better than the other. Each should be
evaluated, and the selection should be made in relation to the programming context and
the preferences of the programmer.

Compiled vs. interpreted languages

A program written in a compiled language must be converted into a different format
before it is run. The program goes through a process to change it from its human-
readable text format into a machine-readable format. This is called compiling the
program. A program called a compiler makes this transition. The program is converted
from the representation created by the programmer to a reduced set of instructions
(machine code) that can be executed by the computer’s microprocessor. A program
written in an interpreted language is not compiled—it is interpreted by another
program while it runs. An interpreter is a program that analyzes each statement in the
program while it runs and determines what to do. In contrast, all of the necessary
decisions about a compiled program are made during the compilation process.
 Both types of programming techniques have their strengths. For example, compiled
programs run faster than interpreted programs, but interpreted programs can be
modifi ed while the program is running. This makes interpreted programs ideal for
writing live performance software. Because each language type has advantages, large
software projects often utilize both, for different parts of the project where each strength
is needed.
 The Java language system has aspects of both a compiled and an interpreted
language. Before a Java program is run, it’s compiled into byte code that is run on the
Java Virtual Machine (JVM). The JVM is a software processor that acts as a buffer
between the byte code and the machine’s physical microprocessor. Because there is a
standardized JVM for many different types of computers, the same Java code can
theoretically run on all of these different machines without requiring platform-specifi c
changes. The byte code technique makes it easier for code to be readable across
platforms without the speed reduction of an interpreted language.
 Many interpreted languages are categorized as scripting languages. There is no clear
defi nition of a scripting language, but there are properties commonly used to identify
one. They are typically created for specifi c domains or applications. For example, MEL
was developed for Maya, ActionScript for Flash, and JavaScript for the Web. A scripting

Reas_09_519-710.indd Sec6:680Reas_09_519-710.indd Sec6:680 5/23/07 1:08:30 PM5/23/07 1:08:30 PM

681 Appendix F: Programming Languages

language provides easy access to specifi c tasks relevant to a particular context. For
example, AppleScript for Mac OS can be used to process a folder full of images and then
upload them to a server or send them via Email. Programs can usually be written more
quickly in a scripting language, but they often run slower and use more of the
computer’s memory. It can take less time to write programs in a scripting language
because it does not require the programmer to be as specifi c. For example, scripting
languages are often not typed, meaning the data types for variables need not be
declared. There’s a stereotype that scripting languages are useful only for writing short,
simple programs. While they are good for this purpose, scripting languages such as Perl
and Python are frequently used to create long, complex programs.
 Java was chosen as the basis for Processing because it represented a good balance
between performance and simplicity of use. If we didn’t care about speed, a scripting
language like Python or Ruby might make more sense in a sketching environment. If we
didn’t care about transition to more advanced languages, we might not use Java/C++
style syntax. Java makes a nice starting point for a sketching language because it’s far more
forgiving than C++ and also allows users to export sketches for distribution via the Web.

Programming languages used by artists and designers

The following list is a small sampling of the many languages in use by artists and
designers. It is not possible to compile a comprehensive list, and this list does not aspire
to meet that challenge. In addition to the languages mentioned here, there have been
many historically important languages for the arts including GRASS, BEFLIX, Logo,
AutoLISP, and PostScript. There are also many domain-specifi c languages that are not
mentioned here.

ActionScript. ActionScript is a language written for Adobe’s Flash software. Flash
was originally created as Web animation software, and ActionScript was later added
to provide scripting capabilities for MovieClips, the basic content unit of a Flash project.
ActionScript is based on ECMAScript (the foundation of JavaScript), so knowledge
of one transfers easily to the other. ActionScript is evolving rapidly and is becoming
increasingly complex with each release. ActionScript 2.0 is based on ECMA-262
ECMAScript, which adds classes and strong data typing. Through the Flash Lite
technology, ActionScript can be used to program content for mobile phones.
http://www.adobe.com/devnet/actionscript

Arduino. (See Wiring) http://www.arduino.cc

BASIC. Originally designed in 1963 as a language to allow students in nontechnical fi elds
to use computers, BASIC became prevalent on home computers in the 1980s. It was the
fi rst language learned by millions of children growing up with home computers at this
time. BASIC was designed to be easy for beginners but also usable as a general-purpose
language. There are many dialects of BASIC, including the PIC BASIC and PBASIC

Reas_09_519-710.indd Sec6:681Reas_09_519-710.indd Sec6:681 5/23/07 1:08:31 PM5/23/07 1:08:31 PM

682 Appendix F: Programming Languages

languages for programming microcontrollers.
http://en.wikipedia.org/wiki/BASIC_programming_language

C, C++. The C language was developed in the early 1970s and is still used widely today.
Many languages designed subsequently (including PHP and Processing) have used C as a
model. In addition to its widespread use for writing system software and applications
for PCs, it’s a popular language for programming microcontrollers. C++ was designed to
enhance the C language through the addition of object-oriented concepts. The ++ symbol
in C means to add the number 1. The name C++ is geeky way to acknowledge its status as
an enhanced version of C. Because C was so widely used, C++ became one of the most
popular object-oriented languages. If well programmed, applications written in C and
C++ are fast and effi cient. Neither language has a built-in way of drawing; they are
interfaced with a graphics library such as OpenGL to write images to the screen.
http://en.wikipedia.org/wiki/C_programming_language
http://en.wikipedia.org/wiki/C++_programming_language

ChucK. ChucK is an audio programming language for real-time synthesis, composition,
and performance. Code can be added and modifi ed while the program is running. The
language offers precise timing control.
http://chuck.cs.princeton.edu

Design By Numbers (DBN). Design By Numbers was developed for teaching general
programming concepts to artists and designers with no prior programming experience.
DBN is an extremely minimal language and environment; thus, it is easy to learn but
limited in its potential for creating advanced graphics applications. DBN was originated
by John Maeda, director of the Aesthetics and Computation Group (ACG) at the MIT
Media Laboratory. Processing also originated in the ACG because of Ben and Casey’s
involvement with the DBN project.
http://dbn.media.mit.edu

DrawBot. DrawBot, a language developed specifi cally for teaching, combines Python
with a 2D graphics library and simple development environment. Images created can be
output in different formats including PDF. This software is available only for Macintosh.
http://www.drawbot.com

Java. Java was created by Sun Microsystems in the 1990s as an alternative to C++. The
language focuses on creating cross-platform programs with built-in support for
networking. The popularity of Java dramatically increased as the Web emerged because
of Java applets, programs that can run through a Web browser. In contrast to C and C++,
Java programs are faster to write, but run more slowly. The Java language has grown at a
tremendous rate since its conception and is now used for programming contexts
including embedded devices, phones, server-side programs, and stand-alone
applications.
http://java.sun.com

Reas_09_519-710.indd Sec6:682Reas_09_519-710.indd Sec6:682 5/23/07 1:08:31 PM5/23/07 1:08:31 PM

683 Appendix F: Programming Languages

JavaScript. JavaScript was originally developed as a scripting language for enhancing
Web pages. Despite its name, JavaScript is not directly related to the Java programming
language. It was originally developed by Netscape and named LiveScript, but the name
was changed to JavaScript around the time that Netscape began including Java with its
Web browser. JavaScript was later sent to the ECMA standards body and codifi ed as the
ECMAScript standard. JavaScript is used as the scripting language for Scriptographer
(p. 271) and Extend Script (Adobe’s language for scripting its Illustrator, Photoshop, and
InDesign software).
http://www.mozilla.org/js

Lingo. Lingo is the language written for Macromedia’s Director software. Director was
once the dominant environment for designers and artists making CD-ROM projects, but
has declined in popularity during the Web era due to the success of Flash. It is still one of
the environments most commonly used by artists and designers, and it has excellent
libraries of code for extending its functionality. Lingo is integrated into a GUI
environment that uses theater terms like “stage” and “cast” to describe different project
elements. The Lingo language is characterized by its verbose English-like syntax. More
recent features added to Director are accessible through JavaScript syntax. Director has
been modifi ed in recent years to support object-oriented structures and 3D graphics.
http://www.adobe.com/support/director/lingo.html

Max/MSP/Jitter. Max, named after the computer music pioneer Max Mathews, was
originally a visual programming language for controlling MIDI data. The Max GUI is
based on an analog synthesizer. Different modules (objects) are visually connected with
patch cords to determine the data fl ow. The MSP objects were added ten years later to
enable the software to generate live audio. The subsequent Jitter objects extended Max
to control video and 3D graphics. Versions 4.5 and higher allow JavaScript and Java code
to be used in tandem with the visual programming elements. Max/MSP/Jitter is
commonly used for creating live audiovisual performances.
http://www.cycling74.com/products/maxmsp, www.cycling74.com/products/jitter

Maya Embedded Language (MEL). MEL is a scripting language used with Alias’s Maya
software. It is useful for automating repetitive tasks and for grouping sets of frequently
used commands together into reusable scripts. The syntax is similar to C, and the
language does not yet have object-oriented capabilities.
http://www.alias.com/maya, http://en.wikipedia.org/wiki/Maya_Embedded_Language

Mobile Processing. Mobile Processing is a variation of the Processing language for
writing mobile phone programs. The graphics library is optimized to run on the simpler
phone processors, and new functions are added to utilize unique elements of the phone
such as multitap text input. The language is extended with libraries to interface with
Bluetooth, SMS, and the phone’s camera and audio capabilities.
http://mobile.processing.org

Reas_09_519-710.indd Sec6:683Reas_09_519-710.indd Sec6:683 5/23/07 1:08:31 PM5/23/07 1:08:31 PM

684 Appendix F: Programming Languages

Perl. A goal of the Perl language is to make easy tasks easy and diffi cult tasks possible. It
succeeds because it is a fl exible and extensive language. The Perl syntax is a pastiche of
many languages including C, awk, sed, sh, and others. Perl is used widely for Web
development and network programming and is therefore sometimes called the “the duct
tape of the Internet”; its popularity surged in the 1990s and later inspired Web scripting
languages like PHP. Perl is excellent at parsing and manipulating text; its ability to
process such data makes it useful for an art and design audience.
http://www.perl.org

PHP. PHP is a simple but powerful scripting language originally designed for
programming dynamic Web content. The syntax is similar to C and is easily embedded
within HTML. PHP is often used to read and write data from a database.
http://www.php.net

Pure Data (Pd). Pd is a visual programming language developed for creating computer
music and live images. Pd was initiated by Miller Puckette, the father of Max, as an open-
source alternative to the original proprietary software. It extends beyond the original
Max with the additional of real-time audio synthesis. As in Max, programs are written
with visual patches. As an open-source project, the Pd software and distributions contain
many contributions from developers around the world. Pd is an extremely popular
language for creating live audiovisual performances.
http://puredata.info

Python. Python is considered to be an excellent teaching language because of its clear
syntax and structure. Python is typically used for nongraphic applications. It doesn’t
have a native graphics library, but graphics applications may be created by using
graphics toolkits, some of which are cross-platform. The language is characterized by a
small syntax and a huge variety of modules that extend the possibilities of the language.
The DrawBot program and the TurboGears Web framework are both written with Python.
http://www.python.org

Quartz Composer. The Quartz Composer is a visual programming language included
with Mac OS X for processing and rendering graphical data using OpenGL. The basic
element of the language is a patch, the visual equivalent of a function. Input and output
ports on a patch are connected with lines to defi ne the fl ow of data within the program.
Compositions, as programs written with Quartz Composer are called, can be run
autonomously or incorporated into applications.
http://developer.apple.com/documentation/GraphicsImaging/Conceptual/QuartzComposer

Ruby. Ruby is an object-oriented scripting language. It has many features to process text
fi les and to perform system management tasks. The Ruby syntax provides programmers
great fl exibility in structuring their code. This makes the language “expressive,” but can
also make it more diffi cult for other people to read. It has gained popularity because of
Ruby on Rails, a framework for making Web applications. Ruby is a relatively new

Reas_09_519-710.indd Sec6:684Reas_09_519-710.indd Sec6:684 5/23/07 1:08:31 PM5/23/07 1:08:31 PM

685 Appendix F: Programming Languages

language (it was created in 1995) and its user base is growing quickly.
http://www.ruby-lang.org/en

SQL (Structured Query Language). SQL is the most common programming language
used to create, modify, retrieve, and manipulate database content. Its origins date back
to 1969, but it only became standardized in 1986. While not a language for building
applications per se, it provides a syntax for searching and collecting information from a
database through queries and procedures.
http://en.wikipedia.org/wiki/Sql

SuperCollider. SuperCollider is an environment for real-time audio synthesis. It features
a built-in programming language, an object-oriented class system, a GUI builder for
creating a patch control panel, a graphical interface for creating wave tables and
breakpoint envelopes, MIDI control, a large library of signal processing and synthesis
functions, and a large library of functions for list processing musical data. The
programming language has elements of the Smalltalk and C languages. This software is
available only for Macintosh.
http://www.audiosynth.com

Wiring. Wiring is a language for programming microcontrollers. It’s used to teach the
basic concepts of working with electronics and skills in prototyping electronic devices.
The language is based on Processing but tailored for electronics. Programs are developed
within a modifi ed version of the Processing Environment. When a Wiring program is
compiled, it is translated into C code and then compiled as a C program. Wiring is also
the programming language for the Arduino electronics boards.
http://www.wiring.org.co

vvvv. The vvvv website states, “vvvv is a multipurpose toolkit focusing on real-time video
synthesis, connecting physical devices, and developing interactive media applications
and systems.”3 It is a visual programming language with aspects similar to Max and Pure
Data, but with a better designed interface and less emphasis on audio. It features
hardware-accelerated 3D graphics and makes it easy to create multiscreen projections.
This software is available only for Windows and is free for noncommercial use.
http://vvvv.meso.net

 Notes

1. http://en.wikipedia.org/wiki/Alphabetical_list_of_programming_languages.

2. http://weblogs.media.mit.edu/llk/scratch/.

3. http://vvvv.org/tiki-index.php?page=executive+FAQ.

Reas_09_519-710.indd Sec6:685Reas_09_519-710.indd Sec6:685 5/23/07 1:08:32 PM5/23/07 1:08:32 PM

686 Appendix G: Code Comparison

Appendix G

Code Comparison

The Processing programming language has similarities and differences with other
commonly used languages. The table presented below compares elements of the
Processing language to the Java, ActionScript, and Lingo languages. Lingo is the
programming language for Macromedia’s Director software. ActionScript is the
language for Adobe’s Flash software. These two languages are frequently used by
designers and artists. Lingo was most popular in the mid-1990s and has gradually

Processing Java

Color

background(0); g.setColor(Color.black)

fillRect(0, 0, size.width, size.height);

background(255); g.setColor(Color.white)

fillRect(0, 0, size.width, size.height);

background(255, 204, 0); g.setColor(new Color(255, 204, 0));

fillRect(0, 0, size.width, size.height);

stroke(255); g.setColor(Color.white)

stroke(0); g.setColor(Color.black)

stroke(255, 204, 0); g.setColor(new Color(255, 204, 0));

fill(0, 102, 153); g.setColor(new Color(0, 102, 153));

Shape

point(30, 20); g.drawLine(30, 20, 30, 20);

line(0, 20, 80, 20); g.drawLine(30, 20, 80, 20);

rect(10, 20, 30, 30); g.fillRect(10, 20, 30, 30);

g.drawRect(10, 20, 30, 30);

Reas_09_519-710.indd Sec6:686Reas_09_519-710.indd Sec6:686 5/23/07 1:08:32 PM5/23/07 1:08:32 PM

687 Appendix G: Code Comparison

declined in the twenty-fi rst century with the rise of ActionScript. Java is a general-
purpose programming language in use within many domains. The Processing
programming language is built on Java and therefore has many similarities to it.
Additional comparisons to other languages are available by selecting the “Reference”
option from the Help menu and clicking on the “Comparison” link.

ActionScript 2.0 Lingo

N/A the stageColor = 255

N/A the stageColor = 0

N/A (the stage).bgcolor = rgb(255,204,0)

lineStyle(x, 0xFFFFFF, a, true, "none",

"round", "miter", 1);

(the stage).image.draw(x1,y1,x2,y2, 0)

lineStyle(x, 0x000000, a, true, "none",

"round", "miter", 1);

(the stage).image.draw(x1,y1,x2,y2, 255)

lineStyle(x, 0xFFCC00, a, true, "none",

"round", "miter", 1);

(the stage).image.draw(x1,y1,x2,y2,

rgb(255,204,0))

beginFill (0x006699); (the stage).image.fill(left, top, right,

bottom, rgb(0,102,153))

setPixel(30, 20, 0x000000) (the stage).image.setPixel(30,20,

rgb(0,120,153))

moveTo(x1,y1);

lineTo(x2,y2);

(the stage).image.draw(0, 20, 80, 20,

[#shapeType:#line])

moveTo(10,20);

lineTo(30,20);

lineTo(30,30);

lineTo(10,30);

lineTo(10,20);

(the stage).image.fill(10,20,30,30,

[#shapeType:#rect])

(the stage).image.draw(10,20,30,30,

[#shapeType:#rect])

Reas_09_519-710.indd Sec6:687Reas_09_519-710.indd Sec6:687 5/23/07 1:08:32 PM5/23/07 1:08:32 PM

688 Appendix G: Code Comparison

Processing Java

Data

int x = 70; // Initialize

x = 30; // Change value

int x = 70; // Initialize

x = 30; // Change value

float x = 70.0;

x = 30.0;

float x = 70.0f;

x = 30.0f;

int[] a = {5, 10, 11};

a[0] = 12; // Reassign

int[] a = {5, 10, 11};

a[0] = 12; // Reassign

Control

for (int a = 45; a <= 55; a++) {

 // Statements

}

for (int a = 45; a <= 55; a++) {

 // Statements

}

if (c == 1) {

 // Statements

}

if (c == 1) {

 // Statements

}

if (c != 1) {

 // Statements

}

if (c != 1) {

 // Statements

}

if (c < 1) {

 // Statements

}

if (c < 1) {

 // Statements

}

if (c >= 1) {

 // Statements

}

if (c >= 1) {

 // Statements

}

if ((c >= 1) && (c < 20)) {

 // Statements

}

if ((c >= 1) && (c < 20)) {

 // Statements

}

if (c >= 20) {

 // Statements 1

} else if (c == 0) {

 // Statements 2

} else {

 // Statements 3

}

if (c >= 20) {

 // Statements 1

} else if (c == 0) {

 // Statements 2

} else {

 // Statements 3

}

Structure

// Comment // Comment

void doIt(int x) {

 // Statements

}

doIt(x);

public void doIt(int x) {

 // Statements

}

doIt(x);

Reas_09_519-710.indd Sec6:688Reas_09_519-710.indd Sec6:688 5/23/07 1:08:33 PM5/23/07 1:08:33 PM

689 Appendix G: Code Comparison

ActionScript 2.0 Lingo

var x:Number = 70;

x = 30; // Change value

x = 70 -- Initialize

x = 30 -- Change value

var x:Number = 70.0;

x = 30.0; // Change value

x = 70.0 -- Initialize

x = 30.0 -- Change value

var a:Array = [5, 10, 11];

a[0] = 12; // Reassign

a = [5,10,11]

a[1] = 12 -- Reassign

for (var a:Number = 45; a <= 55; a++) {

 // Statements

}

repeat with a = 45 to 55

 -- Statements

end repeat

if (c == 1) {

 // Statements

}

if c = 1 then

 -- Statements

end if

if (c != 1) {

 // Statements

}

if not(c = 1) then

 -- Statements

end if

if (c < 1) {

 // Statements

}

if c < 1 then

 -- Statements

end if

if (c >= 1) {

 // Statements

}

if c >= 1 then

 -- Statements

end if

if ((c >= 1) && (c < 20)) {

 // Statements

}

if c >= 1 and c < 20 then

 -- Statements

end if

if (c >= 20) {

 // Statements 1

} else if (c == 0) {

 // Statements 2

} else {

 // Statements 3

}

if c >= 20 then

 -- Statements 1

else if c = 0 then

 -- Statements 2

else

 -- Statements 3

end if

// Comment -- Comment

private function doIt (x:Number):Void {

 // Statements

}

doIt(x);

on doIt x

 -- Statements

end

doIt x

Reas_09_519-710.indd Sec6:689Reas_09_519-710.indd Sec6:689 5/23/07 1:08:33 PM5/23/07 1:08:33 PM

690 Appendix G: Code Comparison

int square(int x) {

 return x*x;

}

square(X);

public int square(int x) {

 return x*x;

}

square(X);

Input

mouseX

mouseY

/* Assuming there are two variables in

the program named mouseX and mouseY,

these values must be changed by the

programmer in the mouseMoved() and

mouseDragged methods. */

public void mouseMoved(MouseEvent e) {

 mouseX = e.getX();

 mouseY = e.getY();

}

public void mouseDragged(MouseEvent e) {

 mouseX = e.getX();

 mouseY = e.getY();

}

void mousePressed() {

 // Statements

}

public void mousePressed(MouseEvent e) {

 // Statements

}

if (key == 'a') {

 // Statements

}

public void keyPressed(KeyEvent e) {

 char key = e.getKeyChar();

 if (key == 'a') {

 // Statements

 }

}

void keyPressed() {

 // Statements

}

public void keyPressed(KeyEvent e) {

 // Statements

}

Processing Java

Reas_09_519-710.indd Sec6:690Reas_09_519-710.indd Sec6:690 5/23/07 1:08:33 PM5/23/07 1:08:33 PM

691 Appendix G: Code Comparison

ActionScript 2.0 Lingo

function square(x:Number):Number {

 return x*x;

}

square(x);

on square x

 return x*x

end

put square(x)

_xmouse

_ymouse

the mouseH

the mouseV

// Create a mouse listener object

var mouseListener:Object = new Object();

mouseListener.onMouseDown = function() {

 // Statements

};

Mouse.addListener(mouseListener);

on mouseDown

 -- Statements

end if

if ((chr(key.getAscii()) == 'a') {

 // Statements

}

on keyDown

 if the key = "a"

 -- Statements

 end if

end

var myListener:Object = new Object();

myListener.onKeyDown = function () {

 // Statements

}

Key.addListener(myListener);

on keyDown

 -- Statements

end

Reas_09_519-710.indd Sec6:691Reas_09_519-710.indd Sec6:691 5/23/07 1:08:34 PM5/23/07 1:08:34 PM

Reas_09_519-710.indd Sec6:692Reas_09_519-710.indd Sec6:692 5/24/07 10:49:16 AM5/24/07 10:49:16 AM

693

Related Media

This book is an introduction to working with software in the domain of the visual arts.
There are many related texts, websites, and software that explore these topics in greater
depth. This list includes some that we feel are particularly important.

Color
Albers, Joseph. The Interaction of Color. Yale University Press, 1975.

 Compelling book on color from the Bauhaus/Black Mountain/Yale artist-teacher.

Bourke, Paul. Personal website: Colour. http://astronomy.swin.edu.au/~pbourke/colour.

 Diagrams, code, and explanations of many different color models.

Itten, Johannes. The Elements of Color. Van Nostrand Reinhold, 1970.

Trujillo, Drew. In The Mod: Color Analytics. 21 March 2006. http://www.inthemod.com.

Walch, Margaret, and Augustine Hope. Living Colors: The Defi nitive Guide to Color Palettes through the Ages.

 Chronicle Books, 1995. Presents color palettes extracted from historical artworks and artifacts.

Computer graphics (See page 545 for additional 3D references)

Ammeraal, Leendert. Computer Graphics for Java Programmers. John Wiley & Sons, 1998.

Hearn, Donald, and M. Pauline Baker. Computer Graphics: C Version. Second edition. Prentice Hall, 1986.

Foley, James D., and Andries van Dam, et al. Computer Graphics: Principles and Practice in C.

 Second edition. Addison-Wesley, 1995

OpenGL Architecture Review Board. OpenGL Programming Guide. Fourth edition. Addison-Wesley, 2003.

 Original and defi nitive guide to OpenGL, but not for the beginning programmer. An earlier edition is available

 free online at http://www.opengl.org/documentation/red_book.

OpenGL Architecture Review Board. OpenGL Reference Manual. Fourth edition. Addison-Wesley, 2004.

 An earlier edition is available free online at http://www.opengl.org/documentation/blue_book.

Computer vision (See page 561)

Drawing
Cohen, Harold. AARON. 21 March 2006. http://crca.ucsd.edu/~hcohen.

 Links to Cohen’s essays written about AARON, 1973-1999.

Klee, Paul. Pedagogical Sketchbook. Translated by Sibyl Moholy-Nagy. Frederick A. Praeger, 1953.

 Whimsical journey through Klee’s ideas about drawing.

Simon, John F. Jr. Mobility Agents: A Computational Sketchbook. Printed Matter and Whitney Museum of

 American Art, 2005.

 CD of software applications exploring ideas about computational drawing.

Soda. MOOVL. 21 March 2006. www.moovl.com.

 Drawn shapes are connected by springs and are affected by their environment.

Sutherland, Ivan. “Sketchpad: A Man-Machine Graphical Communication System.” PhD dissertation,

 Massachusetts Institute of Technology, 1963.

 Original documentation for the pioneering Sketchpad system. Available online at

 www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-574.pdf. Ro
be

rt
 H

od
gi

n.
 V

id
eo

 Sp
ir

al
, 2

00
6.

 L
iv

e
ca

m
er

a
in

pu
t i

s m
ap

pe
d

on
to

 3D
 g

eo
m

et
ry

. I
m

ag
e

co
ur

te
sy

 o
f t

he
 a

rt
is

t.

Reas_09_519-710.indd Sec6:693Reas_09_519-710.indd Sec6:693 5/24/07 10:48:28 AM5/24/07 10:48:28 AM

694 Related Media

Electronics (See page 658)

Games
Crawford, Chris. The Art of Computer Game Design. McGraw Hill, 1983.

 Online at www.vancouver.wsu.edu/fac/peabody/game-book/Coverpage.html and

 www.mindsim.com/MindSim/Corporate/artCGD.pdf.

Frasca, Gonzalo. Ludology.org. http://www.ludology.org.

 Video game theory blog.

Gamasutra.com. The Art and Business of Making Games. http://www.gamasutra.com.

Salen, Katie, and Eric Zimmerman. Rules of Play: Game Design Fundamentals. MIT Press, 2004.

Salen, Katie, and Eric Zimmerman, eds. The Game Design Reader: A Rules of Play Anthology. MIT Press, 2005.

Sudnow, David. Pilgrim in the Microworld. Warner Books, 1983.

History of software as art
Burnham, Jack. Great Western Salt Works: Essays on the Meaning of Post-Formalist Art. George Braziller, 1974.

Davis, Douglas. Art and the Future: A History/Prophecy of the Collaboration between Science, Technology, and Art.

 Henry Holt & Company, 1975.

Digital Art Museum. 20 July 2006. http://www.dam.org.

 Online resource for the history and practice of digital art.

Franke, H. W. Computer Graphics Computer Art. Phaidon, 1971.

 Discusses methods for creating computer art and introduces the brief history preceding this early publication.

Glimcher, Marc. Logical Conclusions: 40 Years of Rule-Based Art. Pace Wildenstein, 2005.

Lippard, Lucy R. Six Years: The Dematerialization of the Art Object, 1966 to 1972. University of California Press, 1973.

Paul, Christiane. Digital Art. Thames & Hudson, 2003.

 Well-structured overview of the fi eld.

Medien Kunst Netz. 10 July 2006. http://www.medienkunstnetz.de.

 Online repository of historic and contemporary media art concepts and works.

Reichardt, Jasia. The Computer in Art. Studio Vista, 1971.

 Small book (98 pages) introducing the relation between software and image.

Reichardt, Jasia. Cybernetics, Art, and Ideas. New York Graphic Society, 1971.

UbuWeb. 20 July 2006. http://www.ubu.com.

 Online “resource dedicated to all strains of the avant-garde, ethnopoetics, and outsider arts.”

Whitney, John. Digital Harmony: On the Complementary of Music and Visual Art. Byte Books (McGraw-Hill), 1980.

Wilson, Mark. Drawing with Computers. Putnam, 1985.

 Surveys the technology of the era and presents many examples for drawing to plotters and screen.

Youngblood, Gene. Expanded Cinema. Dutton, 1970.

 Documents the state of experimental fi lm and animation circa 1970. Part 4 introduces “Cybernetic Cinema

 and Computer Films.”

Image
Efford, Nick. Digital Image Processing: A Practical Introduction Using Java. Addison-Wesley, 2000.

 Excellent introduction to the concepts, math, and code of image processing.

Myler, Harley R. The Pocket Handbook of Image Processing Algorithms. Prentice Hall, 1993.

 Small black book of essential image processing algorithms.

Reas_09_519-710.indd Sec6:694Reas_09_519-710.indd Sec6:694 5/23/07 1:08:36 PM5/23/07 1:08:36 PM

695 Related Media

Sontag, Susan. On Photography. Anchor Books, 1977.

 Thoughtful and provocative essays about photographic images and their role in culture.

Information visualization
Bertin, Jacques. Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press, 1983.

 English translation and later edition of French text fi rst published in 1967. A seminal work in the fi eld.

Card, Stuart K., et al., eds. Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, 1999.

 Compiled technical papers on information visualization.

Fry, Benjamin. “Organic Information Design.” Master’s thesis, Massachusetts Institute of Technology,

 Program in Media Arts & Sciences, 2000.

Fry, Benjamin. Computational Information Design. PhD dissertation, Massachusetts Institute of Technology,

 Program in Media Arts & Sciences, 2004.

Tufte, Edward. Envisioning Information. Graphics Press, 1990.

Tufte, Edward. The Visual Display of Quantitative Information. Graphics Press, 1983.

Input
Apple Computer Inc. Macintosh Human Interface Guidelines. Addison-Wesley, 1992.

 Introduces the design considerations and elements of designing human-computer interfaces.

 Related content online at http://developer.apple.com/referencelibrary/UserExperience.

Engelbart, Douglas, and Bill Paxton. NLS Demo. Joint Computer Conference, San Francisco Convention Center,

 9 December 1968.

 Video documentation of the seminal demonstration introducing the mouse input device. Online at

 http://sloan.stanford.edu/MouseSite/1968Demo.html.

Maeda, John. Reactive Books. Digitalogue, 1994–1999. Online at www.maedastudio.com/2004/rbooks2k.

 Software exploring sound, mouse, clock, keyboard, and video input channels.

Stephenson, Neal. In the Beginning Was the Command Line. Harper Perennial, 1999.

 Online at http://www.cryptonomicon.com/beginning.html.

Math
Bourke, Paul. Personal website: Curves. http://astronomy.swin.edu.au/~pbourke/curves.

 Online repository of curve equations including images and explanation.

Famous Curves Index. www-history.mcs.st-and.ac.uk/Curves/Curves.html.

 Collection of equations and corresponding software to control the shape of curves.

Lial, Margaret L., E. John Hornsby, Jr., and David I. Schneider. College Algebra. Seventh edition.

 Addison-Wesley, 1997.

Tan, Manny, et al. Flash Math Creativity. Friends of Ed, 2002.

 Collection of math techniques for producing images and motion.

Van Lerth, James, and Lars Bishop. Essential Mathematics for Games and Interactive Applications.

 Morgan Kaufmann, 2004.

Weisstein, Eric. MathWorld. http://mathworld.wolfram.com.

 Extensive online math resource. Includes images, equations, and applets.

Mobile computing (See page 631)

Reas_09_519-710.indd Sec6:695Reas_09_519-710.indd Sec6:695 5/23/07 1:08:36 PM5/23/07 1:08:36 PM

696 Related Media

Motion
Peters, Keith. ActionScript Animation: Making Things Move! Friends of Ed, 2005.

 Full of great algorithms for programming motion.

Muybridge, Eadweard. Animals in Motion. Dover, 1957.

 Sequential photographs revealing details of motion.

Laybourne, Kit. The Animation Book: A Complete Guide to Animated Filmmaking; From Flip-Books to Sound

Cartoons to 3-D Animation. Revised edition. Three Rivers Press, 1998.

 General introduction to techniques of animation across many media.

Lieberman, Zachary. Making Things Move. Workshop at Medialab Madrid. 20–22 June 2005.

 www.thesystemis.com/makingThingsMove.

 Code examples from a motion programming workshop.

Russett, Robert, and Cecile Starr. Experimental Animation: Origins of a New Art. Da Capo Press, 1976.

 Excellent text and visual documentation of pioneers of experimental animation.

Thomas, Frank, and Ollie Johnston. Disney Animation, The Illusion of Life. Abbeville Press, 1981.

 In-depth introduction to principles of character animation.

Network (See page 576)

Processing.org
Processing.org. http://www.processing.org.

 Offi cial Processing website including an exhibition, reference, examples, and software downloads.

Processing Hacks. http://www.processinghacks.com.

 Documenting advanced Processing tricks and hacks. Led by Tom Carden and Karsten Schmidt (a k a toxi).

Processing Blogs. www.processingblogs.org.

 Blog aggregator site curated by Tom Carden.

Processing.org del.icio.us tag. http://del.icio.us/tag/Processing.org.

Shape
Dondis, Donis A. A Primer of Visual Literacy. MIT Press, 1973.

 Comprehensive introduction to basic elements and techniques of visual messages.

Hofmann, Armin. Graphic Design Manual: Principles and Practice. Van Nostrand Reinhhold, 1965.

 Elegant book from a master teacher-designer.

Itten, Johannes. Design and Form: The Basic Course at the Bauhaus and Later. Revised edition.

 John Wiley & Sons, 1975.

Moholy-Nagy, Laszlo. Vision in Motion. Paul Theobald, 1947.

Simulation
Boden, Margaret A., ed. The Philosophy of Artifi cial Life. Oxford University Press, 1996.

 Excellent collection of noteworthy essays.

Braitenberg, Valentino. Vehicles: Experiments in Synthetic Psychology. MIT Press, 1984.

 Playful text about imaginary vehicles and their relation to biology.

Flake, Gary William. The Computational Beauty of Nature. MIT Press, 1998.

Gardner, Martin. “Mathematical Games: The Fantastic Combinations of John Conway’s New Solitaire Game ‘Life.’”

 Scientifi c American 223 (October 1970): 120–123.

Reas_09_519-710.indd Sec6:696Reas_09_519-710.indd Sec6:696 5/23/07 1:08:37 PM5/23/07 1:08:37 PM

697 Related Media

Levy, Steven. Artifi cial Life: The Quest for a New Creation. Pantheon Books, 1992.

 Friendly introduction to AL, with vivid profi les of its founders.

Kelly, Kevin. Out of Control: The New Biology of Machines, Social Systems, and the Economic World.

 Addison-Wesley, 1994.

Resnick, Mitchel. Turtles, Termites, and Traffi c Jams: Explorations in Massively Parallel Microworlds.

 MIT Press, 1997.

 Documents ideas behind the StarLogo language for teaching children about decentralized systems.

Whitelaw, Mitchell. Metacreation: Art and Artifi cial Life. MIT Press, 2004.

Sims, Karl. “Evolving Virtual Creatures.” Computer Graphics. Proceedings of Siggraph ‘94, July 1994, pp. 15–22.

 Brief technical explanation of an important AL work.

Wolfram, Steven. A New Kind of Science. Wolfram Media, 2002.

Software data, control, structure
Downey, Allen B. How to Think Like a Computer Scientist. http://ibiblio.org/obp/thinkCS/java.php.

Taylor, David A. Object Technology: A Manager’s Guide. Second edition. Addison-Wesley, 1998.

 Introduces object-oriented programming as a concept and defi nes its attributes and advantages.

Flanagan, David. Java in a Nutshell. Fifth edition. O’Reilly Media, 2005.

Flanagan, David. JavaScript: The Defi nitive Guide. Fourth edition. O’Reilly Media, 2001.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable

 Object-Oriented Software. Addison-Wesley Professional, 1995.

Oualline, Steve. Practical C++ Programming. Second edition. O’Reilly Media, 2003.

Kernighan, Brian, and Rob Pike. The Practice of Programming. Addison-Wesley, 1999.

 Includes techniques and advice for writing better software.

Maeda, John. Design By Numbers. MIT Press, 2001.

 A fresh, clear introduction to core concepts of computer graphics and software.

Kernighan, Brian, and Dennis Ritchie. C Programming Language. Second edition. Prentice Hall, 1998.

 Dense, canonical introduction to the C language.

Prata, Stephen. C Primer Plus. Fifth edition. Sams, 2004.

 Practical, well-written introduction to the C language.

Sun Microsystems. The Java Tutorial: Learning the Java Language. http://java.sun.com/docs/books/tutorial/java.

Sound (See page 599)

Software culture & theory
Fuller, Matthew. Behind the Blip. Autonomedia, 2003.

Galloway, Alexander R. Protocol: How Control Exists after Decentralization. MIT Press, 2004.

Gere, Charlie. Digital Culture. Reaktion Books, 2002.

McCullough, Malcolm. Abstracting Craft: The Practiced Digital Hand. MIT Press, 1997.

 Thoughtful refl ection on the nature of craft and production utilizing software.

Maeda, John. Maeda@Media. Thames & Hudson, 2000.

Maeda, John. Creative Code: Aesthetics + Computation. Thames & Hudson, 2004.

 Visual introduction to the work of the MIT Media Lab’s Aesthetics and Computation Group.

Manovich, Lev. The Language of New Media. MIT Press, 2001.

Ludovico, Alessandro. Neural magazine and website. www.neural.it/english.

Reas_09_519-710.indd Sec6:697Reas_09_519-710.indd Sec6:697 5/23/07 1:08:37 PM5/23/07 1:08:37 PM

698 Related Media

 Magazine and website featuring reviews and articles on the topics of new media art, electronic music,

 and hacktivism.

Packer, Randall, and Ken Jordan, eds. Multimedia from Wagner to Virtual Reality. W.W. Norton, 2001.

Ploug, Kristine, and Thomas Petersen, eds. Artifi cial.dk. http://www.artifi cial.dk.

 Online interviews, articles, and reviews of software art, net art, and other forms of computer arts.

Alexander, Amy, Olga Goriunove, Alex McLean, and Alexei Shulgin. Runme.org. http://www.runme.org.

 Eclectic online software art repository.

Søndegaard, Morton. Get Real: Art + Real-time: History, Practice, Theory. George Braziller, 2005.

Wardrip-Fruin, Noah, and Nick Montfort. The New Media Reader. MIT Press, 2003.

 Extensive introduction to the origins and current practices of new media through essays, software, and video.

Watz, Marius, ed. Generator.x: Software and Generative Strategies in Art and Design. http://www.generatorx.no.

 Conference, exhibition, and Web log dedicated to exploring and documenting generative strategies.

Typography
Blockland, Erik van, and Just van Rossum. LettError. Drukkerij Rosbeek, 2000.

Bringhurst, Robert. The Elements of Typographic Style. Version 3.0. Hartley & Marks, 2004.

 Impressive compendium of typographic history, convensions, and technologies.

Kunz, Willi. Typography: Macro- and Micro Aesthetics. Niggli, 1998.

Lupton, Ellen. Thinking with Type: A Critical Guide for Designers, Writers, Editors, & Students.

 Princeton Architectural Press, 2004.

 Compact, clear introduction to typography for designers, writers, editors, and students.

 Information online at www.thinkingwithtype.com.

Ruder, Emil. Typography. Niggli, 1967.

 Thorough introduction to the formal space of typographic exploration.

Small, David. “Navigating Large Bodies of Text.” IBM Systems Journal 35, no. 3–4 (1996).

 Documents Small’s infl uential Shakespeare project and other projects of the MIT Media Lab VLW.

 Available online at www.research.ibm.com/journal/sj/353/sectiond/small.pdf.

Weingart, Wolfgang. My Way to Typography. Lars Müller Publishers, 2000.

 Generously produced publication exposing the thoughts of a master of typography and form.

Reas_09_519-710.indd Sec6:698Reas_09_519-710.indd Sec6:698 5/23/07 1:08:37 PM5/23/07 1:08:37 PM

699

Glossary

This list defi nes programming
terminology and redefi nes common
words that are used differently within
the context of software.

abstraction Refers to hiding details of a process to
focus on the result. For example, the line()
function abstracts the many lines of code necessary
to draw a line to the screen, so the programmer can
focus on the line’s position.

additive color Color system for working with light.
The additive primary colors red, green, and blue are
combined to produce millions of variations. The
absence of light is black, and adding the primaries
together creates white.

AIFF (Audio Interchange File Format) Audio fi le
format developed by Apple. Stores uncompressed
data in pulse-code modulation (PCM) format.

algorithm A series of instructions that perform a
mathematical task. Usually used to refer to a
complicated bit of code that solves a problem like
sorting a list or searching for text.

alpha The opacity component of a color value.
By default, the value 255 makes a color entirely
opaque and 0 sets a color as entirely transparent.

antialiasing Minimizing the aliasing (jagged
edges) within a low-resolution display to simulate
a higher-resolution image.

API (application programming interface)
A set of functions that comprise the way to use a
programming system. The Processing API consists of
commands like line() and point(), and is
referred to as the Processing Language.

applet Java program that can run within a
compatible Web browser. Processing programs
can be exported as applets.

array A list of data elements referenced with one
name. Each element is accessed according to its
order within the list.

ASCII (American Standard Code for Information
Interchange) Code for associating the letters,
numbers, and punctuation in the English language
with numeric values. For example, K is 75 and Y is
89.

bit The most basic information unit in computing.
Often represented as a 0 or 1.

block A group of code defi ned by matching braces,
the { and } characters. Blocks are used to group code
into classes, functions, if structures, and for
structures.

bug An error within a program that causes a
program to not run or to behave differently than
intended by the programmer.

byte A byte is a group of 8 bits.

class A template defi ning a related group of fi elds
and methods. Classes are the building blocks of
object-oriented programming. An object is an
instance of a class.

color depth Number of bits used to defi ne a color.
An 8-bit number can be values between 0 and
255 (28). A 4-bit number can be values between
0 and 15 (24).

compile To translate source code into executable
software. When a Processing program is run, it is
translated from code notation into a notation that
can be run by a computer. This is called compilation.

data type The category of data that can be stored
within a variable. For example, individual letters
can be stored in variable of the char data type and
whole numbers can be stored in variables of the int
data type.

debug To remove errors from a program.

delimit To separate elements of data within a fi le.
For example, a tab-delimited fi le separates data with
the tab character.

dot operator The period character (.). Fields
and methods of a class are accessed with the
dot operator.

Reas_09_519-710.indd Sec6:699Reas_09_519-710.indd Sec6:699 5/23/07 1:08:38 PM5/23/07 1:08:38 PM

700 Glossary

dpi (dots per inch) A measurement of printing
resolution. A higher DPI printer can produce clearer
images of higher resolution.

encapsulation Technique of hiding the data and the
functions that operate on the data within a class. A
class can be thought of as a black box, where the
implementation within the class is less of a focus
than how the class is used. The internal code of
a class can be changed, while the way it interacts
with other elements of the program can remain
unchanged. Related to abstraction.

escape sequence A means of specifying unprintable
characters (such as Tab or Enter) or quotes inside a
String constant (which is defi ned using quote
characters). Inside text, the combination of the
\ (backslash) character with another character. The
backslash begins the escape sequence and the
second character defi nes the meaning. For example,
the sequence \t is a tab.

event An action such as a key being pressed, the
mouse moving, or a new piece of data becoming
available to be read. An event interrupts the
normal fl ow of a program to run the code within
an event block.

expression A combination of operators, variables,
and literals. An expression always has a value,
determined by its elements. For example, the
expression 6/2 evaluates to 3 and the expression
5>4 evaluates to true. An expression can be as
simple as a single number or can contain a long
sequence of elements.

fi eld A variable defi ned within a class.

fi le A collection of data referenced as a unit.

fi le format A specifi c way to store data within a
computer fi le. There are different formats for storing
images, sound, text, etc.

function A modular program unit within a large
program. Functions have parameters to defi ne their
actions and can return values. In other
programming languages functions may be called
subroutines or procedures. A method is a function
that belongs to a class.

function prototype Defi nes the parameters (inputs)
for a function and their data types.

GIF (Graphics Interchange Format) Image fi le
format commonly used for displaying graphics on
the Web. The format supports compression, multiple
color depths, and 1-bit transparency.

GUI (graphical user interface) Computer interface in
which users control the machine by manipulating
visual icons.

hex Abbreviation for hexadecimal.

hexadecimal Base-16 number system utilizing the
symbols 0–9 and A–F. In Processing, a hexadecimal
value is prefaced with a # or 0x. Hexadecimal
notation is often used to defi ne color values. For
example, the RGB color value (0, 102, 153) is
converted to hexadecimal notation as #006699.

HSB (hue, saturation, brightness) Color model that
defi nes a value through the quantities of hue (color),
saturation (intensity), and brightness (light or dark).
A more intuitive model than RGB.

IDE (integrated development environment) Software
that assists people in the activity of programming.
An IDE usually has a text editor, a compiler and/or
interpreter, and a debugger. The Processing IDE is
called the Processing Development Environment
(PDE) or the Processing Environment.

inheritance A property of the relationship between
classes and their sub- and superclasses. A class
automatically contains the fi elds and methods
defi ned in its superclass. If a class is a subclass of
another, it inherits these components of that class.

instance An object of a particular class. For
example, in code 43-03 (p. 400), the sp object is an
instance of the Spot class. An instance is created
with the new keyword.

instance variable A variable created when an object
is instantiated from a class. Each object has its own
instance of each variable defi ned in the class
template.

JAR (Java ARchive) File format for grouping Java
classes into a single unit. These fi les can be opened
with any program that can open a ZIP fi le.
Processing sketches are exported as JAR fi les.

JPEG (Joint Photographic Experts Group)
Image format that compresses photographic images
well. Common format for display on the World Wide
Web. These fi les use the .jpg extension.

Reas_09_519-710.indd Sec6:700Reas_09_519-710.indd Sec6:700 5/23/07 1:08:38 PM5/23/07 1:08:38 PM

701 Glossary

keyword A word used by a programming language.
This word cannot be used for names of variables
or functions.

memory A computer component that stores data.
RAM (random access memory) is fast, but data is
only stored there temporarily while a computer is
on. Memory is stored more permanently on hard
disk drives (HDD) that save data on magnetic disks.
Small devices such as mobile phones, digital audio
players, and USB drives use Flash memory, a
technology that electronically erases and
reprograms data.

method A function defi ned within a class.

new Used to create a new instance of an object. For
example: sp = new Spot()
(p. 400)

null Specifi es an undefi ned value. An object
variable that has not been assigned contains
null. Null can also be assigned to a variable to
set it empty.

object An instance of a class. All objects created
from one class have the same fi eld names and
methods, but the variables of each can contain
different data.

operand Data that is operated on by an operator.
The operands in the expression 4 + 5 are the
numbers 4 and 5.

operator A symbol that performs an operation. The
*, =, +, %, >, and ! Symbols are all operators.
Processing has arithmetic, relational, logical, and
bitwise operators.

packet A block of formatted information transferred
over a computer network. A packet has a header,
data, and a trailer. Large pieces of data are broken
down into multiple packets, each sent over the
network separately and reassembled when they
arrive at their destination.

parameter Data input to a function that affects the
output. For example, the point() function can have
two or three parameters to set the x, y, and z
coordinates. The prototype for a function shows
the number and data types of the parameters for
a function.

PDE (Processing Development Environment)
The Processing application, including the text editor,
menu, toolbar, message area, and tabs. Also the
name of the Processing fi le format (.pde).

pixel One color element (picture element) on
a computer monitor or of a digital image.

PNG (Portable Network Graphics) Highly fl exible
image fi le format capable of variable levels of
transparency. Developed as a successor to GIF.

PPI (pixels per inch) The pixel density of a computer
screen.

radian Angle measurement in relation to π.
The measurement of π is equivalent to 180 degrees,
and 2π is equivalent to 360 degrees. The π symbol is
represented within Processing as the constant PI.

relational expression An expression comprised of a
relational operator and values to its left and right. A
relational expression always evaluates to true or
false. For example, the expression 4 < 5 evaluates to
true and 4 > 5 evaluates to false.

relational operator An operator such as > (greater
than), < (less than), and != (not equal to) that
determines the relation between the values to the
left and right of the symbol.

return Used within a function to note the value that
is returned as its result. The return statement is
typically the last line of code in a function.

RGB (red, green, blue) Color model that defi nes a
spectrum of colors in terms of their red, green, and
blue components. RGB is the default color system
used in Processing. It is considered less intuitive
than HSB color because it’s based on technical,
rather than perceptual, attributes.

scope The region of a program where a variable can
be accessed. A variable can be accessed within the
block where it is defi ned and in all blocks defi ned
within its block.

sketch Refers to a program written with Processing.
Because Processing programs are intended to be
written quickly and casually, they are often referred
to as software sketches.

Reas_09_519-710.indd Sec6:701Reas_09_519-710.indd Sec6:701 5/23/07 1:08:38 PM5/23/07 1:08:38 PM

702 Glossary

stack A data structure that stores elements in order
so that they can be added and removed only from
the top. Data is pushed (saved to the stack) and
popped (removed from the top of the stack). The
Processing functions pushMatrix() and
popMatrix() perform this operation on the stack
that controls the position, scaling, and rotation of
the coordinate system.

statement A complete instruction to the computer.
Statements are the primary building blocks of a
program. A statement can defi ne a variable, assign
a variable, run a function, or construct an object.
A statement always has a semicolon at the end.

statement terminator The semicolon symbol.
Marks the end of a statement.

subclass A class derived from another (its
superclass). A subclass inherits the template of
its superclass.

super A keyword used within a subclass to refer
to its superclass.

superclass A class that another is derived from.

TARGA Image fi le format that can store images
without compression and with varying levels of
transparency. These fi les use the .tga extension.

this A reference to the current object; also used
within an object to refer to itself. For example, if a
variable x is referred to within its own object, the
code this.x can be used.

TIFF (Tagged Image File Format) Image fi le format
used to store high-quality images without
compression. These fi les use the .tif extension.

variable A data element that is referenced with
a name. Every variable has a value, data type,
and scope.

vertex A point that terminates, lies at the
intersection of, or defi nes the shape of a line
or curve.

VLW The Processing font format. The VLW (Visual
Language Workshop) was a research group at the
MIT Media Laboratory from 1985 to 1996. The
researchers created the font format to display
anti-aliased typography in 3D. Because of its
usefulness in interactive graphics, it was made
part of Processing, and named VLW in reference
to its origin.

void Used in a function declaration to state that
the function does not return a value (does not
output data).

WAV Audio fi le format developed by Microsoft and
IBM. Stores uncompressed data in pulse-code
modulation (PCM) format.

XML (eXtensible Markup Language) Data
formatting standard that is easy to read and
customize.

Reas_09_519-710.indd Sec6:702Reas_09_519-710.indd Sec6:702 5/23/07 1:08:39 PM5/23/07 1:08:39 PM

703

Code Index

This index contains all of
the Processing language
elements introduced
within this book. The
page numbers refer to
the fi rst use.

! (logical NOT), 57
!= (inequality), 52
% (modulo), 45
&& (logical AND), 57
() (parentheses)
 for functions, 18
 for precedence, 47
* (multiply), 44
*= (multiply assign), 49
+ (addition), 43
++ (increment), 48
+= (add assign), 48
, (comma), 18
- (minus), 44
-- (decrement), 48
-= (subtract assign), 48
. (dot), 107
/ (divide), 44
/= (divide assign), 49
/* */ (comment), 18
// (comment), 17
; (semicolon), 19
< (less than), 51
<= (less than or
 equal to), 52
= (assign), 38
== (equality), 52
 for String objects, 109
> (greater than), 51
>= (greater than
 or equal to), 52
[] (array access), 301
 2D arrays, 312
 arrays of objects, 406
{} (braces), 53
 and variable scope, 178
|| (logical OR), 57
(hex color), 93

abs(), 241
alpha(), 338
ambient(), 533
ambientLight(), 533
append(), 309
arc(), 124
arraycopy, 310
Array, 301
 length, 304
atan2(), 243

background(), 31
beginRaw(), 531
beginRecord(), 607
beginShape(), 69
bezier(), 30
bezierVertex(), 75
blend(), 351
blendColor(), 352
blue(), 337
boolean, 38
boolean(), 106
brightness(), 338
byte, 38
byte(), 106

camera(), 531
Capture, 556
ceil(), 49
char, 38, 102
char(), 106
class, 395
Client, 567
color, 38, 89
color(), 89
colorMode(), 91
constrain(), 237
copy(), 353
cos(), 118
createGraphics(), 614
createImage(), 362
createWriter(), 423
cursor(), 213
curveVertex(), 74

day(), 249
degrees(), 117
directionalLight(), 536
dist(), 238
draw(), 173

ellipse(), 30
ellipseMode(), 34
else, 55
else if, 56
endRaw(), 531
endRecord(), 607
endShape(), 69
exit(), 422
expand(), 309
extends, 456

false, 38
fill(), 32
filter(), 347
float, 37
float(), 106
floor(), 49
for, 61
frameCount, 173
frameRate(), 173

get(), 321
green(), 337

HALF_PI, 117
height, 40
hour(), 245
HSB, 89
hue(), 338

if, 53
image(), 96
int, 37
int(), 107
key, 225
keyCode, 227
keyPressed, 224
keyPressed(), 232
keyReleased(), 232

lerp(), 81
lightSpecular(), 536
line(), 27
loadFont(), 112
loadImage(), 96
loadPixels(), 356
loadStrings(), 428
loop(), 235

Reas_09_519-710.indd Sec6:703Reas_09_519-710.indd Sec6:703 5/23/07 1:08:40 PM5/23/07 1:08:40 PM

704 Code Index

map(), 81
mask(), 354
max(), 50
millis(), 248
min(), 50
minute(), 245
month(), 249
mouseButton, 212
mouseDragged(), 229
mouseMoved(), 229
mousePressed, 212
mousePressed(), 229
mouseReleased(), 229
mouseX, 205
mouseY, 205

new
 for arrays, 303
 for objects, 399
nf(), 422
noCursor(), 213
noFill(), 33
noise(), 130
noiseSeed(), 131
noLoop(), 178
norm(), 80
noSmooth(), 33
noStroke(), 33
noTint(), 97

Object, 107, 395

PFont, 112
PI, 117
PImage, 96
pixels[], 356
pmouseX, 208
pmouseY, 208
point(), 25
pointLight(), 536
popMatrix(), 134
pow(), 80
print(), 20
println(), 20
PrintWriter, 423
 close(), 423
 flush(), 423
 println(), 424
pushMatrix(), 134

quad(), 29
QUARTER_PI, 117

radians(), 117
random(), 127
randomSeed(), 129
rect(), 29
rectMode(), 34
red(), 337
redraw(), 235
return, 194
RGB, 89
rotate(), 137
round(), 50

saturation(), 338
save(), 368
saveFrame(), 369
saveStrings(), 422
scale(), 138
second(), 245
Server, 567
set(), 324
setup(), 177
shorten(), 309
sin(), 118
size(), 24
 with P3D, 528
 with OPENGL, 528
 with PDF, 607
smooth(), 33
specular(), 536
split(), 429
splitTokens(), 430
spotLight(), 536
sq(), 79
sqrt(), 79
str(), 107
String, 103
 length(), 108
 endsWith(), 108
 equals(), 109
 startsWith(), 108
 substring(), 109
 toCharArray(), 108
 toLowerCase(), 109
 toUpperCase(), 109
stroke(), 32
strokeCap(), 33
strokeJoin(), 33
strokeWeight(), 33
super, 456

text(), 112
textAlign(), 115
textFont(), 112
textLeading(), 115
textSize(), 114
texture(), 536
textWidth(), 116
tint(), 97
translate(), 133
triangle(), 27
true, 38
TWO_PI, 117

updatePixels(), 356

vertex(), 69
void, 187

width, 40

year(), 249

Reas_09_519-710.indd Sec6:704Reas_09_519-710.indd Sec6:704 5/23/07 1:08:40 PM5/23/07 1:08:40 PM

705

Index

This index contains mostly
people, software, artwork,
and programming
languages. For topics,
see the table of contents
(pp. vii–xvii); for code, see
the Code Index.

1:1 (Jevbratt), 566
3M Corporation, 553
3 Stoppages Étalon (Duchamp), 127
7–11 Email list, 563

AARON, 218
Aesthetics and Computation
 Group (ACG), xxiii, 682
Achituv, Romy, 549
ActionScript, 158, 166, 522–523, 565,
 680–681, 686–687, 689, 691
Adair, Sandra, 384
Adobe, 4, 169, 683
Adobe After Effects, 166, 327,
 379, 387
Adobe Flash, 157–158, 165–166,
 267–268, 275, 278, 327, 436,
 564–565, 624, 629, 642,
 680–681, 683, 686, 701
Adobe Flash Lite, 624, 681
Adobe Garamond (font), 112
Adobe Illustrator, xxiii, 30, 77, 166,
 143, 217, 271, 273, 607–608, 683
Adobe Photoshop, xxiii, 95, 166,
 268, 276, 347, 355, 360, 384,
 387–388, 391–392, 607–608,
 611, 683
Adobe Premiere, 391–392
Adobe Streamline, 166
AAC (Advanced Audio Coding),
 585
AIFF (Audio Interchange File
 Format), 585–586, 699
Aldus PageMaker, 605
Alexander, Ryan, 380
Alias Maya, 379, 387–388, 537, 680
AltSys, 170
Andrade, Laura Hernandez, 4
Apple IIe, xxiii
Apple Audio Units (AU), 591

Apple Computer, 3, 111, 537,
 585, 699
Apple Logic Audio, 503, 591
Apple Mac G3, 383
Apple Mac G4, 383
Apple Macintosh (Mac), 9–11, 95,
 111–112, 169, 205, 227, 367, 383,
 521, 568–569, 574, 604, 639, 665,
 682, 685
Apple Mac Mini, 639
Apple Mac OS, 264, 435, 665–666,
 681
Apple Mac OS X, 16, 170, 435, 645,
 649, 684
Apple QuickTime, 367, 383–384,
 387–388
AppleScript, 681
Arduino, 521, 633, 640, 641, 645–646,
 648–649, 681, 685
Arp, Jean, 127
Ars Electronica Festival, 618
ART+COM, 498
ASCII (American Standard Code for
Information Interchange), 102–103,
 226–227, 549, 565, 664–668, 670,
 691, 699
Athena, 387
ATI, 537
AT&T/Bell , 564
Audacity, 591
AutoCAD, 217, 529, 537
Autodesk 3ds Max, 268, 276,
 391–392, 537
AutoDesk Revit, 537
AutoLISP, 522, 681
Autonomedia, 564
Avid/Digidesign Pro Tools, 591
AVR (Atmel), 640
awk, 517, 684

Babbitt, Milton, 580–581
Bach, J. S., 581
Bailey, Chris, 581
Balkin, Amy, 267
Baran, Paul, 564
Barr, Alfred, 291
Barragán, Hernando, 633
BASIC, xxiii, xxiv, 152, 264, 522,
 604–605, 640, 642, 681
BASIC Stamp 2 (Parallax), 640
BasicX–24 (NetMedia), 642

Bass, Saul, 327
Baumgärtel, Tilman, 564
Bauhaus, 149
BBC Acorn Archimedes, 264
Beach Culture, 605
Beethoven, Ludwig van, 581
BEFLIX, 315, 681
Bell Laboratories, 315, 580–581, 604
Bentley Systems
 GenerativeComponents, 537
Berliner, Emile, 579
Berlow, David, 170
Bernard (a k a Flip 1), 508
BIAS Peak, 591
BigEye, 554
Binary Runtime Environment for
 Wireless (BREW), 625
Binary space partition (BSP), 527
Binder, Maurice, 327
bitforms gallery, 164, 166–167, 525,
 547, 603, 633
Bittorent, 571
Blackwell, Lewis, 605
Blender, 276, 576
Blinkenlights (Chaos Computer
 Club), 618
Blonk, Jaap, 511
Bluetooth, 619, 621–622, 624, 641,
 645, 683
Blyth, Steven, 512
Boids (Reynolds), 295, 473,
 475, 497
Boole, George, 38, 61, 669
Boolean algebra, 38
Boulez, Pierre, 581
Braitenberg, Valentino, 473–474
Brakhage, Stan, 413
Brecht, Bertolt, 564
Brooklyn Academy of Music
 (BAM), 515–516
Brown, Robert, 295
Brownian motion, 295
Brunelleschi, Filippo, 525
Bunting, Heath, 563–564
Bureau of Inverse Technology,
 548, 634
Burke, Phil, 592
Burton, Ed, 263–264, 413, 499
Byrne, David, 581

Reas_09_519-710.indd Sec6:705Reas_09_519-710.indd Sec6:705 5/23/07 1:08:40 PM5/23/07 1:08:40 PM

706 Index

C, 7, 264, 515–517, 522–523, 592, 640,
 642, 682–685, 693, 697
C++, 264, 271, 383, 507–508, 511–512,
 515–516, 522–523, 555, 592, 599,
 640, 679, 681–682
CAD (computer–aided drawing
 software), 217, 526, 537–538
Cage, John, 127, 579
CalArts School of Art, 564
California Institute of Technology
 (Caltech), 388, 549
Cameron, Dan, 387
Campbell, Jim, 549
Carmack, John ,525
Carnegie Mellon University, xxi
Carnivore, 566, 568–569
Carson, David, 605
Cascading Style Sheets (CSS), 93
CCRMA Synthesis ToolKit (STK),
 592
Chang, Zai, 6
Cheese (Möller), 549
Cho, Peter, 257, 327
CIA World Fact Book, 267
Citron, Jack, 315
CityPoems, 617, 624
ChucK, 592, 682
Cloaca (Delvoye), 461
Clash of the Titans, 387
Close, Chuck, 606
CODE (Petzold), 648
Cohen, Harold, 218
Columbia–Princeton Electronic
 Music Center, 580
Commodore C–64, 272
Commodore VC–20, 272
Common Lisp, 592
Complexification.net, 6, 157
Computational Beauty of Nature,
 The (Flake), 469
Computers and Automation, 603
Computer Clubhouse, 680
Computer Lib / Dream Machines
 (Nelson), 3
Computer Vision Homepage
 (Huber), 552
Coniglio, Mark, 512
“Constituents for a Theory of the
 Media” (Enzensberger), 564
Conway, John, 461, 463, 467–468,
 475
Cook, Perry, 592
Cooper, Muriel , 327
Cope, David, 581
CorelDRAW, 608

Cosic, Vic 563–564
Costabile, Sue (SUE.C), 503–504
Craighead, Alison, 618
Crawford, David, 316
Crystal Castle, 525
Csikszentmihályi, Chris, 507–508,
 634
CSIRAC, 580
Csuri, Charles, 217
Cuba, Larry, 1, 315
Cullen, Mathew, 379–380
CV.Jit, 554
Cybernetic Serendipity, 101, 603
Cycling ’74, 554, 592
Cyclops, 554

Dada, 149–150
Davies, Char, 526
Davis, Joshua, 564–565
Deck, Barry, 112
Deleuze and Guattari, 564
Delvoye, Wim, 461
De Mol, Gerry, 275
Design By Numbers (DBN), xxiv,
 552–523, 682
Designers Republic, The, 605
Dextro, 316
Dialtones (Levin et al.), 617–618
Digidesign, 587, 591
Dine, Jim, 606
DJ I, Robot Sound System, 506–509
Dodgeball, 617, 624
Domain Name System (DNS), 566
DrawBot, 169, 682, 684
Drawing with Computers (Wilson),
 152, 217, 604
Drawn (Lieberman), 413
DuBois, R. Luke, 579
Duchamp, Marcel, 127, 633
Dunne, Tony, 634
Dürer, Albrecht 525, 612
DXF, 520, 529–531
Dynabook, 3

Eagle, 272
écal (école cantonale d’art de
Lausanne), 271
Eclipse, 571, 625
ECMAScript, 681, 683
Edelweiss Series (Maywa Denki),
 634
Edgerton, Harold, 295
Edison, Thomas, 579
Eighth Istanbul Biennial, 387
Eimart, Herbert, 580

Electronic Arts, 585
ELIZA, 101
Emacs, 516
Emigre, 605
End of Print, The (Blackwell), 605
Endless Forest, The (Tale of Tales),
 274–277
Engelbart, Douglas, 205
Eno, Brian, 581
Enron, 268
Enzensberger, Hans Magnus, 564
EPS, 606
Euler’s method, 7, 494
Every Icon (Simon), 565
Evolved Virtual Creatures (Sims),
 295
Experiments in Art and
 Technology (E.A.T.), 633
Extend Script, 683
Eye magazine, 605
Eye Catching (Steinkamp),
 386–389
EyesWeb, 554–555
EZIO (NIQ), 642

Feingold, Ken, 633
Ferro, Pablo, 327
Final Cut Pro (FCP), 383, 503
Final Scratch, 507
Fischinger, Oskar, 413
Fisher, Robert, 552
Flake, Gary William, 469
Flight404.com, 6
Flight Simulator, 525
Foldes, Peter, 315
FontLab, 170
Fontographer, 170
Fortran, 522
Fractal.Invaders (Tarbell), 156–159
Franceschini, Amy, 267
Franke, Uli, 260, 271
Free Radicals, 413
Friendster, 617
Fourier, Jean-Baptiste-Joseph, 584
Fourier transform, 585, 588, 590
Futurist, 279, 579

Gabo, Nam, 633
Galloway, Alexander R., 563
Game of Life, 461, 463, 465–466,
 468, 475
Gardner, Martin, 461, 463
Garton, Brad, 581
Gerhardt, Joseph, 391–392
Gestalt psychology, 584

Reas_09_519-710.indd Sec6:706Reas_09_519-710.indd Sec6:706 5/23/07 1:08:41 PM5/23/07 1:08:41 PM

707 Index

GIF, 95–96, 98–99, 421, 700–701
Girroir, Jonathan, 506–509
Google, 568, 617
GPS (Global positioning system),
 619, 621
Graffiti, 223
GRASS, 681
Groeneveld, Dirk, 333
GNU Image Manipulation
 Program (GIMP), 95, 347, 355,
 607–608
GNU Public License (GPL), 271
Gnutella, 566, 571
GPU (graphics processing unit),
 536–537
Graphomat Z64 (Zuse), 603
Greenwold, Simon, 525
Greie, Antye (AGF), 503–504
Grzinic, Marina, 563
GUI (Graphical user interface),
 435–436, 448, 450, 499, 604,
 634, 679–680, 683, 685, 700
Gutenberg, Johannes, 111
Gutenberg archive, 433
Guttmann, Newmann, 580
Gysin, Andreas, 373

Hall, Grady, 379
Handel, George Frideric, 581
Hansen, Mark, 515–516, 634
Harmon, Leon, 604
Harvard University, xxi
Harvey, Auriea, 275
Hewlett-Packard (HP), 604, 610
Hawkinson, Tim, 633
Hawtin, Richie, 507
Hébert, Jean-Pierre, 217, 606
Hektor (Lehni, Franke), 260,
 270–273
Henry, John, 507
Henry, Pierre, 580
Hiller, Lejaren , 581
Hoefler, Jonathan, 112
Hodgin, Robert, 6, 692
Hokusai, 612
Hongik University, 5
Hong, Leon, 5, 375
Hooke’s law, 263, 487
Howard Wise gallery, 603
HTML (HyperText Markup
Language), 9–11, 93, 268, 427, 549,
 564–565, 568–569, 621, 624,
 665–666, 684
HTTP (Hypertext Transfer
 Protocol), 567–569, 623

Huber, Daniel, 552
Huff, Kenneth A., 606
Hypermedia Image Processing
Reference (HIPR), 552
HyperTalk, 522

IANA, 569
IBM, 315, 537, 580, 585, 604,
 620, 702
IC (integrated circuit), 639, 647
I–Cube X (Infusion Systems), 642
IEEE 1394 camera, 556
If/Then (Feingold), 633
Igarashi, Takeo, 538
Igoe, Tom, 635, 648
Ikarus M, 170
Incredibles, The, 315
Internet Explorer, 565
Internet Protocol (IP), 566–567,
 569, 589, 645
Impressionist, 279
Inaudible Cities: Part One
 (Semiconductor), 392
InDesign, 683
Infrared, 553, 621
Inge, Leif, 581
Inkscape, 77, 607–608
Installation (Greenwold), 526
Institute of Contemporary Arts
 (ICA), 101, 522
Intel Integrated Performance
 Primitives (IPP), 512, 555
Interaction Design Institute Ivrea
 (IDII), xxi, 634
i|o 360°, 565
I/O/D 4 (“The Webstalker”), 566
IRCAM, 554, 581, 592
Ishii, Hiroshi, 634
Ishizaki, Suguru, 327
ISO 216 standard, 611
Iwai, Toshio, 512, 549

James, Richard (Aphex Twin), 582
Jarman, Ruth, 391–392
Java, 7, 9–11, 146, 161–162, 263–264,
 271, 499, 521–523, 528, 555, 564–
 565, 571, 574, 592, 622, 625– 626,
 642, 663, 673, 677, 679–683,
 686–690, 699–700
Java 2 Micro Edition (J2ME), 625
Java applet, 9–11, 264, 521, 656, 657,
 675, 699
Java Archive (JAR), 10–11, 700
Java Core API, 271

JavaScript, 268, 271, 522, 624, 680,
 681, 683
Java Virtual Machine (JVM), 680
Jeremijenko, Natalie, 548
Jevbratt, Lisa, 566
jMax, 592
Jodi, 563–566
Jones, Crispin, 634
Jones, Ronald, 275
Jonzun Crew, 508
JPEG, 95–96, 162, 421, 606, 611,
 620, 701
JSyn (Java Synthesis), 592
Julesz, Bela, 603

Kay, Alan, 3
Kim, Tai-kyung, 5
Kimura, Mari, 582
King’s Quest, 525
Klee, Paul, 217
Knowlton, Kenneth C., 315, 604
Krueger, Myron, 255, 512, 547
Kusaite, Lina, 275
Kuwakubo, Ryota, 634

La Barbara, Joan, 511
Langton, Chris, 469, 471
Putto8 2.2.2.2 (Rees), 524, 526
LaserWriter, 111, 604
Lee, Soo-jeong, 5
Led Zeppelin, 161
Legible City, The (Shaw,
 Groeneveld), 333
Lehni, Jürg, 260, 271–273
Leibniz, Gottfried Wilhelm, 61
Letterscapes (Cho), 327
LettError, 111, 168–170, 605
Levin, Golan, 259, 333, 511–512,
 547, 617–618
Lewis, George, 582
LeWitt, Sol, 217
Li, Francis, 617
Lia, 316, 496
Lialina, Olia, 563–564
Licko, Zuzana, 112, 605
Lieberman, Zachary, 413,
 512–512, 547
Lifestreams, 425–426
Limewire, 571
Lingo, 522–523, 555, 565, 683,
 686–687, 689, 691
Linklater, Richard, 383
Linotype, 111
Linux, 4, 9–11, 508, 521, 568–569,
 625, 645, 649

Reas_09_519-710.indd Sec6:707Reas_09_519-710.indd Sec6:707 5/23/07 1:08:41 PM5/23/07 1:08:41 PM

708 Index

Listening Post (Rubin, Hansen),
 514–517
LISP, 101
LiveScript, 683
Local area network (LAN),
 568–569
Logo, xxiii, 2, 217, 522, 681
Lovink, Geert, 564
Lozano-Hemmer, Rafael, 546, 548
Lucent Technologies, 515
Lucier, Alvin, 590
Luening, Otto, 580
Lüsebrink, Dirk, 549
Lye, Len, 413

Machine Art exhibition, 291, 633
Machine Perception Laboratories,
 549
MacMurtrie, Chico, 549
Macromedia Director, 166,
 387–388, 554–555, 642, 683, 686
Maeda, John, xix, xxiii, xxiv, 3, 5,
 158, 333, 564, 606, 682
Malka, Ariel, 372
Makela, P. Scott, 605
Mandelbrot, Benoit, 153
Manovich, Lev, 565
Marble Madness, 525
Marconi, Guglielmo, 579
Marey, Étienne-Jules, 295
Mark of the Unicorn Digital
 Performer, 591
Markov chain, 581
Marx, Karl, 267–268
Massachusetts Institute of
 Technology (MIT), xix, xxiii,
 xxiv, 327, 634, 680, 682, 693, 695
Masterman, Margaret, 101
Mathews, Max, 580, 586, 591, 683
MATLAB, 522
Max/MSP/Jitter, 2, 503–504,
 515–517, 522, 554–555, 571, 580,
 592, 642, 683–685
Maya Embedded Language (MEL),
 680, 683
Maywa Denki, 634
McCarthy, John, 101
McCartney, James, 592
McCay, Winsor, 315
McLaren, Norman, 413
Medusa, 387
MEL, 680, 683
Mendel, Lucy, 507
Messa di Voce (Tmema et al.),
 510–513, 547

Metrowerks Codewarrior, 512
Microsoft, 4, 111, 169, 436, 508,
 525, 537, 585, 702
Microsoft Direct3D, 537
Microsoft Visual Basic, 436
Microsoft Windows, 9, 11, 264, 367,
 421, 435–436, 511, 521, 568, 625,
 645, 649, 665–666, 685
MIDI (Musical Instrument Digital
 Interface) 162, 554, 588–589,
 591–592, 618, 621, 623, 642, 645,
 683, 685
Mignonneau, Laurent, 549
MIME, 623
Mims, Forest M., III, 648
Mini-Epoch Series, The
 (Semiconductor), 390–393
Mini Movies (AGF+SUE.C), 500,
 502–505
Minitasking (Schoenerwissen/
 OfCD), 562, 566
Minsky, Marvin, 547
MIT Media Laboratory, xxiii, 327,
 634, 680, 682, 702
MixViews, 591
MP3, 162, 421, 585, 621, 623
MPEG–7, 549
Mobile Processing, 521, 622–626,
 683
Mohr, Manfred, 217, 602, 606
Möller, Christian, 549
Moore, F. Richard, 592
Mophun, 625
Morisawa, 605
Motion Theory, 378–381
MTV, 384
[murmur], 618
Museum of Modern Art, The
 (MOMA), 291, 633
MUSIC, 580, 591
Musique concrète, 580–581
Muybridge, Eadweard, 295, 373
Myron, 555
MySQL, 267–268
Myst, 525

Nakamura, Yugo, 565
Nake, Frieder, 217, 603
Napier, Mark, 566
Napster, 507, 571
Nees, Georg, 217, 603
Nelson, Ted, 3
“net.art”, 563–564
net.art (Baumgärtel), 564
net.art 2.0 (Baumgärtel), 564

NetBeans, 625
Netscape Navigator, 565, 683
Newton, Isaac, 477, 488
New York University (NYU), 6, 634
New York Times, The, 150
Ngan, William, 497
Nimoy, Josh, 512
Noll, A. Michael , 217, 603
Nokia, 517, 618–619, 625
Nmap, 569
NSA (National Security Agency),
 268
NTNTNT (Cal Arts), 564
NTSC, 367
NTT DoCoMo’s i–Mode, 624
Nuendo, Steinberg, 591
null, 40, 701
NURBS (Non-uniform Rational
 B-splines), 526
nVidia, 537
Nyquist theorem, 585

OBJ, 529–531
Objectivity Engine, The (Paterson),
 164–167
Oliveros, Pauline, 582
Olsson, Krister, 589
Once-Upon-A-Forest (Davis), 564
On, Josh, 267–268
oN-Line System (NLS), 205
OpenCV, 512, 555
OpenGL, 512, 520, 528, 531, 537,
 554, 684
Open source, 4, 268, 271, 512, 521,
 555, 591, 625–626, 640, 684
OpenType, 111, 169
Oracle database, 264
OSC (Open Sound Control),
 516–517, 571, 589
oscP5 (Schlegel), 571
Osmose (Davies), 526
O’Sullivan, Dan, 635, 648
Oswald, John, 581
Owens, Matt, 565

Pad, 435
Paik, Nam June, 633
PAL, 367
Palm Pilot, 223, 625
Palm OS, 625
Panasonic, 625
Papert, Seymour, 2, 217
Parallax, 640
Parallel Development, 516
Pascal, 522

Reas_09_519-710.indd Sec6:708Reas_09_519-710.indd Sec6:708 5/23/07 1:08:41 PM5/23/07 1:08:41 PM

709 Index

Paterson, James, 165–166, 316,
 565, 606
Paul, Les, 580
PBASIC, 642, 681
PC, 10, 227, 388, 625, 665, 682
PCB (printed circuit board),
 639, 640
PCM (pulse–code modulation),
 585–586, 699, 702
PDF, 520, 606–608, 682
Pelletier, Jean-Marc, 554
Penny, Simon, 549
Perl, 146, 515–517, 522–523, 565, 571,
 681, 684
Perlin, Ken, 130
Personal area network (PAN),
 621–622
Petzold, Charles, 648
Phidgets, 642
Philips, 634
PHP, 267–268, 522–523, 565,
 682, 684
PHPMyAdmin, 268
Physical Computing (O’Sullivan,
 Igoe), 648
Piano Phases (Reich), 293
PIC (Microchip), 272, 640
PIC Assembler, 271–272
PIC BASIC, 681
Pickard, Galen, 507
Pickering, Will, 516
Pixar, 315
Pixillation (Schwartz), 315
PNG (Portable Network Graphics),
 95–96, 98–99, 606, 622, 701
Pocket PC, 625
PoemPoints, 617
Pong, 256, 590, 618
PortAudio, 512
PostScript, 111, 143, 169–170, 522,
 604–605, 681
Poynor, Rick, 605
Practical Electronics for Inventors
 (Scherz), 648
Practice of Programming,The
 (Kernighan, Pike), 252
Praystation (Davis), 564
Public Enemy, 581
Puckette, Miller, 2, 592, 684
Pulse–code modulation (PCM),
 585–586, 699, 702
Pure Data (Pd), 592, 684–685
Python, 146, 170, 517, 522–523,
 681–682, 684

Q*bert, 525
Quartz Composer, 684
Qualcomm, 625
Quest3D, 275–276

R, 515, 517
Raby, Fiona, 634
Radial, 503–504
RAM, 701
RandomFont Beowolf (LettError),
 111, 168–170, 605
Rauschenberg, Robert, 606
Ray Gun, 605
Razorfish, 565
RCA Mark II Sound Synthesizer,
 580
Readme!, 563
Real-Time Cmix, 592
Rees, Michael, 526
Reeves, Alec 585
Reich, Steve, 293
Reichardt, Jasia, 522
Reiniger, Lotte, 315
RenderMan, 315
R.E.M. “Animal” (Motion Theory),
 378–381
ResEdit, 170
Resnick, Mitchel, 471, 680
Reynolds, Craig, 295, 473, 497
Rhino, 271, 537
Rich, Kate, 548
Riley, Bridget, 151
Ringtail Studios, 275
Risset, Jean-Claude, 581
RoboFog, 170
Rokeby, David, 548, 554
Rotoshop, 383–384, 413
Royal Academy of Arts, 169
Royal College of Art, 634
Rozin, Danny, 549
RS-232, 639, 554, 640, 645
Rubin, Ben, 515, 634
Ruby, 681, 684
Ruby on Rails, 684
Runge-Kutta method 7, 494
Russolo, Luigi, 579

Sabiston, Bob, 383–384, 413
Saito, Tatsuya, 198, 529, 568
Samyn, Michaël, 275
Sauter, Joachim, 549
Schaeffer, Pierre, 580
Scheme, 522
Scherz, Paul, 648
Schiele, Egon, 217

Schlegel, Andreas, 498, 571
Schmidt, Karsten (a k a toxi), 4, 518
Schoenerwissen/OfCD, 562
Schöffer, Nicolas, 633
Schumacher, Michael, 582
Schwartz, Lillian, 315
Scientific American, 461, 463
Scratch, 680
Screen Series (Snibbe), 549
Scriptographer (Lehni, Franke),
 270–273, 683
Seawright, James, 633
sed, 684
Semiconductor, 390–393, 646
Sessions, Roger 580
Sester, Marie, 549
Shannon, Claude, 669
Shape of Song (Wattenberg),
 160–163
Shaw, Jeffrey, 333
Shiffman, Daniel, 6
Shockwave Flash (SWF), 158, 565
Short Messaging Service (SMS),
 617, 619, 621
SHRDLU, 101
sh/tcsh, 515, 684
Shulgin, Alexi, 563–564
Silicon Graphics, 529, 537
Simon, John F. Jr., 413, 565
SimpleTEXT, 618
Sims, Karl, 295
Sinclair Spectrum, 264
Singer, Eric, 554
Sketchpad, 217
SketchUp, 538
Slacker, 383
Slimbach, Robert, 112
Smalltalk, 685
Smith, Laura, 275
Snake, 618
Snibbe, Scott, 413, 549
Social Mobiles (SoMo), 634
Sodaconstructor (Burton),
 262–265, 413, 499
Soda Creative Ltd., 263–264
SoftVNS, 554
Solidworks, 537
Sommerer, Christa, 549
Sonami, Laetitia, 582
Sonic Inc., 392
Sony, 634
Sony Ericsson, 625
Sorenson, 388
Sorting Daemon (Rokeby), 548, 554
Sound Films, 392

Reas_09_519-710.indd Sec6:709Reas_09_519-710.indd Sec6:709 5/23/07 1:08:42 PM5/23/07 1:08:42 PM

710 Index

Spark Fun Electronics, 640
SQL (Structured Query Language),
 685
Srivastava, Muskan, 5
Standards and Double Standards
 (Lozano-Hemmer), 547–548
Star Wars, 315
Strausfeld, Lisa, 327
Stedelijk Museum, 218
Stehura, John, 315
STEIM (Studio for Electro-
 Instrumental Music), 554
Steinkamp, Jennifer, 387–388
Stipe, Michael, 379–380
Stockhausen, Karlheinz, 580
Stone, Carl, 582
Stop Motion Studies (Crawford),
 316
Studies in Perception I, (Knowlton,
 Harmon), 604
Substrate (Tarbell), 6, 154, 156–159
Sudol, Jeremi, 507
Suicide Box, 548, 554
Sun Java Wireless Toolkit, 625
Sun Microsystems, 521, 537,
 625, 682
SuperCollider, 571, 592, 685
Sutherland, Ivan, 217
SVG (Scalable Vector Graphics),
 77, 520, 606, 624
Symbian, 625
Synergenix, 625

Tale of Tales, 274–277
Talmud Project (Small), 327
Takeluma (Cho), 327
Takis, 633
Tarbell, Jared, 6, 155–156, 606
Tangible Media Group (TMG), 634
TARGA, 368, 606, 702
Tate Gallery, 218
T|C Electronics Powercore, 587
tcpdump, 568–569
TCP/IP, 554, 569, 589
Technics, 507
Teddy (Igarashi), 538
Telephony (Thompson,
 Craighead), 618
TeleNav, 619
Teleo (Making Things), 642
Tesla, Nikola, 579
Text-to-speech (TTS), 516–517
They Rule (On et al.), 266–269
Thomson, Jon, 618
TIFF, 368, 507, 606, 608, 611, 702

Toy Story, 315
Tmema, 510–513
Transmission Control Protocol
 (TCP), 569
Tron, 315
Truax, Barry, 581
TrueType, 111
Tsai, Wen–Ying, 633
TurboGears, 684
Turkle, Sherry, 5
Turux (Lia, Dextro), 316
Type, Tap, Write (Maeda), 333
Tzara, Tristan, 150

Überorgan (Hawkinson), 633
Unicode, 432, 665–668
University of California
 Berkeley, 589
 Los Angeles (UCLA), xxi, 4, 5, 574
 San Diego (UCSD), 549
University of Cincinnati (UC), xxiii
University of Genoa, 554
UNIX, 227, 435, 517, 569, 645
U.S. Army Ballistic Missile
 Research Laboratories, 603
USB, 556, 640–645, 701
User Datagram Protocol (UDP),
 554, 569, 589
Ussachevsky, Vladimir, 580
UTF-8, 665
Utterback, Camille, 549

Valicenti, Rick, 605
van Blokland, Erik, 169–170
van Blokland, Petr, 170
VanDerBeek, Stan, 315
Vanderlans, Rudy, 605
van Rossum, Just, 169
Vaucanson’s Duck, 461
Vehicles: Experiments in Synthetic
 Psychology (Braitenberg), 473
Venice Biennale, 391
Verschoren, Jan, 275
“Video Games and Computer
 Holding Power” (Turkle), 5
Videoplace (Krueger), 547
Visual Language Workshop (VLW),
 327, 702
Visual programming languages
 (VPL or VL) , 679–680
Vitiello, Stephen, 582
VLW font format, 112, 702
Vogel, Peter, 632, 633
Von Ehr, Jim, 170
Vonnegut, Kurt, 507

von Neumann, John, 461
Vorbis codec, 585
Voxel, 527
vvvv, 685

Wacom, 383
Waking Life, 382–385, 413
Walt Disney, 315, 379
Wang, Ge, 592
Warner Bros. Records, 379
Wattenberg, Martin, 161–162, 606
Watz, Marius, 374
WAV, 585–586, 621, 623, 702
Wayfinder Systems, 619
Wegman, William 606
Weizenbaum, Joseph, 101
Whitney, James, 315
Whitney, John, 315
Whitney Museum of American
 Art, 516
Wilhelm Imaging Research, 610
Wilson, Mark, 152, 217, 604
Winograd, Terry, 101
Wiring, 521, 633, 640, 641, 645–646,
 648–649, 685
Wright, Frank Lloyd, 333
Wrongbrowser (Jodi), 566
Wolfram, Steven, 461, 463–464,
 467, 475
Wolfenstein 3D, 525
Wong, Andy, 507
Wong, Yin Yin, 327

Xenakis, Iannis, 581
Xerox Palo Alto Research Center
 (PARC), 3, 205
Xerox, 507
xHTML Mobile, 624
XML, 421, 427–428, 520, 549, 621,
 624, 702

Yamaha Digital Mixing Engine
 (DME), 516
Yellow Arrow, 618
Youngblood, Gene, 388

Ziggurat (font), 112
Zooming user interface (ZUI), 435

Reas_09_519-710.indd Sec6:710Reas_09_519-710.indd Sec6:710 5/23/07 1:08:42 PM5/23/07 1:08:42 PM

	Shape2: Vertices

